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PREFACE.

THis work contains all the propositions which are usually

included in elementary treatises on algebra, and a large number
- of examples for exercise.

My chief object has been to render the work easily intelligible,
Students should be encouraged to examine carefully the language
of the book they are using, so that they may ascertain its meaning
or be able to point out exactly where their difficulties arise. The
language, therefore, ought to be simple and precise ; and it is
essential that apparent conciseness should not be gained at the
expense of clearness.

In attempting, however, to render the work easily intelligible,
I trust I have neither impaired the accuracy of the demonstrations
nor contracted the limits of the subject ; on the contrary, I think
it will be found that in both these respects I have advanced
beyond the line traced out by previous elementary writers.

The present treatise is divided into a large number of chapters,
each chapter being, as far as possible, complete in itself. Thus
the student is not perplexed by attempting to master too much
at once ; and if he should not succeed in fully comprehending
any chapter, he will not be precluded from going on to the next,
reserving the difficulties for future consideration : ‘the latter point
is of especial importance to those students who are without the
aid of a teacher.
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The order of succession of the several chapters is to some
extent arbitrary, because the positioh which any one of them
should occupy must depend partly upon its difficulty and.partly
upon its importance. But, since each chapter is nearly independ-
ent, it will be in the power of the teacher to abandon the order
laid down in the book and to adopt another at his discretion.

The examples have been selected with a view to illustrate
every part of the subject, and, as the number of them is more
than two thousand, I trust they will supply ample exercise
for the student. Complicated and difficult problems have been
excluded, because they consume time and energy which may be
spent more profitably on other branches of mathematics. Each
set of examples has been  carefully arranged, commencing with
some which are very simple and proceeding gradually to others
which are less obvious ; those sets which are entitled Miscellaneous
Examples, together with a few in each of the other sets, may
be omitted by the student who is reading the subject for the first
time. The answers to the examples, with hints for the solution
of some in which assistance may be needed, are given at the end
of the book.

I will now give some account of the sources from which the
present treatise has been derived.

Dr Wood’s Algebra has been so long current that it has
become public property, and it is so well known to teachers that
an elementary writer would naturally desire to make use of it
to some extent, The first edition of that work appeared in 1795,
and the tenth in 1835; the tenth edition was the last issued
in Dr Wood’s life-time. The chapters on Surds, Ratio, and
Proportion, in my Algebra are almost entirely taken from Dr
Wood’s Algebra. I have also frequently used Dr Wood's ex-
amples either in my text or in my collections of examples.
Moreover, in the statement of rules in the elementary part of
my book I have often followed Dr Wood, as, for example, in the
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Rule for Long Division ; the statement of such rules must be
almost identical in all works on Algebra. I should have been
glad to have had the advantage of Dr Wood's authority to a
greater extent, but the requirements of the present state of
mathematical instruction rendered this impossible. The tenth
edition of Dr Wood’s Algebra contains less than half the matter
of the present work, and half of it is devoted to subjects which
are now usually studied in distinct treatises, namely, Arithmetic,
the Theory of Equations, the application of Algebra to Geometry,
and ‘portions of the Summation of Series; the larger part of the
remainder, from its brevity and incompletenqss, is now unsuitable
to the wants of students, Thus, op the whole, a very small
number of pages comprises all that I have been able to retain of
Dr Wood’s Algebra.

For additional matter I have chiefly had recourse to the
Treatise on Arithmetic and Algebra in the Library of Useful
Knowledge, and the works of Bourdon, Lefebure de Fourcy,
Mayer and Choquet, and Schlomilch ; I have also studied with
great advantage the Algebra of Professor De Morgan and other
works of the same author which bear upon the subject of Algebra.

I have also occasionally consulted the edition of Wood's
Algebra published by Mr Lund in 1841, Hind’s Algebra, 1841,
Colenso’s Algebra, 1849, and Goodwin’s Elementary Course of
Mathematics, 1853.

Although I have not hesitated to use the materials which were
available in preceding authors, yet much of the present work is
peculiar to it ; and I believe it will be found that my Algebra
contains more that is new to elementary works, and more that is
original, than any of the popular English works of similar plan.
Originality however in an elementary work is rarely an advan-
tage; and in publishing the first edition of my Algebra I felt
some apprehension that I had deviated too far from the ordinary
methods. I have had great satisfaction in receiving from eminent
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teachers favourable opinions of the work generally and also of those
parts which are peculiar to it.

The present edition has been carefully revised, and two new
chapters have been added. Three hundred miscellaneous examples
have also been supplied ; .these are arranged in sets, each set con-
taining ten examples; the first hundred relate to the first twenty
chapters of the book, the second hundred extend to the end of the
fortieth chapter, and the last hundred relate to the whole book.

I have to return my thanks to many able mathematicians who
have favoured me with suggestions which have been of servioce to
me ; the improvemegts which have been effected in the work will,
I trust, render it still more useful in education, and still more
worthy of the approbation which it has received.

I have drawn up a treatise on the Theory of Equations to form
a sequel to the Algebra; and the student is referred to that
treatise as a suitable continuation of the present work.

I. TODHUNTER.

St Jorx's COLLEGE,
October, 1870.
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ALGEBRA.

I DEFINITIONS AND EXPLANATIONS OF SIGNS.

1. THE method of ressoning about numbers, by means of
letters which are employed to represent the numbers, and signs
which are employed to represent their relations, is called Algsbra.

2. Letters of the alphabet are used to represent numbers,
which may be either Znown numbers, or numbers which have to
be found and which are therefore called unknown numbers. It is
usual to represent Anown numbers by the first letters of the
alphabet, as a, b, ¢, and unknown numbers by the last letters,
a8 @, ¥, #; this is not however a necessary rule, and so need not
be strictly obeyed.

Numbers may be either whole or fractional. The word quan-
tity is frequently used as synonymous with number. The word
integer is often used instead of whole number.

3. The sign + signifies that the number to which it is prefixed
is to be added. Thus a+b signifies that the number represented
by & is to be added to the number represented by a. If a repre-
sent 9, and b represent 3, then @ + b represents 12. The sign + is
called the plus sign, and a + b is read thus “a plus b.”

Similarly @ + b + ¢ signifies that we are to add ¥ to a, and then
add ¢ to the result.

4. The sign —signifies that the number to which it is prefixed
is to be subtracted. Thus a—b signifies that the number repre-
sented by b is to be subtracted from the number represented by a.
If a represent 9, and b represent 3, then a — b represents 6. The
sign — is called the minus sign, and ¢ — b is read thus “aminus b.”

T. A, 1
M



2 DEFINITIONS AND EXPLANATIONS OF SIGNS.

Similarly a—b— ¢ signifies that we are to subtract 5 from g,
and then subtract ¢ from the result ; a + b — c signifies that we are
to add b to @, and then subtract ¢ from the result ; @ —b + ¢ signi-
fies that we are to subtract b from a and then add ¢ to the result.

5. The sign x signifies that the numbers between which it
stands are to be multiplied together. Thus a x b signifies that the
number represented by a is to be multiplied by the number repre-
sented by b. If a represent 9, and b represent 3, then a x b repre-
sents 27. The sign x is called the sign of multiplication, and @ x b
is read thus “a info b.” Similarly @ x b x ¢ denotes the product of
the numbers represented by a, b and c.

It should be observed that the sign of multlphcatlon is often
omitted for the sake of brevity ; thus ab is used instead of a x b,
and has the same meaning ; so abe is used for & x b x ¢. Sometimes
a point is used instead of the sign x ; thus @.b is used for a x b
or ab. But the point is here superfluous, because, as we have
said, ab is used instead of @ x b, Nor is the point, nor the sign x,
necessary between a number expressed in the ordinary way by a
figure and a number represented by a letter ; so that, for example,
3a is used instead of 3 x @, and has the same meaning.

The sign of multiplication must not be omitted when numbers
are expressed by figures in the ordinary way, Thus 45 cannot be
used to express the product of 4 and 5, because a different mean-
ing has already been appropriated to 45, namely forty-fivee. We
must therefore express the product of 4 and 5 thus 4 x 5, or thus
4.5. To prevent any confusion between the point thus used as a
sign of multiplication and the point as used in the notation for
decimal fractions, it is advisable to write the latter higher up ;
thus 4'5 may be kept to denote 4 + f;.

6. The sign + signifies that the number which precedes it
" i8 to be divided by the number which follows it. Thus a+b sig-
nifies that the number represented by a is to be divided by the
fiumber- represented by 5. If a represent 9, and b represent 3,
then @ + b represents 3. The sign =+ is called the sign of division,
and @+ b is read thus “a by b.” There is also another way of
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denoting that one number is to be divided by another ; the divi-

dend is placed over the divisor with a line between them. Thus %
is used instead of @ + b and has the same meaning.

7. The sign —signifies that the numbers between which it is
placed are equal. Thus a=0 signifies that the number repre-
sented by a is equal to the number represented by b, that is, ¢ and’
b represent the same number: The sign =is called the sign of
equality, and a = b is read thus “ a equals b or “a s equal to b.”

8. The difference of two numbers is sometimes denoted by
the sign ~; thus a~b denotes the difference of the numbers
denoted by @ and b, and is equal to a—b or to b — a, according
a8 a i greater than b or less than b.

9. The sign > denotes greater than, and the sign < denotes less
than; thus a>b denotes that the number represented by a is
greater than the number represented by b, and b<a denotes that
the number represented by b is less than the number represented
by a. Thus in both signs the opening of the angle is turned
towards the greater number.

10. The sign .. denotes then or thergfore; the sign - denotes
since or because,

11. 'When several numbers are to be taken collectively they
are enclosed by brackets. Thus (a—b+c) x (d+e) signifies that
the number represented by a—5+¢ is to be multiplied by the
number represented by d+e. This may also be written thus
(a=b+c)(d+¢). The use of the brackets will be seen by com-
paring what we have just given with (@ —b+c¢) d+¢; the latter
denotes that the number represented by a—b+¢ is to be mul-
tiplied by d. and then e is to be added to the product.

Sometimes instead of using brackets a line called a vinculum
is drawn over the numbers which are to be taken collectively.
Thus a—bd+cxd+e is used with the same meaning as
(a-b+c)x(d+e).

12. The letters of the alphabet, and the signs or marks which

1—2



4, DEFINITIONS AND EXPLANATIONS OF SIGNS.

we have already introduced and explained, together with those
which may occur hereafter, are called algebraical symbols, since
they are used to represent the things about which we may be
reasoning. Any. collection of algebraical symbols is called an
algebraical eacpreesitm, or briefly, an expression, or a formula. An
algebraical expression is sometlmes called an algebraical guanttty,
or briefly, a quantity.

13. Those parts of an expression which are connected by the
signs + or — are called its ferms. When an expression consists of
two terms it is called a binomial expression; when it consists of
three terms it is called a trinomial expression; any expression
consisting of several terms may be called a multinomial expression
or a polynomial expression. 'When an expression does not contain
parts connected by the sign + or the sign — it may be called a
simple expression, or it may be said to contain only one term.

Thus abe is a simple expression; abc + x is a binomial expres-
sion, of which abe is one term, and z is the other ; ab + ac— bc is
a trinomial expression, of which ab, ac, and bec are the ferms.

14, 'When one number consists of the product of two or more
numbers, each of the latter is called a factor of the product. Thus
a, b and ¢ are factors of the product abe.

15. A product may consist of one factor which is a number
represented arithmetically, and of another factor which is a num-
ber represented algebraically, that is, by a letter or letters ; in this
case the former factor is said to be the coefficient of the latter.
Thus in the product 7abe the factor 7 is called the coefficient of
the factor abe. Where there is no arithmetical factor, we may
supply unity ; thus we may say that, in the product abe, the co-
efficient is unity.

And when a product is represented entirely algebraically,
any one factor may be called the coefficient of the product of the
remaining factors, Thus, in the product abc, we may call a the
coefficient of be, or b the coefficient of ac, or ¢ the coefficient of ab.
If it be necessary to distinguish this use of the word coefficient
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from the former, we may call the latter coefficients literal coef-
JSicients, and the former coefficients numerical coefficients.

16. If a number be multiplied by itself any number of times,
the product is called a power of that number. Thus a x a is called
the second power of a ; also & x a x a is called the third power of
a; andaxa x axa is called the fourth power of a; and so on.
The number a itself is often called the firss power of a.

17.  Any power of a quantity is usually expressed by placing
above the quantity the number which represents how often it is
repeated in the product. Thus a® is used to express a x a ; also
a’ is used to express axa xa ; and a* is used to express axaxaxa;
and so on. And a' may be used to denote the first power of a
or @ itself ; that is, a' has the same meaning as a.

Numbers placed above a quantity to express the powers of
that quantity are called indices of the powers, or exponents of the
powers’; or more briefly indices or exponents.

18. Hence we may sum up the two preceding Articles thus:
the product of n factors each equal to a is expressed by 4", and
n is called the index or exponent of a®, where n may denote any
whole number.

19. The second power of a or a' is often called the square
of a, and the third power of a or a&® is often called the cube
of a. The symbol a* is read thus “a o the fourth power” or
briefly “a to the fourth ;” and a® is read thus “a to the n*.”

20. The square root of any assigned number is that number
which has the assigned number for its sgquare or second power.
The cube root of any assigned number is that number which has
the assigned number for its cube or third power. The fourth root
of any assigned number is that number which has the assigned
number for its fourth power. And so on.:

21. The square root of & number a is denoted thus 3/a, or
simply thus ,/a. The cube root of @ is denoted thus 2/a. The
fourth root of a is denoted thus %/a. And so on.
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The sign ,/ is said to be a corruption of the initial letter of
the word radiz. This sign is sometimes called the radical sign.

22, Terms are said to be liks or similar when they do not
differ at all, or differ only in thejr numerical coefficients; otherwise
they are said to be wnlike. Thus 4a, 6ab, 9a* and 3a'bc are
respectively similar to 15a, 3ab, 124' and 15a%c. And ab, a%,
ab* and abe are all unlike.

23. Each of the letters which occur in an algebraical product
is called a dimension of the product, and the number of the
letters is the degree of the product. Thus a®d*c or axaxbxdxbxe
is said to be of six dimensions or of the sixth degree. A. numerical
coefficient is not counted; thus 94°6* and a®b* are of the same
dimensions, namely of seven dimensions. Thus the degres of a
term or the number of dimensions of a term is the sum of the
exponents, provided we remember that if no exponent is expressed
the exponent 1 must be understood as indicated in Art. 17.

24. An algebraical expression is said to be homogeneous when
all its terms are of the same dimensions. Thus 7a®+ 3a®h + 4abe
is homogeneous, for each term is of three dimensions.

The following examples will serve for an exercise in the

preceding definitions,
EXAMPLES.

Ifa=1,0=3,¢c=4, d=6,6=2and f=0, find the numerical
values of the following twelve algebraical expressions :

1. a+2b+4e. 9. 3b45d—2e.

3. ab+2bc+ 3ed. 4, ac+4ded— 2eb.

5. abe+ 4bd +ec— fd. 6. a'+b'+c"+f"
cd .4be cd < 4s

7 -b"+‘§;—2—4'. . 8. c¢*—4c*+3¢c-6.
o+ d*-¢*.

o 2c-3a" 10. d'+dc+c*’

L 218+ @+ () 12 J(350)+ (O0d)- 1/(2¢).
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13. Find the value of (9—y)(¢+1)+(z+5)(y+T7)-112,
when =3 and y=>5.

14. TFind the value of z,/(z' - 8y) + ¥ \/(=* + 8y), when =15
and y=3.

15. Find the value of a,/(z* - 3a) + 2 /(¢ + 3a), when =5
and a=8.

16. Find the value of a+5 \/(z+ j)-(a—b) J(z-y), when
a=10,5=8, 2=12, and y=4.
17. Ifa=16,5=10,2=5 and y=1, find the value of
(6-2) (Va +b)+ J{(a—b) (z+9y)} ;
and of (a-y) {J(2b2) + &'} + \J{(a - =) (b + ¥)}.
18. fa=2 =3, =6 and y=25, find the value of
(@ +8)"y} + Y{(a + ) (y - 2a)} + Y{(y~ ) a}.

Il CHAXGE OF THE ORDER OF TERMS. REDUCTION OF LIKE
TERMS. ADDITION, SUBTRACTION, USE OF BRACKETS.

25. When the terms of an expression are connected by the
sign + it is indifferent in what order they are written; thus
a+b and b+a give the same result, namely the sum of the
numbers which are denoted by a and 6. 'We may express thig
fact algebraically thus :

a+b=b+a.
Similarly
a+b+c=a+c+b=b+at+c=b+o+a=c+a+b=c+b+a.

- 26. When an expression consists of some terms preceded
by the sign + and some terms preceded by the sign —, we may
write the former terms first- in any order we please, and the
latter- terms after them in any order we please. This appears
from the same considerations as before. Thus, for example,

a+b-c~e=a+b-e-c=b+a—-c—-e=b+a-e—c
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27. In some cases it is obvious that we may vary the order
of terms still further, by mixing up the terms preceded by the
sign — with those preceded by the sign +. Thus, for example,
if a represent 10, b represent 6, and ¢ represent 5, then

a+b-c=a—-c+b=b-c+a.

If however a represent 2, b represent 6, and ¢ represent b,
then the expression a—c¢+b presents a difficulty because we are
thus apparently required to take a greater number from a less,
namely 5 from 2. It will be convenient to agree that such an ex-
pression as @ — ¢+ b when ¢ is greater than & shall bs understood to
mean the same thing as a+b—c. At present we shall never use
such an expression except when c¢ is less than a + 5, so that a+b—¢
presents no difficulty. Similarly we shall consider — b + a to mean
the same thing as a—5. 'We shall recur to this point hereafter in
Chapter V. ' -

28. Thus the numerical value of an expression remains the
same whatever may be the order of the terms which compose it.
This, as we have seen, follows, partly from our notions of addition
and subtraction, and partly from an agreement as to the meaning
we ascribe to an expression when our ordinary arithmetical
notions are not strictly applicable. Such an agreement is called
in Algebra a convention, and conventional is the corresponding
adjective. °

29, 'We shall frequently, as in Article 26, have to distinguish
the terms of an expression which are preceded by the sign + from
the terms which are preceded by the sign —, and thus the follow-
ing definition is adopted : The terms in an expression which are
preceded by no sign or which are preceded by the sign + are
called positive terms ; the terms which are preceded by the sign
- are called negative terms. This definition is introduced merely
for the sake of brevity, and no meaning is to be given to the
words positive  and negative beyond what is expressed in the
definition. The student will notice that terms preceded by no sign
are treated as if they were preceded by the sign +.
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30. Sometimes an expression includes several like terms ; in
this case the expression admits of simplification. For example,
oonsider the expression 4a% — 3a’c + 9ac® - 2a®h + Ta'c — 64* ; this
may be written 4a'h— 2a%h + Ta% — 3a% + 9ac® — 6b* (Art, 28).
Now 4a’b- 24’ is the same thing as 2a%, and 7Ta% —3a% is
the same thing as 4a%. Thus the expression may be put in the
simpler form 2a'd + 4a’ + 9ac* — 65*.

