
The Art of Coding
A slideshow of some beautiful features of Ruby

Benoit Daloze

26 octobre 2010

Who am I ?

I Benoit Daloze
I github.com/eregon (@eregontp)
I Rubyist since 2006
I I learned C, C++, Java, PHP, Oz, Haskell, Python and Ruby
I co-author of the symbolic gem (symbolic math)
I won a few Ruby challenges

(Broadsides, Interactive Fiction, Game Of Life)

What is Ruby ?

Ruby is ... “a dynamic, open source programming language with a focus
on simplicity and productivity. It has an elegant syntax that is natural to
read and easy to write.”

History

I Ruby was created on February 24, 1993 by Yukihiro Matsumoto
who wished to create a new language that balanced functional
programming with imperative programming.

I “I wanted a scripting language that was more powerful than Perl,
and more object-oriented than Python.”

I Ruby 1.0 was released on December 25, 1996
I Current Ruby version is 1.9.2 (released on September 18, 2010)

Who use Ruby ? 1

I NASA Langley Research Center uses Ruby to conduct simulations
I Google SketchUp is a 3D modeling application that uses Ruby for its

macro scripting API
I Ruby On Rails is one of the best and most innovative web

application framework (GitHub, Twitter, Basecamp, Scribd, Geni,
Redmine, Lighthouse, Urban Dictionary, White Pages, Next
Sprocket, spitzer.caltech.edu (NASA), Go vs Go, . . .)

I Ruby was used to write the central data collection portion of Level 3
Communications Unix Capacity and Planning system that gathers
performance statistics from over 1700 Unix servers scattered around
the globe

1. http ://www.ruby-lang.org/en/documentation/success-stories/

Interpreters

I MRI : Matz’s Ruby Interpreter : C
I JRuby : Java
I Rubinius : Ruby on top of LLVM with C++
I MacRuby : Objective-C, bridge with Cocoa
I IronRuby : Open Source implementation for .NET

Main Principles

I Beautiful and natural syntax, no useless () {} ; . . .
I Everything is an Object : Number, Class, Method, Binding, nil . . .
I Dynamic typing and Duck typing
I Succinct and flexible syntax
I Reflection and metaprogramming
I Functional programming with Blocks/closures

Syntax

array = [1, [2.0, ’c’], :d, (5..67)]
obj.method (* params) { block }
or obj.m(* params) do block end

class MyClass
def my_method (*args)

body
this_last_statement_is_the_returned_value

end

def clever_params(a, b = a *2, c = @ivar **2)
end

end

you , (can , splat), *an = array

Simplicity

vowels = %w[a e i o u]

alphabet = (’a’..’z’).to_a

consonants = alphabet - vowels

Expressiveness

5.times { puts ’Hello Ruby’ }

"This is Ruby".length # => 12

3.even? # => false

[1,2,3]. include? 2 # => true

ary.shuffle! until ary.sorted? # Bogosort

Productivity

class Person
def name
@name
end
def name= name
@name = name
end
...
attr_accessor :name , :age

end

john = Person.new
john.name = ’John’
john.age = 25
or
Person = Struct.new(:name , :age)

Flexibility

Core classes can be modified, even Fixnum#+

class Array
def shuffle

sort_by { rand }
end

end

[1, 2, 3]. shuffle # => [2, 3, 1], ...

Dynamism

Padawan = Class.new
class Jedi

def train(padawan)
def padawan.control_the_force

puts "Now i’m ready to become a Jedi!"
end

end
end

Skywalker , Yoda = Padawan.new , Jedi.new
Skywalker.respond_to? :control_the_force # => false

Yoda.train Skywalker
Skywalker.respond_to? :control_the_force # => true
Skywalker.control_the_force
=> Now i’m ready to become a Jedi!

Conciseness

require ’sinatra ’

get ’/’ do
’Hello , World!’

end

$ curl localhost :4567 # => Hello , World!

