Terminale S
Exercices du livre
Chapitre 7
Intégrales, primitives

February 28, 2009

Contents

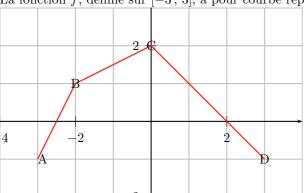
1.	Aires et intégrales	3
	1-1. Exercice 2 p 206	3
2.		4
	2-1. Exercice 8 p 207	4
3.		4
		4
		4
		4
		5
4.		5
	4.4 F	5
		5
	4 0 B 4 00 000	5
		5
	4 × T	5
5.		5
0.		5
6.		6
0.		6
		6
	2. Zhoroto v2 p 210	6
	0 0. Energies 00 p 210	7
	D 1 1 200 F 1	1
7.	Restes de 2005!	7
	7-1 Exercice 23 n 194	7

Exercices d'entraînement

1. Aires et intégrales

1-1. Exercice 2 p 206

La fonction f, définie sur $[-3\,;\,3]$, a pour courbe représentative la courbe ci-dessous :



1. Interpréter graphiquement et déduire les valeurs des intégrales suivantes :

(a)
$$I = \int_{-2}^{0} f(x) \, \mathrm{d}x$$
;

(b)
$$I = \int_{2}^{3} f(x) \, dx$$
;

(c)
$$I = \int_{2}^{-2} f(x) \, \mathrm{d}x$$
;

(d)
$$I = \int_{-3}^{-2} f(x) \, dx$$
.

- 2. (a) Quelle est la valeur moyenne de f sur [0; 2]?
 - (b) Quelle est la valeur moyenne de f sur [-3; 3]?
- 3. Le repère est orthonormal et l'unité graphique est égale à 0,8 cm. Que vaut, en cm², l'aire de la surface limitée par la courbe représentant f, l'axe des abscisses et les droites d'équation x = -2 et x = 2?

2. Recherche de primitives

2-1. Exercice 8 p 207

Donner une primitive des fonctions :

1.
$$f(x) = x^3 - 4x^2 + 3x - 5$$

2.
$$f(x) = (x+3)^2$$

3.
$$f(x) = (2x+3)^4$$

4.
$$f(x) = (4-x)^3$$

5.
$$f(x) = 3x(x^2 + 1)^4$$

6.
$$f(x) = x^2(x^3 + 1)^{2007}$$

3. Calcul d'intégrales

3-1. Exercice 21 p 208

Calculer les intégrales :

1.
$$I_1 = \int_1^e \frac{\ln x}{x} \, \mathrm{d}x$$

2.
$$I_2 = \int_0^4 t e^{t^2} dt$$

3.
$$I_3 = \int_0^{e^2} \frac{dt}{t \ln t}$$

4.
$$I_4 = \int_0^1 \frac{e^x}{(e^x + 1)^2} dx$$

5.
$$I_5 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan x \, dx$$

6.
$$I_6 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan^2 x \, dx$$

3-2. Exercice 22 p 208

Calculer les intégrales proposées en utilisant une primitive.

1.
$$\int_{-2}^{2} (2^t + 2^{-t}) dt ;$$

2.
$$\int_0^1 \frac{3^t + 1}{4^t} dt$$
;

3.
$$\int_{1}^{4} x^{\frac{5}{2}} dx$$
;

4.
$$\int_{1}^{9} (x+1) \sqrt{x} dx$$
.

3-3. Exercice 24 p 208

On pose $I = \int_0^x \cos^2 t \, dt$ et $J = \int_0^x \sin^2 t \, dt$.

Calculer I + J et I - J.

En déduire I et J.

3-4. Exercice 25 p 208

Soit les fonctions f et g définies sur [0; 1] par $f(x) = x^2(1-x)^3$ et $g(x) = x^3(1-x)^2$. On désigne par C_f et C_g les courbes de f et de g dans un repère orthonormal.

- 1. (a) Vérifier que pour tout x de [0; 1]: f(x) = g(1-x).
 - (b) Que peut-on en déduire pour les points M(x; f(x)) et N(1-x; g(1-x)? et pour les courbes C_f et C_q ?
- 2. Montrer que $\int_0^1 f(x) dx = \int_0^1 g(x) dx$
 - (a) à l'aide de la question 1;
 - (b) par le calcul.