ADDITION.

31. The addition of algebraical expressions is performed by
writing the terms in succession each preceded by its proper sign.

For suppose we have to add ¢c—d+e to a—b; this is the
same thing as adding c+e—d to a—b (Art. 28). Now if we
add c+e to a—b we obtain a—b+c+e; we have however thus
added d too much, and must consequently subtract d. Hence
we obtain a—b+c+6—d, which is the same as a—b+c—d +e¢;
thus the result agrees with the rule above given. The result is
called the sum.

‘We may write our result thus :

a-b+(c—d+e)=a-b+c—d+e.

32. When the terms of the expressions which are to be
added are all wnlike, the sum obtained by the rule does not
admit of simplification. But when like terms occur in the ex-
pressions, we may simplify as in Art. 30. Hence we have the
following rules :

When like terms have the same sign their sum is found by

taking the sum of the mﬁmeMa with that sign and annexing the
common letters. .

Example; add 5a—3b and 4a—7b; the sum is 9a—105.
For the ba and the 4a together make 9a, and the 3b and 7b
together make 105,

Again; add dac - 10bde, Ga'c — 9bde and 11 c— 3bde. The
sum is 21a’c— 22bde.
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When like terms occur with different signs their sum is found
by taking the difference of the sum of the positive and the sum of
the megative coefficients with the sign of the greater sum and an-
nexing the common letters as before.

Example; add 7a — 9% and 56— 4a. The sum is 34 — 4b.

Again; add together 3a'+4bc—e*+ 10, Ba*+ 6bc +2¢'—15
and 4a*—9bc—106'+21. The sum is 12a*+ bc—9¢* + 16,

SUBTRACTION.

~ 33. Suppose we have to take b+¢ from a. Then as each of
the numbers b and ¢ is to be taken from & the result is denoted by
a—b-c. Thatis
' a—(d+c)=a-b-c.

‘We enclose the term b+ ¢ in brackets, because both the num-
bers b and ¢ are to be taken from a.

Similarly a+d—(b+c+e)=a+d-b-c—e.

Next suppose we have to take b—c¢ from a. If we take
b from & we obtain a—b; but we have thus taken too much
from g, for we are required to take, not b but, b diminished by c.
Hence we must increase the result by ¢; thus

a-(b-c)=a-b+ec

Similarly, suppose we have to take d—c—d+ ¢ from a. This
is the same thing as taking b +6—c—d from a. Take away b + e
from @ and the result is a —b—e¢; then add ¢+d, because we
were to take away, not b + ¢ but, b + ¢ diminished by ¢+ d; thus

a—(b-c—-d+e)=a—-b—-e+c+d
=a-b+o+d—e.

34. From considering these cases we arrive at the following
rule for subtraction: Change the sign of every term in the expres-
sion to be subtracted, and then add it to the other expression. Here
as before, we suppose for shortness, that where there is no sign
before a term, + is to be understood.



S . BRACKETS. 11

For exa.mple take & - b from 3a +b.
3a+b-(a—-b)=3a+b-a+b= 2a+2b
Again ; tako ba’ + 4ab— 6zy from 1la’+ 3ab— 4xy.
11a* + 3ab - 4zy — (5a* + 4ad — 6xy)
= 11a’ + 3ab — 4oy — 5a" — 4ab + Gy = 6a’ — ab + 2xy.

"~ BRACKETS.

35. On account of the frequent occurrence of brackets in
algebraical investigations, it is advisable to call the attention
of the student explicitly to the laws respecting their use. These
laws have already been established, and we have onmly to give
them a verbal enunciation.

When an expression within brackels is precaded by the sign +
the brackets may be removed.

Thus a—b+(c—d+e)=a—b+c—d+e (Art 31).

And conzequently any number of terms in an expression may be
enclosed by brackets, and the sign + placed before the whole.

Thus @ —b + ¢ — d + ¢ may be written in the following ways :

a-b+c+(—~d+e), a—d+(c+e—b), a+(~d+c+e-D),
and so on. '

When am expression within brackets is preceded by the sign —
the brackets may be removed if the sign of every term within the
brackets be changed, namely + to — and — to +.

Thus a—(b—c—d+e)=a—b+c+d—e (Art. 34).

And consequently any number of terms in an expression may
be enclosed by brackets and the sign — placed before the whole,
_provided the sign of every term within the brackets be changed.

Thus @—b+¢+d — ¢ may be written in the following ways :

a-b+c—(-d+e), a—(b—c—d+e), a+c—(b-d+e),
and so on. A .
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36. Expressions may occur with more than one pair of
brackets ; these may be removed in succession by the preceding
rules beginning with the inside pair. Thus, for example,

a+{b+(c—~d)}=a+{d+c—d}=a+b+c-d,
a+{d-(c-d)}=a+{d—c+d}=a+b—~c+d,
a-{b+(c-d)}=a—-{b+c—~d}=a-b-c+d,
a-{b-(c~d)}=a—-{b-c+d}=a-b+c-d.
Similarly,
a-[b-{c-(@-o}]=a-[b-{c-d+e]]
=a—[b—c+J—e]=a—b+c—d+e.

It will be seen in these examples that, to prevent confusion
between various pairs of brackets, we use brackets of different

shapes; we might distinguish by using brackets of the same shape
but of different sizes.

A vinculum is equivalent to a bracket; see Art. 11. Thus,
for example,

a-[b-fo-(@=a=/N]=a-[B~le—(d-s+/)]
=a-[b-{c—d+e—f}l=a-[b-c+d—e+[f]
=a-b+c—-d+e—f

In like manner more than one pair of brackets may be intro-
duced. Thus, for example,

a-bt+c—d+e=a-{b—c+d-e}=a—-{b—(c—-d+e)}

37. The beginner is recommended always to remove brackets
in the order shewn in the preceding Article ; namely, by removing
first the innermost pair, next the innermost pair of all which re-
main, and so on. 'We may however vary the order; but if we
remove a pair of brackets including another bracketed expression
within it, we must make no change in the sign of the included ex-
pression. In fact such an included expression counts as a single
term. Thus, for example,
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a+{b+(c—d}=a+b+(c~d)=a+d+ec—d,
a+{b—(c~d)}=a+db—(c—d)=a+b-c+d,
a—{b+(c-d)}=a-b-(c—d)=a-b-c+d,
a~{b—(c~d)}=a-b+(c~d)=a-b+c—d.

Also, a-[b-{c—(d-e)}]=a—-b+{c—(d-e)}
=a-b+c-(d-e)=a-b+c-d+e
And in like manner, a—[b—{c~ (d-e-f)}]
=a-b+{c~(d—e—S ) =a—b+c~—(d-e—f)
=a-b+c—d+e—f=a-b+c—d+e—f.

EXAMPLES,

1. Add together 4a —5b + 3¢ - 2d, @ +b— 4¢ + 5d,
- 3a—-Tb+6¢c+4d and a+ 4b—c-Td.
2. Add together o*+2x*~3z+1, 22°— 32" + 42— 2, -
32’ + 42"+ 5 and 42 —-3x'—-bz+9.
3. Add together
2 -3xy+y'+ax+y—1, 22" + day - 3y* — 2z — 2y+3
3a" — bay — 4y + 3z + 4y — 2 and 62"+ 102y + 5y" +x + y.
Add together o —2ax’+a'z, 2* + 3az' and 22° - ax’.
Add together 4ab—=z*, 32®—2ab and 2ax + 2bx.
From 5a—3b + 4c—7d take 2a—~ 25+ 3c—d. :
From «'+ 42~ 24"+ Tz —1 take z*+ 22°—2x*+ 6z 1.
Subtract a*—ax +a' from 3a®—2ax+2".
Subtract a — -2 (c—d) from 2 (a—b)—c+d. '
10. Subtract (a—d)z— (b—c)y from (a+b)x+ (b+c)y.
11. Remove the brackets from a— - (c-a)}
12. Remove the brackets from a—{(b—c)—d}.
13. Remove the brackets from a + 2b~ 62— {3b— (6a — 63)}
14. Remove the brackets from 7a - {3a—[4a—(6a - 2a)]}.

R I
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15. Also from 3a—[a+b—{a+b+c=(a+b+c+d)}
16. Also from 2z —[3y— {4z —(by — 62)}].
17. Also from a—[2b+{3¢c— 3a— (a +b)} + 2a—(b+ 3¢)].
18. Also from a—[55—{a— (3¢ — 3b) + 2c—(a—2b—c)}].
19, If a=2, =3, x=6 and y=>, find the value of
a+2—{b+y—[a—-z—(b- 2y

20. Simplify

4 -2 +a+1—- (3" — o' —x—T)— (2" - 4= + 22+ 8).

III. ' MULTIPLICATION.

38. 'We have already stated that the product of the numbers
denoted by any letters may be denoted by writing those letters in
succession without any sign between them ; thus abed denotes the
product of the numbers denoted by a, b, ¢ and d. 'We suppose the
student to know from Arithmetic, that the product of any num-
ber of factors is the same in whatever order the factors may be
taken ; thus abe = ach = bea, and so on.

39. Suppose we have to form the product of 4a, 55, and 3¢c;
this product may be written at full thus: 4 xa x5 xbx 3 x¢, or
4 x5 x 3 x abe, that is 60abe. And thus we may deduce the
following rule for the multiplication of simple terms: multiply
together the numerical coefficients and put the letters after the
product.

40, The notation adopted to represent the powers of a num-
ber, (Art. 17), will enable us to prove the following rule: the
powers of a number are multiplied by adding the exponénts, for
a’xa'=axaxaxaxa=a"=a""; and similarly any other case

may be established.

- Thus if m and n are any whole numbers, a™ x a* = a™*",
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41. 'We may if we please indicate the product of the same
powers of different letters by writing the letters within brackets,
and placing the index over the whole. Thus a' x b'=(ad)*; this
is obvious since (ab)*=abx ab=a x & x b x b. Similarly,

a’ x b* x ¢ = (abe)’s

Thus a*x "= (ab)"; a"x b"x ¢*=(abc)"*; and s0 on for any
number of factors,

42. Suppose it required to multiply a+b by ¢. The pro-
duct of ¢ and ¢ is denoted by ac, and the product of b and ¢
is denoted by bc ; hence the product of @+ b and ¢ is denoted by
ac+be. For it follows, as in Arithmetic, from our notion of
multiplication, that to multiply any quantity by a number we
have only to multiply all the parts of that quantity by the number
and add the results, Thus

(@ +B) ¢ = ac + be.

43, Suppose it required to multiply a—5b by ¢. Here the
product of @ and ¢ must be diminished by the product of b
and ¢, Thus

(a—b) c=ac—be.

44, Suppose it required to multiply a+b by c+d. It
follows, as in Arithmetic, from our notions of inultiplication,
that if a quantity is to be multiplied by any number, we may
separate the multiplier into parts the sum of which is equal to
the multiplier, and take the product of the quantity by each part,
and add these partial products to form the complete product.

Thus (@+b)(c+d)=(a+b)c+(a+d)d;
also (a+b)c=ac+bec, and (a+d)d=ad+bd;
thus (a+ ) (c +d)=ac + be + ad + bd.

45. Suppose it required to multiply a —b by ¢+d. Here
the product of @ and ¢+ d must be diminished by the product of
band ¢c+d. Thus

(@=b)(c+d)= a(c+d) b(c+d)
=ac+ad - (be + bd) = ac + ad — bc - bd.
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46. Suppose it required to multiply a+b by ¢—d. Here
-the product of a+b and ¢ must be diminished by the product
ofa+band d. Thus

(a+b) (c—d)z(a+5)c—(a+ b)d
=ac + be — (ad + bd) = ac + be — ad - bd.

47. Suppose it required to multiply a—b by ¢—d. Here
the product of a—b and ¢ must be diminished by the product
of a—b and d. Thus

(a-b)(c—d)=(a—b)c—(a-b)d
=ac —~be — (ad — bd) = ac — be — ad + bd.

48, From considering the above cases we arrive at the fol-
lowing rule for multiplying two binomial expressions: Multiply
each term of the multiplicand by each term of the multiplier ; if the
terms have the same sign, prefix the sign + to their product, if they
have different signs prefic the sign —; then collect these partial
products to form the complete product.

The rules with respect to the sign of each partial product are
often enunciated thus for shortness: ltke signs produce +, and

unlike signs produce —.

49. Tt appears from the preceding Articles, that correspond-
ing to the terms — b and ¢ which occur in two binomial factors,
there is a term —b&c in the product of the factors. Hence it is
often stated as an independent truth that — b x ¢=-be.

Similarly, we observe, that corresponding to the terms —b and
— ¢ which oecur in two binomial factors, there is a term be in the
product of the factors ; hence it is often stated as an independent
truth, that —bx —c=bc. These statements will be examined and
explained in Chapter V.

50. The rule given in Article 48 will hold for the multipli-
cation of any expressions. This will appear from considering
a fow- examples, Suppose, for instance, we have to multiply
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4a® — Bab + 68" by 2a* — 3ab+ 45, The required product here is
2a* (4a* - 5ab + 6b%) — 3ab (4a” — Sab + 68°) + 40* (4a” — 5abd + 60*) ;
thus we obtain
(8a* - 10a% + 124"") — (12a% — 15a"0" + 18ab”)
+(16a%" — 20ad® + 24b%),
that is
8a* —10a" + 12a%* — 12a°0 + 154" — 18ab® + 164" — 20ab® + 24b*,
This result agrees with the rule. If we simplify the result by
collecting the like terms we obtain
8a*— 22a% + 43a"0" — 38ad® + 245"
The whole operation may be conveniently arranged thus :

4a’ - 5ab + 60
2a* — 3ab + 4*

8a* - 10a® + 12a'b*
—12a%b + 15a'0° — 18ad®
+16a'0* — 20ab® + 245*

8a' — 22a%b + 43a’6" — 38ab® + 245

51. The student should carefully notice the arrangement of
the above operation. The expressions which we wish to multiply
are here said to be arranged according to descending powers of a;
for in the expression 4a’— 5ab +.6b the term which contains the
highest power of a is 4a’, and this is placed first ; next we place
— 5ab which contains @, and last we place the term -+ 6b% which
does not contain a at all. Similarly the other factor 2a* — 3ab + 4b°
is arranged. . The partial products which arise are so arranged
that like terms oécur in the same column, and thus we collect
them more easily.

The factors might also have been arranged thus 65*— 5ab + 4a'
and 40° — 3ab + 2a° ; they are then said to be arranged according
to ascending powers of a. It is of no consequence which order
we adopt, but we should take the same order for the multiplicand
and the multiplier,

T. A, . 2
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52, Again; multiply 22* + 3%+ 4 by 22°- 3z +4. The ope-
ration may be arranged thus :

22 + 32+ 4
2 -3z + 4

4z* + 62° + 82
— 62* — 92* — 122
+ 82 + 12 + 16

. 4zt + 72* +16
Thus the product is 4a* + 72* + 16,

53. The following three examples deserve special notice,

a+b a-b a+b

a+b a-b a-b

o' +ab a'—ab a'+ab
+ab +0' —ab +0° —ab-b*

o'+ 2ab + b* a'—2ab+ 8 a’ - b

The first example gives the value of (a+3) (a +85), that is, of
(@ +0b)"; we thus find

(a+0)"'=a"+ 2ab +b",
Thus the square of the sum of two numbers is equal to the

sum of the squares of the two numbers increased by twice their
product,

Again we have
(a—b)'=a"—2ab+¥"

Thus the square of the difference of two numbers is equal to the
sum of the squares of the two numbers diminished by twice their
product.

Also we have

(a+8)(a—b)=a'-0b"

Thus the product of the sum and the difference of two numbers:
i equal to the difference of their squares.



MULTIPLICATION, ) 19

54. We may here indicate the meaning of the sign ' which
is sometimes used, and which. is called the double sign.

Since (a +b)" = a® + 2ab + b°,
and (a—b)=a'—2ab+b",
we may write (@ b)’ = a" = 2ab + b*

Thus & indicates that we may take either the sign + or the
sign —; a=b is read thus, “a plus or minus b.”

55. The results given in Art. 53 furnish a simple example of
the use of Algebra ; we may say that Algebra enables us to .prove
general theorems respecting numbers, and also to express thoss
theorems briefly. For example, the result (@ +b) (6 —b)=a*~b* is
proved to be true, and is stated thus by symbols more compactly
than by words,

There are other results in multiplication which are of Jess
importance than the three formulse given in Art, 53, but which
are deserving of attention, 'We place them here in order that the
student may be able to refer to them when they are wanted ; they
can be easﬂy verified by actual multiplication,

(@+Dd)(a'—ab+b")=a"+1",
(a—b)(a* +ab+b")=a’- 0",
(a+b)*=(a+d) (0 + 2ab + b) = a" + 3a'b + 3ad’ + b’,
(a—b)’=(a—0b)(a*— 2ab + b*) = a® — 3a"b + 3ab® - b’
(G+c)(c+a)(a+d)=a’(d+c)+b* (c+a)+c* (a+b)+ 2abe,
(b—c)(c—a)(a—Dd)=a"(c—-bd)+b*(a—c)+c*(b—a),
(@ +b+c)(be+ ca+ab) =a’ (b +c) +b* (¢ + a) + ¢* (@ + ) + 3abe,
(@ +b+c)(a® +b"+¢" — be — ca — ab) = a® + b* + ¢* — 3abe,
@G+c—a)(c+a-b)(@a+b-c)= ’(b+c)+b’(c+a)+c’ (a+d)
— 8 — ¢* - 2abe,
(@+b+c)=a"+ 3a'(b+c)+ 3a(b+c)’+(b+c)’
" =d+3a* (b +0) +3a (B + 2bc + ) + B* + 3b%c + 3bc* + &
=a®+5°+ ¢+ 3a° (b +¢) + 3b* (a + ¢) + 3¢ (a + b) + Babc.
' 2—2
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56. By using the formule given in Art. 53, the process of
multiplication may be often simplified. Thus suppose we have to
multiply a+b+c¢+d by a+b—c—d. This is the same thing as
multiplying (a +3) + (¢ +d) by (@ +b)—(c+ d) Then by the third
formula we have ‘

{(a+b)+(c+d)}{(a+b)—(c+d)}=(a+b)~(c+d).