Beautiful API

open(’ruby -conf.rb’) { |f| f.write ’New Orleans ’ }

URI work too !
require ’open -uri’

puts open ’http :// www.ruby -lang.org/en/’, &:read

Simplify loops

def factorial n
fact = 1
for i in (1..n)

fact *= i
end
return fact

end
factorial (5) # => 120

becomes
class Integer

def !
(1.. self).inject (1) { |fact , i| fact * i }

end
end
5.! # => 120
can even be: (1.. self).inject(1, :*)

Chaining

[450, 1000, 675]. sort.take (2).map { |p| "$#{p}" }
=> ["$450", "$675"]

Find the char with the most occurrences in a
String

adn = "ATTGCCATATCC".chars.to_a
adn.uniq.sort.max_by { |c| adn.count(c) } # => "C"

Enumerators

has a gap after 4 and 7!
numbers = [1, 2, 3, 4, 6, 7, 9, 10]

gaps = []
numbers.each_cons (2) do |x, y|

gaps << x unless y == x + 1
end
gaps #=> [4, 7]

or

numbers.each_cons (2)
.reject { |x,y| x + 1 == y }.map(&: first)

Caching

Caching is easy: we have the ||= operator
which assign only if it is nil or false

def my_method
@cache ||= some_extensive_computation

end

Closures

def create_get_and_set closure_value
return lambda { closure_value },

lambda { |x| closure_value = x }
end

getter , setter = create_get_and_set
setter.call (42)
getter.call # => 42

Operators

Name it as it is, operators are just methods :

1 + 2 == 1.+(2)

class Number
Same for + / % ** & ^ | << [] []= ~ < ...
def * n

@value * n
end

end

Literals

Most useful objects are literals

[1, 2_345_678 , 0xfe , 0b101010]
3.14
"string"
/RegExp/
:symbol
%w[array of strings]
range = (1..15)
hash = {key: value}

<<HERE
heredoc
HERE

String interpolation

"This is #{’*so* ’ if $VERBOSE}useful !"

"There is real #{ sleep 1}code"

"I love #{"nest#{’ing ’}"}"

"It convert to #{ String} by calling #to_s"

Rich stdlib

All core Classes have a lot of handy methods

Array.instance_methods # => ..., pop , push , shift ,
unshift , take , drop , insert , replace , [], []=,
rotate , ...

String.instance_methods # => bytes , capitalize ,
center , chars , chomp , chop , codepoints ,
downcase , lines , end_with?, (g)sub(!), encode
...

Enumerable.instance_methods # => count , grep , min ,
min_by , sort_by , each_with_index , map ,

each_cons , each_slice , zip , take , ...

Scripting

set_mtime_from_exiftime

#!/usr/bin/env ruby
require ’time’
Dir["**/*.{jpg ,JPG}"].each do |f|

times = 8 exiftime #{f} 8

.scan (/(?:\d+:\d+:\d+ ?) {2}/)

.map { |time| Time.new(*time.split (/\W/) }

raise "Not same times: #{times}" unless times.
all? { |time| time == times.first }

File.utime(File.atime(f), times.first , f)
end

RSpec

describe BlogPost do
subject { BlogPost.new ’foo’, ’bar’ }
it { should be_invalid }

end

describe Array do
its(: length) { should == 0 }

end

expect do
foo.bar

end.to change { baz.quux }.by(1)

mock.should_receive (: method).once.with(args).
and_return(answer)

A quote of Matz

“[...] The computers don’t care. We humans care about the effort we pay.
Often people, especially computer engineers, focus on the machines.
They think, ‘By doing this, the machine will run faster. By doing this, the
machine will run more effectively. By doing this, the machine will
something something something.’ They are focusing on machines. But in
fact we need to focus on humans, on how humans care about doing
programming or operating the application of the machines. We are the
masters. They are the slaves.” 2

2. http ://www.artima.com/intv/ruby4.html

Credits

I http ://ruby-lang.org
I Wikipedia : Ruby, Yukihiro Matsumoto
I ruby-talk : “The beauty of Ruby through examples”
I Pure RSpec : http ://pure-rspec-scotruby.heroku.com
I RSpec : http ://rspec.info