4. Intégration par parties

4-1. Exercice 26 p 208

Calculer les intégrales proposées, en utilisant une ou plusieurs intégrations par parties.

1.
$$\int_{-2}^{3} e^{x}(x+1)dx$$
;

2.
$$\int_0^1 x^2 e^{2x} dx$$
.

4-2. Exercice 28 p 208

Calculer, en utilisant une ou plusieurs intégrations par parties :

$$\int_1^e \frac{\ln(t+1)}{(t+1)^2} \mathrm{d}t.$$

4-3. Exercice 29 p 208

Calculer les intégrales proposées, en utilisant une ou plusieurs intégrations par parties.

$$1. \int_0^{\frac{\pi}{2}} x \sin x \mathrm{d}x \; ;$$

2.
$$\int_{0}^{\pi} (x^2 + 1) \cos x dx$$
.

4-4. Exercice 30 p 208

On pose $I = \int_0^{\frac{\pi}{2}} e^x \cos x \, dx$ et $J = \int_0^{\frac{\pi}{2}} e^x \sin x \, dx$.

- 1. A l'aide d'une intégration par parties, exprimer I en fonction de J puis J en fonction de I.
- 2. En déduire I et J.

4-5. Exercice 31 p 208

Soit
$$I_n = \int_{e^n}^{e^{n+2}} \frac{\ln t}{t^2} dt$$
.

- 1. Calculer I_n à l'aide d'une intégration par parties.
- 2. Calculer $\lim_{n\to+\infty} I_n$.

5. Calculs d'aires et valeur moyenne d'une fonction

5 - 1. Exercice 33 p 209

- 1. Dans un repère orthonormal (unité graphique 2 cm), dessiner la parabole (P) d'équation $y = x^2 3x$ et la droite (d) d'équation $y = \frac{1}{2}x$.
- 2. Calculer l'aire, en cm², de la portion de plan limitée par la parabole, l'axe des abscisses et les droites d'équations respectives x = 0 et x = 3.
- 3. (a) Déterminer les coordonnées des points d'intersection de (d) et (P).
 - (b) On pose I = $4\int_0^{\frac{1}{2}} \left(\frac{7}{2}x x^2\right) dx$. Calculer I. De quelle portion du plan I représene-t-elle l'aire en cm²?

Exercices d'approfondissement

6. Suites et intégrales

6-1. Exercice 60 p 213

1. On pose, pour tout entier naturel n non nul,

$$I_n = \frac{1}{n!} \int_0^1 (1-x)^n e^{-x} dx.$$

- (a) A l'aide d'une intégration par parties, calculer I₁.
- (b) Prouver que, pour tout entier naturel n non nul,

$$0 \leqslant I_n \leqslant \frac{1}{n!} \int_0^1 e^{-x} dx.$$

En déduire $\lim_{n\to+\infty}I_n$.

(c) Montrer, en utilisant une intégration par parties que pour tout entier naturel n non nul, on a :

$$I_{n+1} = \frac{1}{(n+1)!} - I_n$$

2. On considère la suite réelle (a_n) , définie sur \mathbb{N}^* par $a_1 = 0$ et, pour tout entier naturel n non nul,

$$a_{n+1} = a_n + \frac{(-1)^{n+1}}{(n+1)!}.$$

(a) Démontrer par récurrence que, pour tout entier naturel n non nul,

$$a_n = \frac{1}{e} + (-1)^n I_n.$$

(b) En déduire $\lim_{n\to+\infty} a_n$.

6-2. Exercice 62 p 213

On définit la fonction f sur]0; $+\infty[$ par $f(x) = \frac{\ln x}{\sqrt{x}}$.