Next we can express (a+b)* and (¢+d)? by means of the first

formula ; thus finally '
(a+b+c+d)(a+b—c—d)=a +b’+2ab—c’ ar— 2cd

57. From an examination of the examples here given, and
those which are left to be worked, the student will recognise the
truth of the following laws with respect to the result of multi-
plying algebraical expressions.

The number of terms in the product of two algebraical ex-
pressions is never greater than the product of the numbers of the
terms in the two expressions, but may be less, owing to the
simplification produced by collecting like terms.

‘When the multiplicand and multiplier are both arranged in the
same vlvay according to the powers of some common letter, the first
and last terms of the product are unlike any other terms. For in-
stance, in the example of Art. 50, the multiplicand and multiplier
are arranged according to powers of a; the first term of the
product is 8a* and the last term is 24b%, and there are no other
terms which are like these; in fact, the other terms contain &
raised to some power less than the fourth power, and thus they
differ from 8a*; and they all contain a to some power, and thus
they differ from 246 '

“When the multiplicand and multiplier are both komogeneous
the product is homogeneous, and the number of the dimensions of
the product is the sum of the numbers which express the dimen-
sions of the multiplicand and multiplier. Thus in the example of
Art. 50, the multiplicand is homogeneous and of two dimensions,
and the multiplier is homogeneous and of two dimensions ; the
product is homogeneous and of four dimensions. In the example
of Art. 56 the multiplicand and the multiplier are both homo-
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geneous and of ehe dimension ; the product is homogeneous and of
two dimensions. The law here stated and exemplified is of great
importance as it serves to test the accuracy of algebraical work ;
and accordingly the student is recommended to pay great attention
to the dimensions of the terms in the results which he obtains,

There is another -law which is often useful in testing the
accuracy of algebraical work, which we may call the law of
symmetry. Suppose we require the product

(@+a+d) (x+b+c)(z+¢+a).

Here a, b, and c.occur symmetrically. If we put a instead- of ¢,
and ¢ instead of @, we shall only change the order of the factors ;
and this will produce no change in the result. Similarly ¢ and b
may be interchanged, or b and ¢ may be interchanged, .without
changing the value of the result. We may expect then' that
the result will be symmetrical with respect to a, b, and ¢; and
we shall find this to be the case. The result is :
2+ 22 (@+b+c) +z{a’ + b* + ¢* + 3 (ad + be + ca)}
+a' (b+c) +8° (¢ +a)+c* (a+b) + 2abe.

It will be seen that this expression is symmetrical with respect to
a, b, and ¢. Take, for example, the coefficient of z'; this is
2 (a+b+c), that is, 2+ 2b + 2¢ : if then a student had obtamed
an -unaymmgtncal result, suppose 2a + 2b +¢, it would be obvious
to a person acquainted thh the suluect that there must be an -
error in the work.

The law of symmetry is ome with which the student will
gradually become familiar ; for the further he proceeds in A.lgebm,
the more frequently will the law be of service.

EXAMPLES OF MULTIPLICATION.

1. Multiply 2p—¢ by 2¢ +p.

2. Multiply o'+ 3ab+ 2b* by Ta—5b.

3.. Multiply a’—ab + b* by o'+ ab—"b"

4, Multiply a*—ab+ 2b* by o' +ab~—20b".
.. Multiply o + 2ax+2* by a®+ 2az—a".
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Multiply a* + 4az + 4a* by o' — 4az + 4a”
Multiply a'—2az + bz —a* by b+,

. Multiply 152 + 18ax —14a* by 4x*— 2ax - a”,

Multiply 22° + 42* + 8z + 16 by 3z—6.
Multiply 22° — 8ay + 9y* by 2z — 3y.
Multiply 42— 3zy —y* by 3z - 2y.

Multiply «° - 2'y + xy*— y* by 2 +y.
Multiply « + 2y — 3z by « — 2y + 3=

Multiply 2a* + 3zy + 4y by 32* — 4oy + "
Multiply «* + 2y + y* by «* + a2 + 2.
Multiply a*+ b* +¢*+ be+ ca — ab by a + b —c.
Multiply &* —ay+y* +2+y+1byz+y—1.

Multiply «* + 42® + 5z— 24 by a* — 4z +11.

Multiply 2* - 4a* + 11z — 24 by «* + 4z + 5.

Multiply 2’ — 2a* + 3z — 4 by 42+ 32" + 2z + 1.

Multiply & + 22® + 2* — 4z — 11 by o* — 2z + 3.

Multiply &* - 52* + 132" —2* — 2 + 2 by o' - 22— 2.
Multiply a* - 2a® + 3a®— 2a + 1 by a*+ 2a*+ 3a* + 2a + 1.
Multiply together ¢ — =, @ + 2, and a® +2"

Multiply together z— 3, x—1, #+1, and 2+ 3.
Multiply together o~ 2+ 1, &*+2+1, and a*—a'+1.
Multiply 2*—aa® + ba* — c2 + d by &' + az* — ba® + cx — d.
Shew that (z + a)* =a* + 42’ + 62" + 4xa’ + a.

Shew that z (z+ 1) (z +2) (z+ 3)+ 1= (2" + 3z + 1)"
Multiply together @+, &+, and ¢+ 2.

Multiply together 2 —a, —8, ®#—¢, and z—-d.

Multiply together a+d—¢, @+c¢—b, b+c—a, and a+d+ec.
Simplify (a +8) (b +¢)— (¢ +d) (d +a)—(a+<) (b—-d). .

Stmphfy(a+b+c+d)"+(a b—c+d) +(a—b+c—d)
+(a+b-c-d).
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35. Prove that (x+y +2)'—(2* + ¥*+2*)=3(y+2) (2 +2) (x + ).
36. Simplify (e +b+c)'—a(d+c—a)—b(a+c—by-c(a+d—c).
37, Simplify (z—g)"+ (2+9)'+ 3 (@—9)"(@+9) + 3(@+1)* (@—1).
38. Simplify (a®+b"+ ¢*)*— (a+b+c)(a+b—c)(a+c—b) (b+c—a).
39. Simplify (a’+b*+ ¢')' + (@ +b+c) (a+b—c)(a+c—b) (b +c—a).
40. Prove that 2*+3y°+(x+2)' =2 (@ + 2y +¥")* .
+ 8z"y" (x +y)* (=* + 2y +¥").
41. Prove that 4zy (z"+ ¥") = (" + 2y + ¥")' — (&' —xy + ¥*)".
42, Prove that 4zy (2’ - ') = (z* + 2y ~ ¥")' — (" — 2y - )"
43. Multiply together (%' — 3= + 2)* and &* + 6z + 1.
44, Multiply a’ + a° — ax (2* + a®) by & + a* — ax (z + a).
45. Multiply (a +b)" by (a—b)
46. Ifs=a +b+c, prove that
8 (s — 2b) (8— 2¢) + 8 (8 — 2¢) (8 — 2a) + 8 (8 — 2a) (s — 2b)
=(8— 2a) (¢ — 2b) (8 — 2¢) + 8abe.

IV. DIVISION.

58. Division, as in Arithmetic, is the inverse of Multipli-
cation, In Multiplication we determine the product arising from
two given factors; in Division we have the product and one of
the factors given, and our objeet is to determine the other factor.
The factor to be determined is called the guotient.

© 59. 8ince the product of the numbers denoted by a and b
is denoted by ab, the quotient of ab divided by a is b; thus
ab+a=">; and also ab-+b=a. Similarly, we have abc+a = be,
abc+b=ac, abc+c=ab; and also abc+bc=a, abcac=2d,
abc+-ab=c. These results may also be written thus:

abe abe abe

—;—:bc, -b—=ac, T:ab;

= abc_b abc..
BT Wk e
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60. Suppose we require the quotient of 60abe divided by 3e¢.
Since 60abc=20ab x 3¢ we have 60abc+3c=20ab. Similarly,
60abc—+4a=16bc ; 60abc+5ab=12¢; and so on. Thus we may
deduce the following rule for dividing one simple term by another :
If the numerical coefficient and the literal product of the divisor
be found in the dividend, the other part of the dividend is
the quotient. .

61. If the numerical coefficient and the literal product of
the divisor be not found in the dividend, we can only indicate the
division by the notation we have appropriated for that purpose.
Thus if 5a is to be divided by 2¢, the quotient can only be indi-

cated by ba-=-2¢, or by 2 In some cases we may however

simplify the expression for the quotient by a principle already

used in arithmetic, Thus if 15a% is to be divided by 6bc, the
2

lg;‘cb . Here the dividend = 3b x 5a®, and

the divisor =3b x 2¢; thus in the same way as in Arithmetic we

may remove the factor 3, which occurs im both dividend and

divisor, and denote the quotient by %‘% .

quotient is denoted by

62. One power of any number s divided by another power
of the same number by subtracting tke index of the latter power
Jrom the index of the former.

. Thus a*+a’=a XA XA XBXBGTEX @ =AGXAX A= a’=a"’
Similarly any other case may be established,

Hence if m and n be any whole numbers, and m greater

' a
than n, we have a™-+-a" or - =a™"
. at
63. Again, suppose we have such an expression 88 . We

'
may write it thus & then, as in Art. 61, we may remove
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the common factor a’. Thus we obtain Z-—; 5,. Similarly any
other case may be established.

Hence if m and » be any whole numbers, and m less than n,
we have a™=-a” or Z:-:: ;}_—'

64. Suppose such an expression 08 o to occur ; this may be

bt
written thus( > For ) means & and 2 d -2

( 5> b ’ 3T
know from Arithmetic, and as will be shewn in Chapter vi.
Similarly any other case may be established.

Hence if » be any whole number & 3 ( b)

65. When the dividend contains more than one term, and the
divisor contains only one term, we must divide each term of the
dividend by the divisor, and then collect the partial quotients to ob-
tain the complete quotient. .
ab—cb

b
ab* — abe + abd
ab

In the first example we see that corresponding to the term ab
in the dividend and to the divisor b there is the term a« in the
quotient ; and corresponding to the term —cb in the dividend
and to the divisor b there is the term —¢ in the quotient,

‘We have already stated in Art. 49, that the following results
are admitted for the present, subject to future explanation :

Thus, =a—c; for (a—c)b=ab-ch.

=b-c+d; for (b—c+d)ab=ab"—abe + abd.

bx—c=-—be, —bx—c=be..
Similarly, the following results may be admitted :
—be be

=% _y, LY

—-C- , -0
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‘ Thus in Division as in Multiplication, the sign of the quotient
is deduced from ‘the signs of the dividend and divisor by the rule,
ltke signs produce + , and unlike signs produce —.

66. When the divisor as well as the dividend contains more
than one term, we must perform the operation of algebraical
division in the same way as the operation called Long Division in
Arithmetic. The following rule may be given :

Arrange both dividend and divisor according to the powers of
some common letter, either both according to ascending powers, or
both according to descending powers. Find how often the first term
of the divisor is contained in the first term of the dividend, and
write down this result for the first term of the quotient ; multiply
the whole divisor by this term, and subtract the product from the
dividend. Bring down as many terms of the dividend as the case
may require, and repeat the operation till all the terms are brought
down.

Example, Divide a*—2ab + ' by a —b.

The operation may be arranged thus ::

a-b)a’'—2ab+0' (a-b
a’—ab
—ab+b*
—ab+b*

The reason for the rule is, that the whole dividend may be
divided into as many parts as may be convenient, and the com-
plete quotient is found by taking the sum of all the partial quo-
tients, Thus, in the example, a®— 2ab + * is really divided by the
process into two parts, namely, a*—ab and —ab + %, and each of
these parts is divided by a—>b; thus we obtain the complete
quotient @ — b, . .

67. It may happen, as in Arithmetic, that the division can-
. not be exactly performed. Thus, for example, if we divide
a*—~2ab + 2b* by a—-3, we shall obtain as before a—b in the



DIVISION. 27

quotient, and there will then be a remainder b°. This result is
expressed in a manner similar to that used in Arithmetic; we say
a’— 2ab+26° b

py —a—b+a_b; that is, there is a complete quotient

a-b and a fractional part ai—_b" To the consideration of alge-

braical fractions we shall return in Chapter v,

68. The following examples are important :

z—-a)2’—a* ('+za+a’ z-a)z'—a* (& +2"a+xa’ + a®
P —a'a at-2'a
‘e —a* «’a - at
«'a — xa’ 2’a — o'a’
xa' - a® ' oo’ - at.
xa’ - a® z'a* — 2a®
© xa’—at
. . . xa® — ot

The student may also easily verify the following statements :

«'—-a' x'~a

=2-a; =a’-a'a+xa’-a’;
z+a z+a
8 3 8
z'+a @ +a

=a'—aa+a'; =a'—2’a + 2'a’ — xa’ + a',
z+a z+a

Each of these examples of division furnishes an example of
multiplication, as the product of the divisor and quotient must be
equal to the dividend. Thus we have the following results which
are worthy of notice :

o' —a'=(x +a) (x - a),

' —a’ = (z—a) (=" + 2a + a),

2 +a’ = (g +a) ("~ 2a + a¥),

z! — a* = (x - a) (2* +2'a + xa’ + @),

ot —d' = (z + a) (z* - 2'a + za* - a'),
o+ = (z +a) (&' — 2a + &’a’ — xa® + a’).
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69. It will be useful for the student to motice the following
facts :

«*—a" i8 always divisible by 2 — & whether the index n be an
odd or even whole number.

«* - a" is divisible by z + @ if the index » be an even whole
number. '

" +a* is divisible by 2 +a if the index n be an odd whole
number,

It will be easy for the student to verify these statements in
any particular case, and hereafter we shall give a general proof of
them. See Chapter xxxii1.

70. By means of the results which have been obtained in
the preceding Articles we may often resolve algebraical expres-
sions into factors. Thus whatever 4 and B denote we have

A" B'=(4 + B) (4- B),
and the student will frequently have occasion to use this general
result with various forms of 4 and B. For example, suppose
A4 =a, and B="0? so that 4°*=q*, and B'=b*; then we have
a'—b* = (a® + ") (" - 1),
and as a’=b"=(a +b) (a—2),
Wwe obtain at— b= (a’ + b*) (a + b) (@ — D). ,
Again, suppose 4 = a’, and B=5% so that 4*=a’, and B*=10*;
then we have :
at— b =(a"+0") (a*- 0% ;
and, a8 in Art. 68,
@+ 8 =(a+b) (a'— ab+b"),
a8 =(a—D) (a"+ab+d"), -

so that .
@'~ =(a+b)(a-0b) (a'+ab +b") (a* —ab + ")
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Again, suppose 4=a* and B =", so that 4*=a*, and B'=1*;
then we have
ql — bl = (a‘ + b‘) (a‘ — b‘)
=(a*+5*) (a’ + b") (@ + ) (@)
Again, take the general result
-B=(4-B)(A*+ 4B+ B"),
and suppose 4 =a’, and B=25"; thus we obtain
a* == (a'-b") (a'+a'd"+b*);
and by comparing this with the result just proved,
—b*=(a+b)(a—0)(a® +abd + b*) (a* - ad +b"),
we infer that
(@’ + ab + b°) (a* — ab + b*) = a* + a’d" + 1",
This can be easily verified by the method of Art. 56.
For (a* + ab +b°) (a® - ab + b%) = (a® + b* + ab) (a + b* — ab)
=(a"+ b°)" - a’d*
=a'+ 2a°0* + b* — a'd’
=a'+a'd’ + '
‘We may also in some cases obtain useful a.nthmetlca.l applica-
tions of our formulse. For example,
(127)* - (123)"=(127 + 123) (127 - 123)
=250 x 4 =1000 ;

thus' the value of (127)* - (123)* is obtained more easily than it
would he by squaring 127 and 123, and subtracting the second
result from the first,

The following additional examples are deserving of notice :
(a®+ab /2 + 1) (a* = ad /2 + b°) = (a’ + b*)* — (ab \/2)
=a*+ 2a%0* + b* — 240’
=ga'+ b
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(a* +ab \/3 +B%) (a* ~ ad /3 + b%) = (a* + b")* - (@b \/3)"
=a*'+ 2a%* + b* - 3a'*
=a'—a'%'+ 5",
a*+ b = (a* + b%) (a* — a’0* + b°)
= (a* +b%) (a* + ab \/3 +}%) (a* —ab /3 + b%).
71. The following are additional examples of Division,
Divide 8a*— 2240 + 43a'* — 38ab’ + 245* by 2a* — 3ab + 4b".

2a’ — 3ab + 4b°) 8a* — 224’0 + 43a’b" — 38ad" + 24b* (4a’-5ab + 60°
a'— 12a° + 16a"5*

- 10a%6 + 27a%5" — 38ab*
—10a% + 15a%* — 20ad*

12a"b* — 18ab® + 244
12a"5* — 18ab® + 24b*

The quotient is 4a* - 5ab + 65*,
Divide z*—(a+ b +¢) 2" + (ab + be + ac) # — abe by z- a.
z- a) 2~ (a+b+c)ar’+(ab+bc+ac):c abe (af'—(b+c):c+bc

—(@+c)a’ + (ad+ be+ ac) =
—(b+c)z'+ (ab+ac)x

¥ &

ez —
bex —

The quotient is «*— (b +¢) 2+ be.

These two examples suggest the following statement : When
the dividend and the divisor are komogeneous so also is the quo-
tient; the number of the dimensions of the quotient is equal to
the excess of the number which expresses the dimensions of the
dividend over the number which expresses the dimensions of the
divisor, See Art. 57.
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EXAMPLES OF DIVISION.

Divide 2* + 1 by z+ 1,

Divide 272 + 8y by 3z + 2y,

Divide a® - 2ad* + b* by a - b

Divide a®— 24’0 — 3ab* by a + b.

Divide 64x*— y* by 2x — .

Divide a* +&* by a + b,

Divide «* — 2" + xy* — 3 by 2 —y.

Divide 2* ~ Tz — 6 by = — 3.

Divide 324* + 3* by 2z +y.

Divide &* — 'y + 2% — 2y + zy* — ¢* by &* - 3.
Divide a* + 2* - 42* + 52— 3 by «” + 2z — 3.
Divide a*+ 240" + 95* by a*+ 2ab + 3b°,
Divide a*—b° by a®+ 2a%0 + 2ab" + B

“Divide 32a* + 54ab®— 81%* by 2a + 3b,

Divide '~ 22* + 1 by «'— 2z +1.
Divide «* — 6a* + 92*— 4 by 2" - 1. .
Divide a* + a% — 8a%b* + 19ab*— 15b* by a® + 3ab — 58",
Divide the product of 2*—12z+16 and o®—12z-16

by «*— 16.

19. Divide the product of 2®—2x+1 and «*—-3xz+2 by,
=3+ 32— 1,

20.

Divide the product of a* —2—1, 22°+ 8, 2* +x—1, and

«—4 by 2 — 32"+ 1.

21. Divide the product of a’+ax+2' and a’+2* by
a'+a'c + ',
22, Divide the product of 2*-4a’a+ 6xa® — 4xa®+a' and

«' + 2za + a* by z* — 2% + 2xa® — a'.

23,

Divide a®+ a®h + a’c — abe - b'c — be* by a' - be.
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24, Divide 32® + 4abz” — 6a’b"x — 4a* by = + 2ab.

‘25. Divide the product of #*—3z'+3z—1, 2*—2z+1 and
z—1 by a* — 42® + 62" — 4z + 1.

26. Divide 6a*— a + 2a%* + 13ab® + 4b* by 2a* — 3ab + 4%

27. Divide 2+’ +3xy—1byz+y—1.

28. Divide a®+5b°—c*+ 3abc by a+b—c.

29, Divide 2a’b — 5a%* — 11a*6* + 5a*b* — 26a%* + Ta’s* — 12ad”
by a*— 4a% + a’b* — 3ab’.

30. Divide a'8* + 2abc” — a'c’ - b°¢* by ab + ac — be.

: 31, Divide the product of a+b—¢, a—b+¢c, and b+c—a

by a®—b*—c* + 2be.

32. Divide (a+ b + ¢) (ab + be + ca) — abe by a + b.

33. Divide (a —bc)® + 85°* by a* + be.

34, Divide b(x*—a%) +ax (2’ - a*) + a® (x — a) by (a + b) (x —a).

35. Divide xy®+2y% —ay'z + 2ys"' — &’y — 2y + 2% — x2® by
y+z—2.

36. Dividea’(b+c)—d*(a+c)+ct(a+b)+abcbya—b+ec.

37. Divide (@ — ) 2* + (*— a®) z+ab(a’-b?) by (a—b)x+a’~b".

- 38. Divide aa® — ab* + b’z — &* by (x + b) (a — ).

39. Divide (b —c)a®+(c—a)b® + (a—b) ¢ by & — ab— ac + be.

40. Divide (ax + by)* + (ay — bx)* + c’=* + c*y* by «® + 3

41. Divide a’h - ba® + a’x — o® by (z + ) (& - ).

42. Resolve a*—b*—c*+ d* — 2 (ad — be) into two factors,

43. Divide b (2’ + a®) + ax (&’ — &°) + &’ (x + a) by (a+b)(x + a).

44. Shew that (2*—ay+ ¢l + (a*+ay+4’) is divisible by
22 + 29° . :

45. Shew that (x + y)’ — 2" -y’ is divisible by («* + xy + 3*)%

46. If A=be—-p', B=ca—-¢, C=ab-1, P=qr-ap,

i
Q =1rp—bg, and B =pg - cr, find the value of BC;P , CAI;_Q’,

AB-R* QR-AP RP-BQ PQ-CR
) y — ’  sod ————
p q T
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"~ 47." Resolve a'® — 2'°.into five factors.
48. Resolve 4a%* — (a*+ b*— ¢*)* into four factors,
49. Resolve 4 (ad -+ be)' — (a*— B — &+ d%)" into four factors,

50. Shew that (ay —b)* + (b2 — cy)* + (cx — az)* + (ax + by + cz)’
is divisible by a® + &* + ¢* and by &* + y* + 2%

V. NEGATIVE QUANTITIES.

72. In Algebra we are sometimes led to a subtraction
which cannot be performed because the number which should
be subtracted is greater than that from which it is required ta
be subtracted. For instance, we have the following relation :
a—(b+c)=a—b—c; suppose that a=7, b="7 and ¢=3 so that
b+¢=10. Now the relation a—(b+c)=a—b—c tacitly sup-
poses b+c¢ to be less than a ; if we were to neglect this supposi-
tion for a ' moment we should have 7—10=7 -7 -3 ; and as 7— 7
mzerowem1ghtﬁnally write 7—-10=-3.

73. In writing such an equation as 7—10=—3 we may be
understood to make the following statement : “it is impossible to
take 10 from 7, but if 7 be taken from 10 the remainder is 3.”

74. Tt might at first sight seem to the student unlikely that
such an expression as 7 — 10 should occur in practice ; or that if
it did occur it would only arise either from a mistake which could
be instantly corrected, or from an operation being proposed which
it was obviously impossible to perform, and which must therefore
be abandoned. As he proceeds in the subject the. student will
find however that such expressions occur frequently ; it might
‘happen that & — b appeared at the commencement of a long investi-
gation, and that it was not easy to decide at once whether a were
igreater or less than ., Now the object of the present Chapter is
to shew that in such a case' we may proceed on the supposition
that a is greater than b, and that if it should finally appear that a is
Jess than b we shall still be able to make use of our investigation.

T. A 3
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75. Let us consider an illustration, Suppose a merchant to
gain in one year a certain number of pounds and to lose a certain
number of pounds in the following year, what change has taken
place in his capital? Let a denote the number of pounds gained
in the first year, and b the number of pounds lost in the second.
Then if a is greater than b the capital of the merchant has been
tncreased by a—b pounds. If however b is greater than a« the
capital has been diminished by b —a pounds. In this latter case
a— b is the indication of what would be pronounced in Arithmetic
to be an impossible subtraction; but yet in Algebra it is found
convenient to retain a —b as indicating the change of the capital,
which we may do by means of an appropriate system of ¢nterpre-
tation. Thus, for example, if a =400 and =500 the merchant's
capital has suffered a diminution of 100 pounds ;. the algebraist
indicates this in symbols, thus

400 -~ 500 =-100,
and he may turn his symbols into words by saying that the
merchant’s capital has been increased by — 100 pounds, This
language is indeed far removed from the language of ordinary life,
but if the algebraist understands it and uses it consistently and
logically his deductions from it will be sound.

76. There are numerous instances like the preceding in which
it is convenient for us to be able to represent not only the
magnitude but also what may be called the quality or affsction of
the things about which we may be reasoning. In the preceding
case a sum of money may be gained or it may be lost ; in a ques-
tion of chronology we may have to distinguish a date before a
given epoch from a date after that epoch; in a question of posi-
tion we may have to distinguish a distance measured to the north
of a certain starting-point from a distance measured to the south
of it ; and so on. These pairs of related magnitudes the algebraist
distinguishes by means of the signs + and ~, Thus if, a8 in the
preceding Article, the things to be distinguished are gain and loss,
he may denote by 100 or by + 100 a gain, and then he will denote
by —100 a loss of the same extent. Or he may denote a loss by 100

-
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or by +100, and then he will denote by — 100 a gain of the same °
extent. There are two points to be noticed ; first, that when no
sign is used + is to be understood ; secondly, the sign + may be
ascribed to either of the two related magnitudes, and then the sign
— will throughout the investigation in hand belong to the other
magnitude.

77. In Arithmetic then we are concerned only with the
numbers represented by the symbols 1, 2, 3, &c., and intermediate
fractions. In Algebra, besides these, we consider another set of
symbols —1, —2, —3, &c., and intermediate fractions. Symbols
preceded by the sign — are called negative quantities, and symbols
preceded by the sign + are called positive gquantities. Symbols
without a sign prefixed are considered to have + prefixed.

The absolute valus of any quantity is the number repre-
sented by this quantity taken mdependently of the sign which
precedes the number.

78. In the preceding Chapters we have given rules for the
Addition, Subtraction, Multiplication, and Division of algebraical
expressions, Those rules were based on arithmetical notions and
were shewn to be true so long as the expressions represented such
things as Arithmetic considers, that is positive quantities. Thus,
when we introduced such an expression as a — b we supposed both
a and b to be positive quantities and a to be greater than b. But
as we wish hereafter to include megative quantities among the
objects of our reasoning it becomes necessary to recur to the con-
sideration of these primary operations, Now it is found con-
venient that the laws of the fundamental operations should be the
same whether the symbols denote positive or negative quantities,
and we shall therefore secure this convenience by means of suitable
definitions. For it must be observed that we have a power over
the definitions ; for example, multiplication of positive quantities
is defined in Arithmetic, and we should naturally retain that defi-
nition ; but multiplication of negative quantitiss, or of a positive and
a negative quantity has not hitherto been defined ;. the terms are

$—2
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" at present destitute of meaning, It is therefore in our power
to define them as we please provided we a.lwa.ys adhere o our
deﬁmtlon.

79. The student will remember that he is not in a position to
judge of the convenience which we have intimated will follow from
our keeping the fundamental laws of algebraical operation perma-
nent, and giving a wider meaning to such common words as
addition and multiplication in order %o insure this permanence.
He must at present confine himself to watching the accuracy of
the deductions drawn. from the definitions. .As he proceeds he will
see that Algebra gains largely in power and utility by the intro-
duction of negative quantities and by the extension of the meaning
of the fundamental operations. And he will find that although
the symbols + and — are used apparently for two purposes, namely,
aooordmgtothedeﬁmtmnsmArﬁs. 3 and 4, and according to the
convention in Art. 76, no contradiction nor confusion will ultz-
mately arise from this circumstance,

80. Two quantities are said to be equal and may bé con-
nected by the sign = when they have the same numerical value
and have the same sign. Thus they may have the same absolute
value and yet not be equal ; for example, 7 and — 7 are of the same
absolute value but they are not to be called equal.

81. In Arithmetic the object of addition is to find a number
which alone is equal to the units and fractions contained in certain
other numbers. This notion is not applicable to negative quan-
tities ; that is, we have as yet no meaning for the phrase “add — 3
t0 5,” or “add ~3 to —5.” We shall therefore give a meaning to
the word add in such cases, and the meaning we propose is deter-
mined by the following rules : To add two quantities of the same
#ign add the absolute values of the quantities and place the sign of
tlwquammws before the sum. To add two gquantities of different
signs, sublract the less absoluts value from the greater, and place
before the remainder the sign of that quantity which has the grcalcr
absolute value.
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Thus, by the first rule, if we add 3 to 5 we obtain 87 if wo
add — 3 to —5 we obtain — 8. By the second rule, if we add 3
to —5 we obtain — 2 if we add — 3 to 5 we obtain 2.

82. It will be seen that the rules above given leave to the
word add its commen. arithmetical meaning so long as the things
which are to be added are such as Arithmetic considers, namely,
positive quantities, and merely assign a meaning to the word in
those cases when as yet it had no meaning. The reader may
perhaps object that no werbal definition is given of the word add
but merely a rule for adding two quantities. . We may reply that
the practical use of a definition is to enable us to know that we
use a word correctly and consistently when we do use it, and the
rules above given will ensure this end in the present case.

83. The rules are not altogether arbitrary : that is, the stu-
dent may easily see even at this stage of his progress that they are
likely to be advantageous. Thus, to take the numerical example
given above, suppose a man to be entitled to recetve 3 shillings
from one person and 5 shillings from another, then he may be con-
sidered to possess 8 shillings. But suppose him to owe 3 shillings
to one person and 5 shillings to another ; then he owes altogether
8 shillings ; this may be considered to be an interpretation of the,
— 8 which arises from adding — 3 to — 5. Next, suppose that he
has to receive 3 shillings and to pay 5 shillings; then he owes
altogether 2 shillings ; this may be considered to be an interpreta-
tion of the —'2 which arises from adding 3 to —5. Lastly, suppose
that he has to receive 5 shillings and to pay 3 shillings, then he
may be considered to possess 2 shillings; this may be considereq
to be an interpretation of the 2 which arises from adding
-3 to b.

84, Thus in Algebra addition does mot necessarily imply
augmentation in an arithmetical sense; nevertheless the word
sum is used to denote the result. Sometimes when there might
be an uncertainty on the point, the term algebraical sum is used to
distinguish such a result from the arithmetical sum, which would
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be obtained by the arithmetical addition of the absolufe values of
the terms considered.

85. Buppose now we have to add the five quantities — 2, + 5,
—13, —4 and +8. The sum of —2 and +5 is + 3; the sum
of +3 and —13 is —10; the sum of — 10 and —4 is —14; the
sum of ~14 and +8 is —6. Thus —6 is the sum required.
Or we may first calculate the sum of the negative quantities — 2,
—13 and —4, and we thus get —19; then calculate the sum
of the positive quantities +5 and + 8, and we thus get +13.
Thus the proposed sum becomes + 13 — 19, that is, — 6 as before.
It will be easily seen on trial that the same result is obtained
whatever be the order in which the terms are taken. That is,
for example, —2-13+5+8 -4, 8 ~13—-2~445, and so on,
a.]lgive - 6.

86. Next suppose we have to add two or more algebraical
expressions ; for example, 2a —3b +4¢ and —a—-20+c+2d. We
have for the sum ,

26—-3b+4c—a—2b+c+2d.

Then the like terms may be collected ; thus
20—-a=a, —3b—-2b=-05b 4c+c=>5c;

and the sum becomes
a—bb+ be +2d.

Thus we may give the following rule for algebraical addition :
Write the terms in the same line preceded by their proper signs;
collect like terms into one, and arrange the terms of the result
in any order.

87. In arithmetical subtraction we have to take away one
number, which is called the subtrakend, from another which is
called the minuend, and the result is called the yemainder. The
remainder then may be defined as that number which must be
added to the subtrahend to produce the minuend, and the object
.of subtraction is to find this remainder.
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‘We shall use the same definition in algebraical subtraction,
that is, we say that in subtraction we have to find the quantity
which must be added to the subtrahend to produce the minuend.
From this definition we obtain the rule: Change the sign of every
term tn the subtrahend and add the result so obtained to the minu-~
end, and the result will be the remainder required.

For it is obvious, that if to the expression thus formed we add
the subtrahend, giving to each term its proper sign, all the terms
of the subtrahend will disappear and leave the minuend; which
was required. '

88. 'We have still another point to notice. According to
what has been laid down, the sum of +a and — b is denoted by
a—b; if we take — b from a, the result is @+5; and the sum of
—a,+b,and —6 i8 —a+b-c; and so on. But we have as yet
supposed that the letters themselves stand for positive numbers;
for example, when we say that the sum of +a and —% is a -},
a may be 6, and b may be 10; but suppose that & is — 6, and
b is —10, do the rules adopted apply here? Since b is —10,
—b or —(-10) will naturally be taken to mean 10, and +a or
+ (— 6) will be taken to mean — 6 ; and the sum of 10 and — 6 is 4.

89, Thus if a be iteelf a negative quantity, we have assigned
a meaning to +a and to —a; and the meanings are these: let
a=—a, 80 that a is a positive quantity, then + a or + (—a) =—gq,
and —a@ or —(—a)=a We gaid in the preceding Article that
these meanings followed naturally from what had preceded ; it is
however of little consequence whether we consider these meanings
to follow thus, or whether we look upon them as new interpreta-
tions ; the important point is to use them uniformly and con-
sistently when once adopted.

Since + (— @) = —a, and — (—a) =aq, that is, +a, we may enun-
ciate the same rule as formerly, namely, that like signs produce +
and unlike signs —.

90, There are four cases to consider in multiplication. Let
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o and b denote any two numbers, then we have to consider
+ax+b —ax+d +ax-b —ax-b.

The first case is that of common Arithmetic and needs no
remark., The ordinary definition of multiplication may also be
applied to the second case; for suppose, for example, that b= 3,
then —a x 3 indicates that — a is to be repeated three times, that
is, we have —a —a — a or — 3a as the result. Thus

—ax+b=—ab

In the other two cases the multiplier is a negative quantity,
and thus the common arithmetical notion of multiplication is not
applicable ; we may therefore give by definition a meaning to the
term in this case. Now we observe that when the multiplier is
positive, the sign of the multiplicand is preserved in the product ;
thus we are led to adopt the following convention : Wken the mul-
tiplier 43 negative, perform the multiplication as of the multiplier
were positive, and change the sign of the product. Hence we con-
clude immediately that

+ax—-b=—ab and —a x—b=+abd.

91. Thus we have the following rule: 7o multiply two
quantities whatever be their signs, multiply them without consider-
ing the signs, and put + or — before the product according as the
two factors have the same sign or different signs. As before re-
marked, the rule for the sign of the product is abbreviated thus :
Iike signs give + and unlike signs give —.

92. In the preceding Articles we supposed a and b themselves
to denote arithmetical numbers; it is important however to
observe that if they denote any quantities, positive or negative,
the four results obtained are true ; ; that is,

+ax+b=+ab, —ax+b=—ab, +ax—b=—ab, —ax—b=+ab,
,. Take, for example, the last of these, and suppose that a is a
negative quantity, and so may be denoted by —a ; then —a is a
positive quantity, and =a. (Art.89.) Hence —ax—b=ax—b;
and this by the thlrd case =—ab. And ab=—-axb=—ab by
the second case, ..
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" Thus the result —ax—b=abd holds when a is a negative
quantity. Similarly any other case may be established.