- 1. Etudier les variations de f.
- 2. Pour tout entier n supérieur ou égal à 8, on pose :

$$U_n = f(8) + f(9) + \ldots + f(n).$$

(a) Démontrer que pour tout entier k supérieur ou égal à 8:

$$f(k+1) \leqslant \int_{k}^{k+1} f(t) \, \mathrm{d}t \leqslant f(k).$$

- (b) En déduire : $U_{n+1} f(8) \leqslant \int_{8}^{n+1} f(t) dt \leqslant U_n$.
- (c) A l'aide d'une intégration par parties, calculer :

$$I_n = \int_8^{n+1} f(t) \, \mathrm{d}t$$

(d) Montrer que $\lim_{n \to +\infty} U_n = +\infty$.

6-3. Exercice 63 p 213

Pour tout entier naturel n de \mathbb{N}^* , on pose $u_0 = \int_0^1 1 \, \mathrm{d}x$ et pour n > 0, $u_n = \int_1^e (\ln x)^n \, \mathrm{d}x$.

- 1. Démontrer que $u_n \geqslant 0$.
- 2. Déterminer le signe de $u_n u_{n-1}$. En déduire que la suite (u_n) est monotone.
- 3. Montrer que la suite (u_n) est convergente et que $\lim_{n\to+\infty} u_n \geqslant 0$.
- 4. Démontrer, à l'aide d'une intégration par parties, que , pour tout $n \in \mathbb{N}$:

$$u_{n+1} = e - (n+1)u_n$$
.

5. A l'aide de cette relation, montrer que la limite de cette suite ne peut être strictement positive. En déduire la limite de la suite (u_n) .

6-4. Exercice 84 p 219

On considère la fonction f définie $[0\,;+\infty[$ par :

$$\begin{cases} f(0) &= 1\\ f(x) &= \frac{1}{2}(3 - 2\ln x) + 1 \text{ si } x > 0 \end{cases}$$

On désigne par (C) sa courbe représentative dans un repère orthonormal $(O, \overrightarrow{i}, \overrightarrow{j})$.

- 1. (a) Calculer $\lim_{x\to 0} f(x)$. Que peut-on en déduire pour la fonction f?
 - (b) Déterminer la limite de f en $+\infty$.
- 2. (a) Déterminer une équation de la tangente (D) à la courbe (C) au point d'abscisse x = 1.
 - (b) On pose, pour x > 0, $g(x) = f(x) 2x \frac{1}{2}$. Etudier le sens de variation de g' et son signe pour x > 0.
 - (c) En déduire le sens de variation de g puis la position de la courbe (C) par rapport à la tangente (D).
- 3. (a) Soit n un entier naturel non nul. Exprimer en fonction de n, le réel $I_n = \int_{\frac{1}{n}}^{1} x^2 \ln x \, dx$.
 - (b) En déduire, en fonction de n, l'aire A_n limitée par la courbe (C), la tangente (D) et les droites d'équations $x = \frac{1}{n}$ et x = 1.
 - (c) Calculer $\lim_{n \to +\infty} A_n$ et interpréter le résultat obtenu.

7. Restes de 2005!

7-1. Exercice 23 p 194

Le plan est muni d'un un repère orthonormal (unité graphique 1 cm).

Soit la fontion f définie sur $[-\ln 8; \ln 8]$ par $f(x) = \frac{4e^x}{1 + e^x}$ et la fonction g définie sur $[\ln 8; 12]$ par $g(x) = \frac{32}{9}$.

- 1. Déterminer $f(\ln 8)$. Représenter les courbes de ces deux fonctions. On appelle (C) la réunion de ces deux courbes.
- 2. Déterminer, en cm², l'aire du domaine D délimitée par (C), l'axe x'x et les droites d'équations respectives

$$x = -\ln 8 \text{ et } x = 12.$$

3. Le volume, en cm³, du solide engendré par la rotation autour de x'x de la courbe (C) sur l'intervalle $[-\ln 8 \, ; \, \ln 8]$ est donné par : $V_1 = \pi \int_{-\ln 8}^{\ln 8} \left(f(x)\right)^2 \mathrm{d}x$. Calculer V_1 .

(On pourra démontrer que pour tout x réel : $\frac{e^{2x}}{(1+e^x)^2} = \frac{e^{2x}}{(1+e^x)^2}$

4. Calculer le volume, en cm 3 du solide en forme de bouteille obtenu par la rotation du domaine (D) autour de l'axe x'x.