93. We must now shew that the rule for multiplying bino-
mial and polynomial expressions given in Art. 48 is true, whatever
the symbols denote, Take, for example, the case

(@ —b) c=ac—~be.

‘When this was proved, we supposed ¢ a positive quantity ; we
will now suppose that ¢ is a negative quantity, namely —y. By
virtue of the convention in Art. 90, to find the product of a—b
and —y we must multiply @—b by y and then change the sign of
each term in the result. Now,

: (@—d)y=ay-by;
thus (8—) (=y) =—ay + by.
But since ¢=- 1y, we have
ac—bc=—ay+by;
thus the relation (@a—b)e=ac-bc

holds whatever ¢ may be, positive or mnegative. Similarly, any
other case may be established.

94. The ordinary definition of division will be universally
applicable ; we suppose a product and one factor given, and we
have to determine the other factor.

Hence if we perform the division without regarding the signs.
we obtain the quotient apart from its sign. It remains then
to determine the sign, for which we may give the following
rule : ’ ' '

When the dividend and divisor have the same sign, the quotient
must have the sign + ;. when the dividend and divisor have different’
signs, the quotient must have the sign —,

This rule follows from the fact that the product of the divisor
and quotient must be equal to the dividend. The rule for the,
sign of the quotient may as before be abbreviated thus : Like signs
give + and unlike signs give —.
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95. The words greater and less are often used in Algebra in
an extended sense. We say that a is greater than b or that b s
less than a if a — b is @ positive quantity. This is consistent with
ordinary language when @ and b are themselves both positive, and
it is found convenient to extend the meaning of the words greater
and Jess so that this definition may also hold when @ or b is nega-
tive, or when both are negative, Thus, for example, in algebraical
language 1 is greater than — 2 and — 2 is greater than — 3.

96. Before leaving this part of the subject we may make a
fow general remarks. The subject of Algebra has been divided
by some modern writers into two parts, which they have called
Arithmetical Algebra and Symbolical ‘Algebra. In Arithmetical
Algebra symbols are uséd to denote the numbers and the opera-
tions which occur in Arithmetic. Here, as shewn in the pre-
ceding Chapters of the present work, we begin by defining our
symbols, and then arrive at certain results, as for example, at
the result- (¢ +0)(a—0)=a"'—-3". In Symbolical Algebra we
assume that the rules of Arithmetical Algebra hold universally,
and then determine what must be denoted by the symbols and
the operations, in order to ensure this result. Thus we may
consider, that in the present Chapter we have been examining
what meanings must be given to the symbols to make the results
of the previous Chapters hold universally. And we have thus
been led to the theory of megative quantities, and to an extension
of the meaning of the words addition, subtraction, multiplication
and division.

97. In some of the older works on Algebra, scarcely any
- reference is made to the extensions of meaning which ‘we have
given to some simple arithmetical terms. In such works the
proofs and investigations are valid only so long as the symbols
have purely arithmetical méanings ; and the proofs and investiga-

tions are really assumed without demonstration to hold when the
symbols have not purely arithmetical meanings. In recent works,
a8 in the present, an attempt is made to establish the proofs
completely. It must not however be denied that this branch of:
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the subject presents considerable difficulty to the beginner, and it
will probably only be after repeated examination that a convic-
tion will be obtained of the universal truth of the fundamental
theorems.

The student is recommended to proceed onwards as far as the
Chapter on Equations ; he will there see some further remarks
on negative quantities, and he may afterwards read the present
Chapter again. It would be inconsistent with the plan of this
work to enter very largely on this branch of Algebra; but the
present Chapter may furnish an outline which the student can
fill up by his future reading and reflection.

‘We shall require in the course of the work certain propo-
sitions which are obvious axioms in Arithmetic, and which are
also true when we give to the terms and symbols theu' extended

Ieanings,

98. If equal quantities be added to equal quantities, the sums
will be equal. '

99. If equal quantities be taken from equal quantities, the
remainders will be equal.

Thus, for example, if 4 =pB + C, then by taking C' from these
equal quantities we have 4 —C =pB.

100. If equal quantities be multiplied by the same or by equal
quantities, the products will be equal.

Thus too if a=b then a*=5" and Ja=I/b.

101. If equal quantities be divided by the same or by equal
quantities, the quotients will be equal.

102. If the same quantity be added to and subtracted from
another, the value of the latter will not be altered.

103. If a quantity be both multiplied and divided by another,
its value will not be altered.



44 EXAMPLES, V.

104. Tt is important to draw the attention of the reader to
the fact, that these propositions are still true whether the quanti-
ties spoken of are positive or negative, and when the terms addi-
tion, subtraction, multiplication, and division have their extended
meanings. For example, if a=25, and ¢=d, then ac=>5bd ; this is
obvious if all the letters denote positive quantities. Suppose
however that ¢ is a negative quantity, so that we may represent
it by —y; then d must be a negative quantity, and if we denote
it by —8, we have y=8; therefore ay=>53; therefore —ay=—b5;
and thus ac=bd.

MISCELLANEOUS EXAMPLES.

1. Shew that '+ y*+ 42" + 22y + 8xz and 4 (x+2)* become

identical when  and y each =a.
2. a=1, b=§, =T ?md y=8, ﬁndthevaiueof
'5(a-b) l‘/{(“+w)3/’}-b~/{(a+¢)y}+¢- o
3. Ifa_7, b=3, 2=5 and y=3, find the valuo of

(10a + 208) /{(z—b) ¥} — 3a J{y‘ (z—b)}+5b.
10

4. Ifa:-é b=2, x—g—tmdy 4 , find the value of

(‘Hb)J{(z—b)zl’}—ﬁ»/{y(w—b)}"-w-
5. Substitute y+ 3 for « in «*—2*+ 22— 3 and arrange the
result.
6. Shew that
{@=b)r+ (B -c)f+(c-a)yf= 2{(a —b)*+(d- c)‘+(c a)‘}
7. If 2s=a+D+c, shew that
(8—a)+(8-0)+(s—c)'+8=a'+b"+c"
8. If 2s=a+ b+ ¢, shew that
2(s—a)(s—-b)+2(s—b)(e—c)+2(8—c)(8—a)= 2s’—a’ b’—c’
9. If 28=a+b+c, shew that
2(8—a)(8=b)(s—c)+a(s-b)(s~c)+b(s—c)(s—a)
-+¢(8~a)(s—d) =abe.
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. Shew that
(a+b+c)' b+~ (c+a) - (@t B b o+ B o = Gabe

11. Shew that if a, +a,+ ... +a,,=g
' (8—a)' +(—a) +... +(s—a,)' =0 +a +... +a,"

8, then

12, If 2s=a+b+cand 20*=a'+ b* +¢*, shew that

(a- —a’)(o’ b')+(a-’ ") (¢* =¢") + (0" —¢") (¢* - a%)
=4s(s~a)(s~0)(s—c).

VI. GREATEST COMMON MEASURE.

105. In Arithmetic the greatest common measure of two or
more whole numbers is the greatest number which will divide each
of them without remainder. The term is also used in Algebra, and
its meaning in this subject will be understood from the following
definition of the greatest common measure of two or more alge-
braical expressions: Let two or more algebraical expressions be
arranged according to descending powers of some common letter ;
then the factor of highest dimensions in that letter which divides
each of these expressions without remainder is called their greatest
common measure,

106. The term greatest common measure is not very appro-
priate in Algebra, because the.words greater and less are seldom
applicable to algebraical expressions in which specific numerical
values have not been assigned to the various letters which occur.
It would be better to speak of the highest common divisor or of
the highest common measure; but in conformity with established
usage we retain the term greatest common measure. -The letters
@G. ¢. M, will often be used for shortness instead of this term.

‘When one expression divides two or more expressions without

remainders -we shall say that it is a common measure of them, or
more briefly, thaj it is a measure of them.
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107. 'The following is the rule for finding the @. c. . of two
algebraical expressions :

Let A and B denote the two expressions ; let them be arranged
according to descending powers of some common letter, and suppose
the index of the highest power of that letter in 4 not less than
the index of the highest power of that letter in B. Divide 4 by
B; then make the remainder a divisor and B the dividend,
Again, make the new remainder a divisor and the préceding
divisor the dividend, ' Proceed in this way until there is no
remainder ; then the last divisor is the . . M. required.

108. Example: find the . c. M of

o*— 6z +8 and 4a®— 21x* + 152 + 20.
o' -6z +8) 4x* — 212"+ 152+ 20 (42+3
4* — 24" + 322
32* - 172+ 20
3a' — 18z + 24
x— 4
z—4)a"—6x+8 (-2
o' -4z
-22+8
- 2248

Thus #—4 is the @, c.M. required.

109. The truth of the rule given in Art. 107 depends upon
the following principles : '

(1) If P divide 4, then it will divide md4. For since P
divides 4, we may suppose 4 =aP, then md=maP, thus P
divides m4.

(2) . If P divide 4 and B, then it will divide m4 +nB: For
gince P divides 4 and B, we may suppose 4 =aP, and B=)P,
then md & nB = (ma = nb) P ; thus P divides mA & nB.

‘We can now prove the rule given in Art, 107.

\
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110. Let 4 and B denote the two expres- B) 4 (p .
sions ; Jet them be arranged according to de- pB
scending powers of some common letter, and 'aj B (g

suppose the index of the highest power of that qC
letter in 4 not less than the index of the —
highest power of that letter in B. Divide 4 D)cC (r
by B; let p denote the quotient, and C' the _’_"?_

remainder. Divide B by C'; let ¢ denote the

quotient, and D the remainder, Divide C by D, and suppose
that there is no remainder, and let 7 denote the quotient. Thus
we have the following results :

A=pB+C; B=qC+D; C=rD.

‘We shall first shew that D is ¢ common measure of 4 and B.

D divides C, since C =D ; hence (Art. 109) .D divides ¢C and
also ¢C + D ; that is, D divides B. Again, since .D divides B and
C, it divides pB+G’ that is, D divides 4. Hence D divides 4
and B.

‘We have thus shewn that D is a common measure of 4 and B;
we shall next shew that it is their greatest common measure.

By Art. 109 every expression which divides 4 and B divides
A —pB, that is, C'; thus every expression which is a measure of
4 and B is a measure of B and ¢, Similarly every expression
which is & measure of B and C is a measure of ¢ and D. Thus
every expression which is a measure of 4 and B divides D. But
no expression higher than D can divide ), Thus D is the a.c.m.
required.

111. In the same manner as it is shewn in the preceding
Article that D measures 4 and B, it may be shewn that every
expression which divides D also measures 4 and B. And it is
shewn in the preceding Article that every expression which mea-
sures 4 and B divides D. Thus every measure of 4 and B
divides their @. .M. ; and every divisor of their .c.M. measures
4 and B,
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112. ' As an example of the process in Art. 110, suppose we
have to find the G. c. M. of 2* + 5z + 4 and & + 4a" + bz + 2.

2 +bz+4) 2 +42"+ bz + 2 (z-1
o + 5a* + da

-+ x+2
—2'-bx—4

6x+ 6

6z + 6)5’+5a:+4 (%’4-%
o+ ®

4x 4 4
4+ 4

This example introduces a new point for consideration. The
last divisor here i8 6z + 6 ; this, according to the rule, must be
the @. c.u. required. 'We see from the above process that when
#+b0+4 is divided by 65+ 6 the quotient is 5+ 3. If the
other given expression, namely a® + 42+ 5z +2, be divided by

6z + 6, it will be found that thequohentmz.+ ; It may

at first appear to the student that 6z+ 6 cannot be a measure
.of the two given expressions, since the so-called quotients really
.contain fractions. But we see that in these quotients the letter
of reference & does not appear in the denominator of any fraction
although the coefficients of the powers of z are fractions. Such
expressions as 6+§ and 7; ; 39 therefore, maybe said to be

.tntegral expressions so far as relates to x.
Thus, in the example, when we say that 6z + 6 is the a.c. M.

of the two given expressions, we merely mean that no measure
can be found which contains Aigher powers of = than 6+ 6.
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Other measures may be found which differ from this so far as
respects numerical coefficients only. Thus 3z + 3 and 2z + 2 will
be found to be measures ; these are respectively the half and the
third of 6x+ 6, and the corresponding quotients when we divide
the given expressions by these measures will be respectively twice
and three times what they were before. Again, z+1 is also a
measure, and the corresponding quotients are @ + 4 and a*+3x+2;
we may then conveniently take @+ 1 as the greatest common mea-
sure, since the quotients are free from fractional coefficients.

113. In order to avoid fractional coefficients in the quotients
it is usual in performing the operations for finding the @.a. x, to
reject certain factors which do not form part of the a.c. M. re-
quired.

Suppose we have to find the G.c.M. of 4 and B; and at any
stage of the process suppose we have the expressions X and R,
one of which is to be a dividend and the other a divisor. Let
R =mS, where m has no factor which X has ; then m may be re-
jected : that is, instead of continuing the process with K and R we °
may continue it with X and S,

For by what has been already shewn we know that 4 and B
have just the same common measures as K and R have,

Now any common measure of X and § is a common measure
of K and R, and is therefore & common measure of 4 and B.

And any common measure of K and B is a common measure
of K and mS., But m has no factor which X has. Therefore
any common measure of K and R is a common measure of K and
S. Hence any common measure of 4 and B is a common mea-.
sure of K and S. ,

Thus we see that 4 and B have just the same common mea-
sures as K and S have; and this is what we had to shew.

114. A factor of a certain kind may also be inéroduced at
any stage of the process,
Suppose we have to find the 6. c. M. of 4 and B and at any
stage of the process suppose we have the expressions K and I:, one
T. A,
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of which is to be a dividend and the other a divisor. Let L=nK,
where 2 has no factor which R has; then n may be introduced :
that is, instead of continuing the process with X and R we may
continue it with Z and R.

For by what has been already shewn we know that 4 and B
have just the same common measures as X and R have.

Now any common measure of X and R is a common measure
of L and R; so that any common measure of 4 and B is a com-
mon measure of L and R.

And any common measure of L and R is a common mea-
sure of nK and R. But n has no factor that B has. Therefore
any -common measure of L and R is a common measure of X and
'R, and is therefore a common measure of 4 and B.

Thus we see that 4 and B have just the same common mea-
sures as L and R have ; and this is what we had to shew.

115. We see then that certain factors may be removed from
either a dividend or a divisor, or introduced into either : in practice
we usually remove factors from divisors, and introduce factors into
dividends ; and such factors are generally numerical factors. The
reasoning of Arts. 113 and 114 shews that these operations may
be performed at any stage of the process, for example at the begin-
ning if we please, By means of such modifications of the process
for finding the @. . M., we may avoid the introduction of fractional
coefficients. The following example will guide the student. Re-
quired the G. . M, of )

325 — 1003 + 150+8 and o8 — 22— 62 + 4a* + 132+ 6, |
O 20— 622 + 4P+ 132 46) 3¢ — 1023 +162+8 (3
328 — 62* — 18 + 120% + 392 + 18
62+ 82— 122" — 24z 10

Before proceeding to the next division we may strike out the
factor 2 from every term of the new divisor, and multiply every
term of the new dividend by 3. Then continue the operation
thus:
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3at + 40’ — 62" — 122 - 5) 3z*~ 6z'— 182"+ 122"+ 39z +18 (= -
3zt + 4~ 62" —122" -5z
— 102 — 122" + 240 + 442 + 18 .
Remove the factor 2 from every term of the last expression,
and then multiply every term by 3. Thus we have
— 152* — 182" + 36" + 662 + 27,
Proceed with the division
3z + 42" — 62" — 122 -5 ) — 152*—18x" + 362" + 662+ 27 (-5
—15a* — 202* + 302" + 60z + 25
22+ 62"+ 6z+ 2
Remove the factor 2 and then continue the operation thus:
2+82"+32+1) 32+ 42— 62"—12z-5 (3x-5
3t + 92+ 92"+ 3z
—~52— 152" — 1525
— 5o — 152 — 162 — 5
Thus «* + 32* + 3z + 1 is the G. ¢, M. required.

116. Suppose the original expressions 4 and B to contain a
common factor #, which is obvious on inspection ; let 4 =aF, and
B=}F. Then F will be a factor of the a.c. M. ; as is shewn in
Art. 111. 'We may then find the ¢.c. . of @ a.nd b, and multiply
it by 7, a.ndtheproductwi.llbetheo c. M. of 4 and B.

117. Similarly, if at any stage of the operation we peroewe
that -a certain factor is common to the dividend and divisor, -we
may strike it out, and continue the operation' with the remaining
factors, The factor omitted must then be multiplied by the last
divisor which is obtained by continuing the operation, and the
product will be the required . c. M.

118. Suppose, for example, that we require the @.c. M. of
(x—1)*(x—2) (- 3) and (z—1)*(x—4) (x—5). . Here the factor
(x—1)* is common to both the proposed expressions, -and is there-
fore a factor of the g.c.m. Moreover in this example (z—1)" forms
the entire a. C. M.; for no common measure can be found, except
unity, of (#—2)(z-3) and (z—1)(z—4) (¢ —5) which are the
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remaining factors of the proposed expressions, The last statement
can be verified by trial, but when the student is acquainted with
the subject of the resolution of algebraical expressions into factors
it will be obvious on inspection. The resolution of algebraical
expressions into factors is discussed in the Zheory of Equations.

119. Next suppose we require the a. c. M. of three algebraical
expressions 4, B, C. Find the a.c. M. of two of them, say 4 and
B; let D denote this @. c. i ; then the G.c.M. of D and C is the
required @. c. M. of 4, B and C,

For by Art. 111 every measure of D and C is a measure of
A4, B and C; and also every measure of 4, B and C' is a measure
of D and €. Thus the 6. c. M. of D and C is the a.c. M. of 4, B
and C,

120, In & similar manner we may find the G.c.m. of four
algebraical expressions. Or we may find the a.c.m. of two of
the given expressions and also the G. c. . of the other two ; then
the @.c. M. of the two expressions thus found will be the @. c. a.
of the four given expressions.

121. The definition and operations of the preceding Articles
of this Chapter relate to polynomial expressions, The meaning of
the term greatest common measure in the case of simple expressions
will be seen from the following example :

Required the ¢, o, . of 432a%'zy, 270a'6% and 90a%.

‘We find by Arithmetic the G.c.M. of the numerical coefi-
cients 432, 270, and 90; it is 18, After this number we write
every letter which is common to the simple expressions, and we
give to each letter respectively the least exponent which it has in
the simple expressions, Thus we obtain.18a'bx, which will divide
all the given simple expressions, and is called their greatest com-
mon measure.
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EXAMPLES OF THE GREATEST COMMON MEASURE.

Find the a. 0. i in the following examples :

N ok

DO DO DO BD bt et bk b e el bed e i
WNOHO D ONS T WO ®

2o
L

o—32+2 and 2'—2z—2.

2* + 32" + 4o + 12 and o+ 4a® + 42 + 3.

@+a'+x—3 and o+ 32"+ 5z + 3.

"+ 1 and 2®+ ma® + mx + 1.

62" - Tax® — 20a’z and 3x*+ ax — 4a’.

o~y and ' -9’

3a® — 132" + 232 — 21 and 6a* + &* — 442 + 21.

' — 32"+ 22'+x—1 and x*—2'— 2z +2.

x'—T2® + 82 + 280 — 48 and x*— 82"+ 192 — 14,

a—a?+ 22 +2+3 and x*+ 22— 2 — 2.

42t + 9 + 22 — 22— 4 and 32*+ 52— + 2.

22— 124 + 192° — 6z +9 and 4«®— 182"+ 19x- 3.

6z* + 2® — 2 and 42® - 62— 4z + 3.

124* — 15yx + 3y* and 62— 6yz* + 2y'x— 2y°

2a* —112*—~9 and 4a®+11a*+ 81.

2a* + 3a’ — 9a*x® and 6Ga‘z — 17a’x* + 14a%® — 3ax’.

2+ (2a - 9) &* - (9a + 6) x + 27 and 22’ —13z+ 18,

@’ — a?ba’y + ablxy® — by and 2a*ba’y — ab'zy® — 0%

@+ az®— azy — o and o+ 22y — o' + oty — Qazy’ — o

o® + 32* — 82% — 92— 3 and 2® — 2z'— 6a® + 4o + 132 + 6.

62® — 42 — 112°— 32— 32— 1 and 4a* + 22°— 182%+ 3z - 5.

a* — ax® — a%* - a’z — 2a* and 32® — Tax'+ 3a'%z — 2a’,

o — 92"+ 262 — 24, 2*— 102+ 31— 30 and
a®—11a*+ 382z —40.

A ~102+ 9, 2*+ 102 + 202 — 102 — 21 and
2t + 4o - 222 — 4 + 21,
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' VIL. LEAST COMMON MULTIPLE.

122. In Arithmetic the least common multiple of two or more
whole numbers is the least number which contains eath of them
exactly. The term is also used in Algebra, and its meaning in this
subject will be understood from the following definition of the Jeast
common multiple of two or more algebraical expressions : Let two
or more algebraical expressions be arranged according to descend-
ing powers of some common letter ; then the expression of lowest
dimensions in that letter which is divisible by each of ‘these
expressions is their least common multiple.

123. The letters n.c.M. will often be used for shortness
instead of the term least common multiple; the term itself is not
very appropriate for the reason already given in Art. 106.

Any expression which is divisible by another may be said to
be a multiple of it.

124. Wo shall now shew how to find the L.c.M. of two
algebraical expressions. Let 4 and B denote the two expres-
sions, and D their greatest common measure. Suppose 4 =aD
and B=050D. Then from the nature of the greatest common
measure, & and b have no common factor, and therefore their
least common multiple is ab. Hence the expression of lowest
dimensions which is divisible by aD and dD is abD.

AB

© And abD =A4b= B——D—

Hence we have the following rule for finding the L.c.am. of
two a.lgebra.ical expressions: find their @.c.M. ; divide eitheér ex-
pression by this 6.c. ., and multiply the quotient by the other
expression. Or thus: d1v1de the product of the expressions by
their G.c. M. :
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125. If M be the least common multiple of 4 and B, it is
obvious that every multiple of M is a common multiple of 4
and B. '

126. Every common multiple of two algebraical expressions is
a multiple of their least common multiple.

Let 4 and B denote the two expressions, Jf their L.c.M.;
and let N denote any other common multiple. Suppose, if
possible, that when ¥ is divided by M there is a remainder R;
let ¢ denote the quotient. Thus R=N-—-gM. Now 4 and B
measure M and ¥, and therefore (Art. 109) they measure R.
But R i8 of lower dimensions than M ; thus there is a common
multiple of 4 and B of lower dimensions than their r.c. M. This
is absurd ; hence there can be no remainder R ; that is, & is a
multiple of M,

127. Next suppose we require the L. c. M. of thres algebraical
expressions 4, B, C. Find the L. c.M. of two of them, say 4 and
B; let M denote this L.c. M. ; then the L. c.M. of M and C is the
required L.c.y. of 4, B and C.

For every common multiple of M and C is a common multiple
of 4, B and C (Art. 125). And every common multiple of 4 and
B is a multiple of M (Art. 126) ; thus every common multiple
of 4, B and C is a common multiple of M and C. Therefore the
L.c. M of M and C is the r.c.M. of 4, B and C.

128, By resolving algebraical expressions into their compo-
nent factors, we may sometimes facilitate the process of deter-
mining their G.c.M. or L.c.m. For example, required the r.c.u.
of 2*—a* and 2*—a’. Since

#'—a*=(z—a) (z+a) and z*—a* =(z - a) (2" +ax + a),
we infer that z—a is the @.c. M. of the two expressions ; conse-
quently their L.c. M. is (z + a) (¢* — a*), that is,

z* + ax® - a’zc— at,
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129. The preceding articles of this Chapter relate to polyno-
mial expressions. The meaning of the term least common mul-
tiple in the case of simple expressions will be seen from the
following example :

Required the L.c.M. of 432a'b°zy, 270a"0c"2 and 90a'ba’,

We find by Arithmetic the L.c.M of the numerical co-
efficients 432, 270 and 90; it is 2160. After this number we
write every letter which occurs in the simple expressions, and we
give to each letter respectively the greatest exponent which it has
in the simple expressions, Thus we obtain 2160a‘b*z’yz, which is
divisible by all the given simple expressions, and is called their
least common multiple.

130. The theories of the greatest common measure and of the
least common multiple are not necessary for the subsequent Chap-
ters of the present work, and any difficulties which the student
may find in them may be postponed until he has read the Theory
of Equations, The examples however attached to the preceding
Chapter and to the present Chapter should be carefully worked,
on account of the exercise which they afford in all the funda-
mental processes of Algebra.

EXAMPLES OF THE LEAST COMMON MULTIPLE.
Find the L.c.x. in the following examples :

62" ~2—~1 and 22"+ 3z — 2.

-1 and 2+ — 2.

=92+ 232 — 15 and 2*—-8x+T.
3a® — bz + 2 and 42®— 4o — 2+ 1.
(z+1)(x*—1) and 2*-1.

“o® 4 20y —xy® — 2 and 22— 22y —ay® + 29
9% —1, 42— 1 and 4o+ 1.

-2, 2*~1 and 2*+ 1.

o — 4a’, (z +2a)* and (z-2a)?

-

© LN oSk
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10, «*- 62"+ 11z~ 6, 2°— 92*+ 262 — 24 and o*—~ 82"+ 19212,
11, 2*~92"+262—24, 2°~ 102"+ 312—30 and *—11x"+382—40.
12, 2'~10z*+9, x'+102*+ 202'-102—-21 and 2*+42°-22x"—4x+21.
13, 2'—4a%, &+ 202"+ 4a'z + 8a* and 2— 200"+ da' — 8a’.
14. o'~ (a+bd)z+abd, &'~ (b+c)x+be and o* - (¢c+a) z + ca.
15.  22%+ (2a—3b)a’=(25*+ 3ab)2+3b* and 22*—(35—2c)z—S3be.
16. 6(a*=b") (a—b), 9 (a*~5") (a—b)" and 13 (a*— %"

VIIL FRACTIONS.

131. 'We propose. to recall to the student’s attention some
propositions respecting fractions which he has already found in
Arithmetic, and then to shew that these propositions hold uni-
versally in Algebra. In the following Articles the letters repre-
sent whole numbers, unless it is stated otherwise,

132. By the expression g we indicate that a unit has been

divided into b equal parts, and that a of such parts are taken. Here
a

A ig called a fraction; a is the numerator and b the denominator,

so that the denominator indicates into how many equal parts the
unit is to be divided, and the numerator indicates how many of
those parts are to be taken.

Every integer may be considered as a fraction with- unity for

its denominator ; that is, p =Ii) .

133. Rule for multiplying a fraction by an integer. Zither
multiply the numerator by that tnteger, or divide the denominator
by that inieger,
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a

Let 5 denote any fraction, and ¢ any integer; then will
gxc=%. Forineachofthefrwtions%a.nd%‘theunitis

divided into b equal parts, and ¢ times as many parts are taken
ac a

in —b-asmb, hence-l—,-lscttmesb
This demonstrates the first form of the Rule.

Again ; let g‘; denote any fraction, and ¢ any integer; then

will Zxe=2=. For in each of the fractions . and 2 the same
be b be b .

number of parts is taken, but each part in 2 is ¢ times as large as
each part in b_ because in b_ the unit is divided into ¢ times as

manypartsa.sm—; hencezlsctlmesg-c.

This demonstrates the second form of the Rule.

134. Rule for dividing a fraction by an integer. Zither mul-
tiply the denomiinator by that integer, or divide the numerator by
that integer

Let - denote any fraction, and ¢ any integer; then will

'5
a @ a
50 3.t For 5 is ¢ times b—c’ by Art. 133; and therefore
a, 1 a
b—cls-c-th szo

This demonstrates the first form of the Rule.
Again ; let %c denote any fraction, and ¢ any integer ; then

will X+c=%. For 2." is ¢ times ﬁb, by Art. 133; and there-

b b
freamlthf
peal Sl A

This demonstra.tes the second form of the Rule.
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185. If any quantity be both multiplied and divided by the
same number its value is not altered. Hence if the numerator
and denominater of a fraction be multiplied by the same number
the value of the fraction is not altered. For the fraction is
multiplied by any number by multiplying its numerator by that
number, and is divided by the same number by multiplying its
denominator by that number. (Arts. 133 and 134.) Thus
g= g And so also if the numerator and denominator of a
fraction be divided by the same number the value of the fraction
is not altered.

136. Hence, an algebraical fraction may be reduced to an-
other of equal value by dividing both numerator and denominator
by any common measure ; when both numerator and denominator
are divided by their @.c.M. the fraction is said to be reduced to its

. . 62" —Tx—-20
lowest terms. For example, consider the fraction 7 —%a35"
Here the 6.c.M. of the numerator and denominator will be found
to be 22— 5 ; hence, dividing both numerator and denominator by
this we obtain

62" Tx—-20  3x+4
42"~ 2Tz +6 2z +b5z—-1"

a
b
change the signs of the numerator and denominator of a fraction
without altering the value of the fraction.

137. Since =:—'Z (At 94) it is obvious that we may

138. To reduce fractions to & common denominator : multi-
ply the numerator of each fraction by all the denominators except
1ts own for the numerator corresponding to that fraction, and mul-
tiply all the denominators together for the common denominator.

Thus, suppose % y %, a.nd}to be the proposed fractions ; then,
a adf ¢ cbf e ebd . adf obf

by.A.l"'o. 135, z=w, E-be, and?=bd?’ 'usb?f, 671., and
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ebd
bdf
fractions, and having the common denominator bdf.

are fractions of the same value respectively as the proposed

'139. If the denominators have any factors in common, we
may proceed thus: find the L.C.M. of the denominators and use
this as the common denominaior ; then for the new numerator cor-
responding to each of the proposed fractions, multiply the numerator
of that fraction by the quotient which is obtained by dividing the
L. C. M. by the denominator of that fraction.

Thus suppose, for example, that the proposed fractions are
—, — , an '—:; . Here the 1.c.M. of the denominators is mayz;

a _ayz b baz and %= %Y
ma mayz’ my mays’ mz mayz’

140. To add or subtract fractions, reduce them to a common
denominator, then add or subtract the numerators and retain the
common denominator.

For exa.mple,% + ;—: a;—c this follows immediately from the

meaning of a fraction.

Sog.'.g—a_d+£‘i—ad+°b.
b d bd bd bd °
1 + 1 a-b a+bd 2a
a+bdb a-b a'-b" a'-?b b’
¢c 1 ¢ ¢ ¢ c
a+h a-b_3(a-) (a+b)’ (@—B)

a—btars™ o=p -5 +a‘ b
_2a'-20"+a' +2ab+b'+a—2ab+b’ 4a®
= a b‘v _bn
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a_c+d _a(c—d) b(c+d) ac—ad—(bc+bd)
b ¢—d b(c—d) b(c—d) b(c—d)
_ac—ad—be-bd
T b(e-d) ’
a+d a-b (@+d)' (a-b) (a+b)'-(a-0)
a-b a+db a'-b  al-b" -5
_ a'+2ab + b* — (a*— 2ab + bY)
- -
_a'+2ab+b'—a'+2ab -8  4ad
- A= T a0

141, The rule for the multiplication of two fractions is, mul-
tiply the numerators for a new numerator, and the denominators
Jor a new denominator,

The following is usually given for a proof. Let g and 3 bo

two fractions which are to be multiplied together ; put ;—:: z, and

:_l=",; therefore
a=bz, and ¢=dy,
therefore ac = bdxy;

divide by bd; thus %axy.

This process is satisfactory when x and y are really integers,
though under a fractional form, because then the word multiplica-
tion has its common meaning. It is also satisfactory when one of
the two, # and ¥, is an integer, because we can speak of multiplying
a fraction by an integer, as in Art. 133. But when both z and y
are fractions we cannot speak of multiplying them together with-
out defining what we mean by the term multiplication, for, ac-
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cording to the ordinary meaning of this term, the multiplier must
be a whole number.

In fact the so-called rule for the multiplication of fractions is
really a definition of what we find it convenient to understand by
the multiplication of fractions. And this definition is so chosen
that when one of the fractions we wish to multiply together is an
integer in a fractional form, or when both are such, the result of
the definition coincides with the consequences drawn from the or-
dinary use of the word multiplication.

142. The following verbal definitions may shew-more clearly
the connection between the meaning of the word multiplication
when applied to integers, and its meaning when applied to frac-
tions. When we multiply one integer & by another b, we may
describe the operation thus: what we did with unity to obtain b
we must now do with a to obtain b times a. To obtain b from
unity the wnit is repeated b times ; therefore to obtain b times a
the number a is repeated b times. Now let it be reqmred to

multiply the fraction = 3 by FE adopting the same deﬁmtlon a8
above, we may say that, what we dzd with unity to obtain a we

must now do unth to obtain 5 d times 5 To obtain ;from unity

the unit is divided mbo d equa.l purts, and ¢ of such parts are ta.ken

therefore, to obtain < 7 times I-)" the fraction -b— is divided into &

equal parts, and ¢ such parts are taken. Now, by Art. 134, ifg be
divided into d equal parts, each of them is —;, and if ¢ such parts

be taken the result is 5 .

The definition then of multiplication may be given thus: to
obtain the product of the multiplier and multiplicand we treat the
multiplicand in the same way a8 unity was treated to obtain the
multiplier,
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143. To multiply three or more fractions together, multiply
all the numerators for the new numerator, and all the denominaiors
Jor the new denominator.

144. Suppose we have to divide % byg. Here, by the
nature of division, we -have to find a quantity such that if it be
multiplied by 5 the product shall be ‘3‘ This is the meaning of
division applied to integers, and we shall give the same meaning
to division applied to fractions, an operation which hitherto has
not been defined. :

Let %+£=m; then %sxx ‘—;= %c; therefore a—é—‘:zc, and
i ,

=% Thus we obtain the rule for dividing one fraction by

another ; invért the divisor, and proceed as in multiplication.

145. Hitherto we have supposed, in the present Chapter, that
the letters represented whole numbers ; and have thus only recalled
rules and proofs which are familiar to the student in Arithmetic.
But in virtue of our extended definitions it may be proved that all
the rules and formul® given are true when the letters denote any
numbers whole or fractional. Take, for example, the formula

b Z:, and suppose we wish to shew that this is true when

—_— e e SR — qs wg—‘:”—”q
1;husbc ns g8 ms pr nepr  np’

Thus the formula is shewn to be true.
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Moreover these formule and rules hold when the letters de.
note megative gquantities by virtue of the remarks already made
in Chapter v,

146. By means of the foregoing rules and formuls we can
simplify algebraical fractions, in which the numerator and de-
nominator are themselves fractional expressions, For example,

b a(@a+d)+d :
a+b b(a+b) a+ab+b' a(a—b) _a(a*-¥)
a § —t@=8) b(a+d) T ab+b RICTIEN
@

a-b" a@ )

a i
+

147, The beginner requires to be warned that in reducing
fractional expressions he should keep the simplest forms which
are admissible, in order to avoid unnecessary labour, For exam-
ple, suppose we have to reduce the following expression to a single
fraction,

a b c
@ HE-9@—a)  G-a)F-9@-8)  @—a)@-b)@—0)

‘We might take the product of all the denominators for a com-
mon denominator and transform the three fractions accordingly ;
but a little consideration will shew that there is a much simpler
common denominator which we may put in the following sym-
metrical form,

(a—8)(b—c)(c—a)(x—a)(x—b) (x—c).
‘We may write the proposed expression thus,
_ a _ b c .
@-8(c-a)(@-a) @-5@-c)@-8) (—a)-c)(z—0)’
then by reducing to the common denominator we find

_a(b—0c)(xz—b)(x—c) + b(c—a)(x—a)(x—c)+c(a—b)(x - a)(a:—b)
(@-5)6-0)(c-a) @-a)@—(&—0)
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On working out the numerator we find that # reduces to
z{a(c'-0)+b(@"~c") +c(¥*—a")},
and we shall also find that

—{a(c"-b)+b(a’~c")+c (" —a")}= (a-b) b—-c)(c— a)

Thus the proposed expression, becomes
x
G- E-H@E-0)
As another example it may be shewn that
a' ' b ¢

65

@B @-9@-a) ' F-a)6-9 @b (©-a)©-b@-0)

zl

BCEICEDICEDN

EXAMPLES OF FRACTIONS,

Simplify the following fractions :

1 '+ 2% -3 0 a:’_—_?z_a_'::_li

* P +6e—7" * P —dx-5"

3 z'— 6+ 1126 4 a®+ 3a’h+ 3ab’+.b_"

" T @—3z+2 © T e aba b
5 z*+ 102°+ 352"+ 50= + 24 6 32— 162"+ 232 -6

‘ o + 92 + 262 + 24 ¢ © 22— 11a’+ 172 —6 "
7 62’ — 5* + 4 8 2+ 92* + Tx — 3

C %2 —x+2° 3P+ 52" —15x+4 "
9 32"+ 122+ 9 10 a®— 6x'— 3Tx + 210

C 2+t +6 " P+ 4 —4Tx-210°
11 a* + 227+ 9 12 o« + 22" + 2z

‘o af—4x+4x' -9’ - D +dxe
13 -2 -z+1 14, - a®—a'b—ab' + b

C -2 -2 =22+ 1 * at—a’h—-a't* +ab’’
15 b + 2 16 (r+yy—o -y

© B+ (G -2 L ey -yt
T. A, ' 5
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Perform the additions and subtractions indicated in the fol-
lowing examples from 17 to 37 :

e b

a+b a-b"
e, b

2a—-2b 2b6-2a°

19. 8_ 3 _22: 3

17.

18

a+b a-b

20. ( )( +b) aX2_20).

1 1 _ 3
z-1 z+2 (z+2)"°

5 1 _ 24
2@@+1) 10(x-1) 5(2x+3)°
b—-a_a-2b+3x(a-—b)
x—-b x+b =0 °
34+ 22 2—3z+16a:-z'
J-x 2+ & -4 °

3 7 4-20x
1-22 1+2z 42'-1°
1 + b a
a+b6 &-b a+b"

1 . 1 1
-y (mry) (-9
(+8) a b
ab(a-d" b a
a 3a 2ax
a-z a+x a-x

3a—4d 2a-b-c¢ 1lb5a—4c a- 46
80 ——-—3—*—1 "
a+bd b+c c+a

C=9-a) C-a@-8)  @-HG-9"

21.

23,

23.

- 26.

27.

28.

29‘

3l




33.

34,

(7]
1318

36.

37.

38.

39.

'S
Q

46.

D10 !
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a-be _Y-ca = -db
(a+d)(a+c) (GB+c)b+a) (c+a)(c+d)-
a®—be b+ ca ¢’ +ab

@-H@-——o E+a0-0) T T-a)ec+d)"

be

ca

ab

C-9@-0) " @-0@-9 F-0(c—a"
1 1 1
a@—b)(@a—0c) bG-0(b-a) Tec-a)c=b)"

—c c—a (a—b)(b—c)(c—a)

a-—b+b
a+d b
2

Py Sl Y-t

Multiply

Multiply

Multiply together 3oz

2

b+c c+a (a+d)(b+c)(c+a)

2 @=b)+@-cf+(c~af

a

(a-8)

@-8)@-0)(o-0)

b

b+a

o+ 2y

Y z(@-0)"

2y

& +y

Prove that

¢ ]
ot 5) * (
. 1-
Multiply together

+  Multiply

Simplify

o

x(a—

by

4by

zy(x+y)”

a'—2*' be+bx

’

c-2'' a'+ax

c—x

a-x'

)G E DG

w’ly

1+y

x)

e

a(a+x)

a’ + 2ax

a—

a—2ab+5°

+
bG

a

—2ax+x*
-b

X——.
a*+ ab

4y' \z+y
2

(a’-ab+b *
“\a*+ab+d°

-2

and 1+-———.

)

67



47.

48.

49,

50.

52.

53.

54.

55.

60.

61.

EXAMPLES. VIIIL
Multiply 2 - %41 by 54241,

Multiply o~z +1 by—+1+1
a:'+a:(a+b)+ab o —a'
at— z(a+b)+ab -0

ax— ' a:‘
(a+a) y -z

4 (a"~ab)
b@+0) by b"

. . 2
Divide Z’Tbyy+z

2x+y+2y—a:_ «* by T

Simplify

Divide

Divide

Divide

Simplify <? (: L +‘lc)

R a A b
Simplify (m +m)*(m-m)-

. Simplify (22 ’”) - (ﬂ'__’i_)

z+y Y Y z+y.

. . 1 1
‘ -—
Divide « - by m+w.

. . 1 1
Divide a:%+a—;,+2 by z+ .

.. 1 1
Divide az:'-;-1+5ﬁ by 5—1+z.

a+b-c

) $_ 32 "2, 0
Divide a*—b*-¢*+ 2bc by Py Y

Divide a*+3a’c+3axt+2* . (a+2)

-y Ve vy

z+y w-y -y ya:’—y"'




62.

63.

64.

65.

66.

67.

68.

69.

. Simplify
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a+b+e

st s _ 70 8 1 .
Divide a*-3"-¢ 2bcbya+b—o

" 124 2x’
ivi - - 3 -
Divide 2* - 3az — 2a* + 73 by 3z - 6a 32

Divide a:i_4+6:' by %_%,
a+b+a-b
. o c+d c—d
Simplify S y—2—7-
— —
c—d c+d
a+x a-x

. v G- a+2
Stmplify a2

a—-x a+x

- a+b a+b -5 a'-b
Smphfy .) (a+b—a'+b'

- 3 _ ? 40
Simplify c—b -V _(c+b '+

crb cnr) T estew

ac+y' a:—') (+y z—y
' +y" x—-y =x+y/’

a+b a-b\ . /a'+d a'-b
Simplify a—-b a+b)+(a'—b'_a‘+b'

m +n'

- m® —nt

Simplify et

- X
.1
n m
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z+a6 Z-a
- Y zZ z-a x+a
73. Simplify - - .

P z—a z+0 zta =z-a

+
T—a xzt+a

1 1

e
.o b+ ¥+ct—a'
T4, Simplify 1_"{1 Sl }

‘a6 b+c

75. Simplify

76, Simplify —*

IX. EQUATIONS OF THE FIRST DEGREE.

148. Any collection of algebraical symbols is called an ex-
pression. 'When two expressions are connected by the sign of
equality the whole is called an equation. The expressions thus
connected are called sides of the equation, or members of the equa-
tion, The expression to the left of the sign of equality is called
the first side, and the expression to the right the second side.

149. An identical equation is one in which the two sides are

equal whatever numbers the letters stand for ; for example,
(x+8) (x—=b)=2"-b"

is an identical equation. An identical equation is called briefly

Up to the present point the student has been almost entirely
occupied with identities. Thus the results given in Arts. 656 and
. 68 are identically true; and so also are those which will be ob-
tained by solving the examples to Chapters 111 and 1v.
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150. An equation of condition is one which is not true for
every value of the letters, but only for a certain number of values ;
for example,

z+1="T7

cannot be true unless £=6. An equation of condition is called
briefly an egquation. ,

151. A letter to which a particular value or values must be
given in order that the statement contained in an equation may
be true is called an unknown quantity. Such particular value of
the unknown quantity is said to satisfy the equation, and is called
a root of the equation. To solve an equation is to find the parti-
cular value or values.

152. An equation involving one unknown quantity is said to
be of as many dimensions as is denoted by the index of the
highest power of the unknown quantity. Thus, if « denote the
unknown quantity, the equation is said to be of one dimension
when « occurs only in the first power ; such an equation is also
called a simple equation, or an equation of the first degree. If z*
occurs, and no power of 2 higher than «* occurs, the equation is said
to be of two dimensions ; such an equation is also called a quad-
ratic equation, or an equation of the second degree. If a® occurs,
and no power of x higher than «* occurs, the equation is said to be
of thiee dimensions ; such an equation is also called a cubic equa-
tion, or an equation of the third degree. And so on.

It must be observed that these definitions suppose both mem-
bers of the equation to be integral expressions so far as relates
to z, and not to contain z under the radical sign.

153. 'We shall now indicate some operations which may be
performed on an equation without destroying the equality which
it expresses. It will be seen afterwards that these operations are
useful when we have to solve equations.

v

L1}
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154, If every term on each side of an equation be multiplied
or divided by the same quantity the results are equal. This follows
from Arts. 100, 101,

156. The principal use of the preceding Article is to clear an
equation of fractions; this is effected. by multiplying every term
by the product of all the denominators of the fractions, or, if we
please, by the least common multiple of those denommabors.

Suppose, for example,

* & x
2+3+I=13

Multiply every term by 2 x 3 x 4 ; thus,
Ixdxx+2x4x2+2x3xx=13x2x3 x4;

that is, ' 122 + 8z + 6z = 312.

Divide every term by 2 ; thus,
6z + 4z + 3z = 156.

Instead of multiplying every term by 2 x 3 x 4 we may multi-
Ply by 12, which is the r.c. M. of 2, 3 and 4. Thus we obtain

at once
6z + 42 + 32 = 156.

156. Any quantity may be transposed from one side of an
equation to the other side by changing its sign.
Thus suppose z—a=b-y. '
Add a to each side (Art. 98) ; then
r-a+a=b-y+a,
that is, z=bta—y.
Now subtract b from each side ; thus,
‘ -b=b+a-y-b=a-y.

Here we see that — ¢ has been removed from one side of the
equation, and appears as +a on the other side ; and + b has béen
removed from one side and appears as — b on the other side.
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157. Ifﬂw ngwofeverytemma/neqwtwnbechngodm
equality still holds.’

This follows from the preceding Article by transposing every
term. Thus suppose

‘ z—a=b-y.
By transposition, y-b=a-ua,
that is, : a—-x=y—b;

this result is' what we shall obtain if we change the sign of every
term in the original equation.

158. We ¢an now give a rule for the solution of s.ny simple
equation with one unknown quantity.

Let the equation first be cleared of fractions ; then transpose all
the terms which involve the unknown quantity to one side of the
equation, and. the known quantities. to the other ; divide both sides
by the coefficient or the sum of the coefficients of the unknown
quantity, and the value required is obtained.

The truth of the rule will be obvious from the principles
of the preceding Articles, and we shall now apply it to some
examples; in these examples the unknown gquantity will be de-
noted by «, and when other letters occur, they are supposed to
represent known quantities,

159. Solve Sx—4=24—2.
By transposition, Se+x=24+4;
thus, 4:c =28;
by division, = —24—:8- =T

‘We may verify the result by putting 7 for # in the original
equation. The first side becomes 3 x 7 — 4, that is, 21 - 4, that is,
17 ; the second side becomes 24 — 7, that is, 17,
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bx 4z x
160. Solve T3 13_8 53"

Multiply by 96, which is the L. c. M. of the denominators ;
thus, b5 x48xz—4x33xz-13x96=5x12+3z;

that is, 240z —- 1282 —1248 = 60 + 3z ;
by transposition, 240z — 1282 — 3z = 1248 + 60 ;
thus, 109z = 1308 ;
R 1308

by division, z= 109 = 12.

‘We may verify the result by putting 12 for z in the original
equation ; it will be found that each side of the equation then
becomes 1.

161. Sometimes it is convenient to clear of fractions par-
tially, and then to effect some reductions before getting rid of the
remaining fractional coefficients. For example, solve

e+T7T 20-16 2x+o -5 3a:+1
11 - 3 =54+

Here we may conveniently multlply by 12; tlms,
BErD _4(20-16)+320+5)=16x4+30+7;

that s, 12(::l+7)_83+64.,_5¢...15=64+3a=+7.
By transposition and reduction,
12 (x+17)
._n__ +8="5z.

Multiply by 11; thus,
12z + 84 + 88 = 55z ;

by transposition, 172=43z;
e 172
by dlmon, ' &=a = =4,

‘We may verify this result as before.
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The student should notice one point in this example very

carefully, The fraction 22~ 1% iy oquiralent to 3 (22— 16). This

fraction is preceded by the sign —; and when we multiply by 12
and remove the brackets we obtain — 8z + 64. Thus when we
clear of fractions we must regulate the signs of the terms which
stood in any numerator in the same way as if they had been be-
tween brackets.

5 2

2¢+1 bz—8°
Multiply by (22 + 1) (52— 8) ; thus,
5(5x—8)=2 (2z+1);

162. Solve

that is, 25x—-40=42+2;
by transposition, 21x=42;
N 42
by division, z=gy= 2.
‘We may verify this result as before.
22—-3 4x-5
163. &lve m = Ex—'———? .

Maultiply by (3z—4) (6z—7); thus,
(22 —3) (62 —T)= (42— 5) (3z—4);

that is, 122* — 32z + 21 = 122" — 31z + 20,

Take away 12" from both sides; thus,

21 - 322 =20 -31z;

by transposition, 21 -20 =32z - 31zx;
thus, z=1.

‘We may verify this result as before,

Multiply by 6; thus, ‘
3x—-48=202-14;
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by tmnspomtxon, T 172=-34;
e 34
by division, z=—ﬁ=—2.

‘We may verify this result; each side of the equation will be
found to become —'9.

1656. Bolve ax+b=cx+d.
By transposition, ax—cx=d-b;

that is, . (a-c)e=d-b;
f e _d-b
by division, T=o—g

Verification; put this value for « in the original equation;

then the first side becomes & (d b).,.b that is, “(d—b)_‘_b(a—c)'
ad - be

a—¢ a—c
thatis,a—_c—. Andtheseoondsidebeoomeagf—:cb)+d,that
00 d@=q) o daccd

®a"e a—c¢ . a—c¢

T e

166. An equation of the first degree cannot have more than
one root. ’

For any equation of the first degree will take the form az =5
if the unknown quantity is brought to one side of the equation,
and the known quantities to the other, and to make this true

zmustbeequa.lto%,a.ndtonothingelse.

The result is sometimes obtained thus. Suppose, if possible,
that this equation has two different roots « and 8; then by
supposition,

aa=5b, aB=b;
therefore, by subtraction,
a(a—B)=0; :
but this is impossible, since by supposition a— B is not zero, and
a is not zero. Thus an equation of the first degree cannot have
more than one root, .
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EXAMPLES OF EQUATIONS OF THE FIBRST DEGREE

22+1 Tx+5 x a: x
"_—’2 _8 . 2. E 2 Z g 1.
x+l+3x-4+l 6z + 7T
2 5 8-~ 8."
52-11 -1 1lz-1
4 10 12 °
z & 2 1 z+1 x2+2 z+3
§+§—I=§. 6. D) + 3 =16~ 1 .
11-2 26—z 30
-3 x—-4 z—5+w+l
T T3 T2 "8
Sx—T 2x+7T
T =3 =3z-14.
z-3 2x—5_ﬂ+3z-8_5z+6
4 6 60 5 1o
52 +3 3:c 7
t@-m)ra- 1§=fi—6—§'.

z+3 2—-2 38z-5 1

2 3 - 12 1
-1 13-z 7Tz _11(z+3)

5 2 3 6'

52-3 9-= 5:: 19
-3 —gte@

55;’-1+9x-5_9z_7
7 n 5
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18,
19.
21.
23.
24.
- 25,
26.

27.

29.
31.
32.

33.

35.

36.
37.

EXAMPLES., IX.
3z+5 2x+7T

e 10———0.
2 5z+8 2x-9 19-22 22-11
i 6 -3 ° 20. 2::———2__. -

T2+9 21 7+9% 22

x+1 b-=z x+2

Tx-8 15x+8 31—z

qr T3 % —g -

3z—-11 28-9z
—4———8—--4:«:-14*
23:-1_3:::—2_5:0—4 Tx+6

3 £ 6 12 -

22-9 =« x-3

o7 Tt~ g —%-=

z-1 4z-3 Tz-6 -2 3=z-9
5t 5 ~ 8 “2t—3 to
2—-6 xz—-4 3=z

5 "9 —-1—5—0. 30. z= 3z-~(4 a:)+§.
3:c-—7+25—4:c__5a:—14

b 9 3 °

"x+5+40 -z 10z- 427

13 8 19

xz z-5

7= 1 to=e- (77*1)
z—1 2-2 =2+3 =xz+4
7 Y73 "7 *e
z-1 -2 z-§ =x- 6
z—2 z—3 z—-6 =z-7"
(z=5) (x—2) — (x—5) 2z —5)+ (z+7) (z-2)=0.
3-2-2(x-1)(x+2)=(x-3) (5~ 22)

+1.




38.
39.

40.

41,

42,

43.

45.
46.
47,

48.

49.

50.

51.
52.

54,

b5.

56.

58.

EXAMPLES. IX,
2-3-(3-2)(@+1)=(2-3)(l +2)+3-=

a:-;lO 3 (22— 4)+ 027 2)(2x (2z-3) _ z,__

(¢+2)( -2) (@ +5) (z—3)+

Z
(2-3)(2+3)-G-0 *3)‘9I=

9z+5+ 8217 36z+15+ 104
14 6z+3 56 14

79

6z+7 22-2 2z+1 6z+1 2x-4 2z-1

44,

15  Tz-6_ 5 ° = 715 " Tz=16

4 . T
z+2 x+3 &+5z+6
(z+1)'={6-(1-2)}z-2.
1 1 1 1
-2 z—-4 -6 o-8°
2 . 1_ 6
2%-b6 xz-3 3x—1"
B4 16c+4}_ 23
z+1 3+2 x+1

(=936 16-D-

@+z)(b+2)=(c+a)(d+a)

+35.

Q‘ll—l

+— =, 53. ax+b= ?
@

-c @-— (a+b+c)

Yt — 4+ —=

[ c a

(a+a:)(b+a:)_—a(b+c)=%’c+z'.

a+b a b aa:'+bz+c=ax+b

—_— = —, 57.

3abc a'bt (2a + b) b b
arbt@roft a@rly "ot g

5

prHqr+r Ppr+q
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50, m(x +a) n(x+b)= (x_—_c_t '=x—2a—6 B
z+6 | z3a M™% €0. x+b z+a+320°

6l. (z—a)+@-b)+(x-c)'=3(z-a)(z-b)(z-c)

62, 15z+1 575 8762 = 06252,

‘18z~ 05
]

64, 48z~ W= 16 + 8:9.

63. 1-2z-~ =4z +89.

X. PROBLEMS WHICH LEAD TO SIMPLE EQUA-
TIONS WITH ONE UNKNOWN QUANTITY

167. We shall now apply the methods already given to the
solution of some problems, and thus exhibit to the student speci-
mens of the use of Algebra. In a problem certain quantities are
given, and certain others, which have some assigned. relations to
them, are to be found. The relations are usually expressed in
ordinary language in the enunciation of the problem, and the
method of solving the problem may be thus described in general
terms : denote the unknown guantities by letters, and express tn
algebraical language the relations which hold between the wun-
known quantities and the given quantities; we shall thus obtain
equations from which the values of the unknown qwmtttws may be
derived.

‘We shall now give some examples. In the present Chapter we
confine ourselves to problans which may "be solved by using only
one unknown quantity.

168. The sum of two numbers is 89 and their difference
is 31 : find the numbers,

Let « denote the less number, then the greater number is
31 +«; thus since their sum is 89, we have

 3l+z+2=289,
that is, 3l +22=89;
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by transposition, 2c=89-31'-58;
by division, - z= 2=,

Thus the lees number is 29, and the greater number is 29 + 31,
that is, 60,

169. A bankrupt owes B ¢wice as much as he owes 4, and
C as mueh as he owes 4 and B together : out of £300 which is to
be divided among them, what should each receive ?

Let « denote the number of pounds which 4 should receive ;
then 2 is the number of pounds B should receive ; and = + 2, that
is 3z, is the number of pounds C should receive. The whole sum
they receive is £300 ; thus,

z+2z+32=300;

that is, ' 62=300;
and ' ¢=-32—0—50

therefore A should receive £50, B £100, and C £150.

170. Divide & line 21 inches long into two parts, such that
one may be three-fourths of tho other.

Let « denote the number of inehes in one part, then T 2 denotes
the number of inches in the other part ; thus,

x+i—f= 21;
clear of fractions ; thus,
424 3x=84;
that is, : Tx=84;
84
therefore, : z=7=12

Thus one part is 12 inches long and the other part 9 inches.

171, If A can perform a piece of work in 8 days, and B in
10 days, in what time will they perform it together} 6
T A
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.Let & denote, the number of days required, In one day 4 can
perform 1th of the work, theréfore in 2 days he can perform gths

of the work. In one day B can perform th of the work, there-

fore in 2 days he can perform 10 Z ths of the work. Henoe since

4 and B together perform the whole work in x days, we have

A,

: 8 E

clear of fractions by maultiplying by 40 ; thus,
5z + 4z = 40,

that is, 92=40;

therefors, . == %0 =44, h

172. A workman was employed for 60 days, on condition
that for every day he worked he should receive 15 pence, and for
every day he was absent he should forfeit 5 pence; at the end of
the time he had 20 shillings to receive : required the number of
days he worked.

Let  denote the number of days he worked, then he was
:absent- 60 — days; then 15z denotes his pay in pence, and
5 (60 — x) denotes the sum he forfeited. Thus,

1525 (60 —z) = 240 ;

that is, 152 - 300 + 5x=240;

therefore, 20z =240 + 300 =540 ;
_540

therefore, =95 = 27.

Thus he worked 27 days and was absent 60— 27 days, that is,
33 days.

173. How much rye at four sln]lmgs a.nd slxpenoe a bushel
‘must be mixed with fifty bushels of wheat at six sh.lllmgs a bushel,
that the mixture may be worth five shillings a bushel}
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Let = denote the number of bushels required ; then 9z is the
value of the rye in sixpences, and 600 is the value of the wheat.
The value of the mixture is 10 (50 + z). Thus, o

. 10 (50 + z) = 9= + 600 ; S
that is, 10z + 500 =9 + 600 ;
and ' » =100,

174. - A smuggler had a-quantity of brandy which he expected
would produce £9. 18s. ; after he had sold 10 gallons a revenue
officer seized one-third of the remainder, in consequence .of which
the smuggler makes only £8. 2s. : required the number of gallons
he had a.nd the price per gallon.

9

Let « denote the number of gallons; then 1—:6—8 is the value

of a gnlloﬂ in shillings. The quantity seized is i 10

‘”‘310 x 19—8 shillings ; thus,

“Jloxﬂ'}_lss 162 = 36.

Multiply by 3z ; thus,
198 (x - 10) =3z x 36 =108z ;

sﬂlons,

and the value of this is

therefore, 1982 — 108z = 1980 ;
that is, 90z = 1980,
and z= %8)9_ 99,
Thus 22 is the number of gallons, and the price of each
198

gallon is - shillings, that is, 9 shillings.

175. The student may now exercise himself in the solution
of the following problems. We may remark that in these cases
the only difficulty consists in translating ordinary verbal state-
ments into Algebraical language, and the student should not be
discouraged if at first he is sometimes a little perplexed, since
nothing: but practice -can nge him readiness and eertunty in.
this process, - - e

6—2
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EXAMPLES OF PROBLEMS.

1. The property of two persons amounts to £3870, and one of
them is twice as rich as the other ; find the property of each.

2. Divide £420 among two persons so that for every shilling
one receives the other may receive half-a-crown.

3, How much money is there in a purse when the fourth |
part and the fifth part together amount to £2. bs. ¥

4, After paying the seventh part of a bill and the fifth part,
£92 is still due ; what was the amount of the bill §

5. Divide 46 into two parts, such that if one part be divided
by 7 and the other by 3, the sum of the quotients shall be 10.

6. A company of 266 persons consists of men, women and
children ; there are four times as many men as children, and twice
as many women a8 children. How many of each are there ?

7. A person expends ore-third of his income in board and
lodging, one-eighth in clothing, and one-tenth in charity, and
saves £318, 'What is his income }

8. Three towns, 4, B, C, raise a sum of £594 ; for every pound
which B contributes, 4 contributes twelve shillings, and C seven-
teen shillings and sixpence. 'What does each contribute §

9. Divide £1520 among 4, B, and C, so that B shall have
£100 more than A, and C £270 more than B.

10. A ocertain sum is to be divided among 4, B, and C.
A is to have £30 less than the half, B is to have £10 less than
the third part, and C is to have £8 more than the fourth part.
‘What does each receive %

11. The sum of two numbers is 5760, and their difference is
equal to one-third of the greater : find the numbers.

- 12. Two casks contain equal quantities of beer ; from the
first 34 quarts are drawn, and from the second 80 ; the quantity
remaining in one cask is now twice that in the other. How
much did each cask originally contain 3
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13. A person bought a print at a certain price, and paid 'the
same price for a frame; if the frame had cost £1 less and the
print 15s. more, the price of the frame would have been only
half that of the print. Find the cost of the print.

14. Two shepherds owning a flock of sheep agree to divide‘
its value ; A takes 72 sheep, and B takes 92 sheep and pays 4
£35. Required the value of a sheep.

15. A house and garden cost £850, and five times t.he price
of the house was equal to twelve times the price of the garden:
find the price of each.

16. One-tenth of a rod is coloured red, one-twentieth orange,
one-thirtieth yellow, one-fortieth green, onedfiftieth blue, one-
sixtieth indigo, and the remainder, which is 302 inches long, violet.
Find the length of the rod. .

17. Two-thirds of a certain number of persons received
eighteenpence each, and one-third received half-a-crown each. The
whole sum spent was £2. 15s. How many persons were there ¢

18. Find that number the third part of which added to its
seventh part makes 20.

19. The difference of the squares of two consecutive numbers
is 15. Find the numbers.

20. Of a certain dynasty one-third of the kings were of the
same name, one-fourth of another, one-eighth of another, one-
twelfth of a fourth, and there were five besides, How many kings
were there of each name }

21. A crew which can pull at the rate of nine miles an
hour, finds that it takes twice as long to come up a river as to go
down ; at what number of miles an hour does the river flow

22. A and B play at a game, agreeing that the loser shall
always pay to the winner one shilling more than half the money
the loser has ; they commence with equal quantities of money, but
after B has lost the first game and won the second, he has twice
as much as 4 : how much had each at the commencement ?
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23. A person who possesses £12000 eémploys a portion 6f the
money in building a house. One-third of the money which re-
mains he invests at 4 per cent., and the other two-thirds at 5 per
cent., and from these investments he obtains an income of £392.
‘What was the cost of the house ?

- -94, A farmer has oxen worth £12. 10s. each, and sheep
worth £2. 5s. each ; the number of oxen and sheep being 35,-and
their value £191. 10s. Find the number he had of each.

25.. 4 and B find a purse with shillings in it. 4 takes out
two shillings and one-sixth of what remains ; then B takes out
three shillings and onesixth of what remains ; and then they find
that they have taken out equal shares. How many shl.l].mgs
were in the purse, and how many did each take %

26. A hare is eighty of her own leaps before a greyhound ;
she takes three leaps for every two that he takes, but he covers
as much ground in one leap as she does in two. How many leaps
will the hare have taken before she is caught ?

" 27. The length. of a field is twice its breadth ; another field
which is 50 yards longer and 10 yards broader, contains 6800
square yards more than the former ; find the size of each.

28. A vessel can be emptied by three taps ; by the first alone
it could be emptied in 80 minutes, by the second alone in 200
minutes, and by the third alone in 5 hours. In what time will
the vessel be emptied if all the taps are opened ?

29. If an income tax of 7d. in the pound on all incomes
below £100 a year, and of 1s. in the pound on all incomes .above
£100 a year realise £18750 on £500000, how much is raised
on incomes below £100 a year ?

30. A person buys some tea at 3 shillings a pound, and some
at b shillings a pound ; he wishes to mix them so that by selling
the mixture at 3s. 8d. a pound he may gain 10 per cent. on each
pound.sold : find how many pounds of the inferior tea he must.
mix with each pound of the superior. S
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31. A fruiterer sold for 19s. 6d. a certain number of oranges
and apples, of which the latter exceeded the former by 180. He
sells the apples at the rate of 5 for 3d., and. 15 oranges bring
him in 1}d. more than 35 apples.. How ma.ny are there of each
sort }

32. A cask 4 contains 12 gallons of wine and 18 gallons of
water ; and another cask B contains 9 gallons of wine and 3 gal-
lons of water ; how many gallons must be drawn from each cask
50 a8 to produce by their mixture 7 gallons of wine and 7 gallons
of water

33.- 4 can dig a trench in one-half the time that B can; B
can dig it in two-thirds of the time that C can ; all together they
can dig it in 6 days; find the time it would take each of them
alone.

34. A person after paymg sevenpence in the pound for In-
come Tax has £408. 4s. 8}d. left. 'What had he at first ¢

35. At what time between one o’clock and two o’clock is the
long hand of a clock exactly one minute in advance of the short
hand ?

' 36. A person has just a hours at his disposal ; how far may
he ride in a coach which travels b miles an hour, so as to return
home in time, walking back at the rate of ¢ miles an hour$

37. A certain article of consumption is subject to a duty
of 6 shillings per cwt.; in consequence of a reduction in the
duty the consumption increases one-half, but the revenue falls
one-third, Find the duty per cwt. after the reduction.

38. A ship sails with a supply of biscuit for 60 days, at a
daily allowance of a pound a head ; after being at sea 20 days she
encounters a storm in which 5 men are washed overboard, and
damage sustained that will cause a delay of 24 days, and it is
found that each man’s daily allowance must be reduced to five-
sevenths of a pound. Find the ongma.l number of the crew.
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XTI, SIMULTANEOUS EQUATIONS OF THE FIRST
DEGREE WITH TWO UNKNOWN QUANTITIES.

176. Suppose we have an equation containing two unknown
quantities z and g, for example Sz —2y=4. For every value
which we please to ascribe to omre of the unknown quantities we
can determine theeo‘mspondingva.!nooftheothm and thus
find as many pairs of values as we please which satisfy the given

. equation. Thus, for example, 1fy 1 we find m—g, if y=2

weﬁnda::g; and 80 on.

- Also, suppose that there is another equation of the same kind,
as for example, 4z+3y=17. We can also find as many pairs of
values as we please which satisfy'this equation.

But suppose we ask for values of 2 and y which satisfy both
equations ; we shall find then that there is only one value of
and one value of y. For multiply the first equation by 3 ; thus,

152-6y=12;
multiply the second equation by 2 ; thus,
8z + 6y = 34.
Therefore, by addition,
16— 6y+8¢+6y=12+34
that is, 23x = 46,
and, z=3.

Thus if doth equations are to be satisfied = must equal 2; put
this value of z in either of the two given equations ; for example,
in the second equation ; thus we obtain

8+38y=17;
therefore, Sy=17-8,
and, - y=3
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177. Two or more equations which are to be satisfied by the
same values of the unknown quantities are called stmuléaneous
equations. 'We are now about to treat of simultaneous equations
involving two unknown quantities where each unknown guantity
occurs only in the first degree, and the product of the unknown
quantities does not occur,

178. There are three methods which are usually given for
solving these equations. The-object of all these methods is. the
same, namely, to obtain from the ‘wo given equations which
contain two unknown quantities a single equation containing only
one of the unknown quantities, By this process we are said to
eliminate the unknown quantity which does not appear in the
single equation. )

179. First method. The first method is that which we
adopted in the example of Art. 176; it may be thus described :
multiply the equations by such numbers as will maks the coefficient
of ons of the unknown quantities the same tn the two resulting
equations ; then by addition or subtraction we can form an equa-
tion containing only the other unknown quantity.

Example, 4z+ 3y=22; bx-Ty=6.

If we wish to eliminate y we multiply the first equation by 7,
which is the coefficient of y in the second, and the second equation
by 3, which is the coeficient of y in the first equation, Thus we
obtain '

28z + 21y =164; 16z-21y=18,

Then by addition,
’ 28z + 152 =154 +18;
that is, 432 =172,

a.nd,’ Q=E=4,
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" Then put this value of 2 in either of the given equations, in
the first for example ; thus,

16 + 3y =22;
therefore, 3y =6,
and, : y=2.

If we wish to solve this example by eliminating  we multiply
the first of the given equations by 5, and the second by 4 ; thus,

20z + 15y =110; 20z— 28y = 24.

Then by subtraction,
, - 20z + 15y — (202 — os_.,) 110 - 24;
thus, ° 43y =86,
and, . S y=2.

180. Second method. Express one of the unknown quantities
tn terms of the other from either equation, and subsmutc thu value
tn the other equation. v

Thus, taking the same example, we have from the first
equation

4 =22 -3y;
Co . 9 _
divide by 4, =2 1 3"/; ;
substitute this value of = in the second equation and we obtain
' .5_@_4'33’) ~Ty=6;
multiply by 4, 5 (22 - 3y) — 28y = 24;
that is, . .. 110 - 15y — 28y = 24 ;
by transposition, 43y =86,
and’ PR Lol T y= 2

Then substitute this value of y in either of the glven equations
and we shall obtain z = 4.

Or thus; from the first equation we have
Sy=22-4=;
divide by 3, . yfﬁag 5
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substitute this value of y in the second equation and we obtain
7(22 - 4x)

multiply by 3, 152-7(22 - 42)=18;
that is, 16z - 154 + 282 =18;
that is, .- 432=172,
and, . T =4

Then substitute this value of # in elther of the glven equa-
tions and we shall obtain y 2.

181. Third method. Expreac the same un]mown gmmmy n
terms of the other from each egquation and equats the capremom
tlms obtained.

Thus, taking the same example, from the first equation

22 —
= 24 3,1/’ and from’ the second equatipn z=6;'7y;
' 22-3y 6+7 '
thus, Z Y _ ___5_3/, ‘
clear of fractions,  5(22 - 3y) = 4(6 + Ty);
that is, 110 - 15y = 24 + 28y;
by. transposition, 43y =86,
and, cy=2.
Hence, as before, we deducé z=4. B
e - 99
Or thus; from the first équation. we obtain y= 22 3 ie ,
.. bx—6 :
and from the second equation y=—1p—> thus,
24z _Bo-6

‘3 7

Hence as before we shalt obtain z =4 and then deduce y = 2.

<
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EXAMPLES. XL

EXAMPLES OF SIMULTANEOUS SIMPLE EQUATIONS WITH TWO

13.
14.
15.
16.
17.

18.
19.

20.

UNKNOWN QUANTITIES.

x+y=15, x-y="T.

Sz-2y=1, Sy—-dz=1.

3z -5y =13, 2z + Ty =81.

2z + 3y = 48, 10z—-y=1.

bz — Ty=233, 11z + 12y =100.

Sy—Tx=4, 2y + bz =22.

21y + 20z = 165, 77y — 30z = 295.

bz + Ty =43, 11z + 9y = 69.

8z - 21y =33, 6z + 35y =177.

11z - 10y =14, bz + Ty=41.

16z + 17y =500, 17z - 3y =110.

z.9 z_V_a.

5+6_18, 3—3=2L

g . 2.y

3+1 9, 4+5—7.

2Ly zLY_

2+3.-1, 3+4-1.

e+y _z-y_ z+y Z-y_

3 "3 =% 5 t74 Ik

Hae— Hz-5y 3z+y _
1 T 16 8z-By=1.

2z e 3y 1 y_ = g _1_

~3_...4;-4.24.;.;.8-—‘;-.1--1—2-, §—2+2--6 2z + 6.

4z + 8y =24, 102z~ 6y =3-48.

w=ty,  3(%+Ty)-1=3(2—by+1).

1 1.3 1 w. o
z+508z-y-1)=7+30-1), FUe+3y)=15+2.
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23.

24.

25.

26.

28.

29.
30.
31.

32.
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11ly-10 42-3y+5 45-=
3 ttrT g syt
_42-2 B5x+Tly+1

3 13 ’

. . 36205 26 + 005y
24z + 32y-_—T-_. 83+—.25_—,
04y +°1 07Tz—-1

.3 h .6 ‘\ .
13z + 11y = 4a, 122 -6y =a.

45

3
<y

+ =1,

218 §|

+

o

=1,

az+by=c, mz - ny =d.
z Y 9, ax —

bve T areo
2+ Y _9, =Y.

a+b+a-bf
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XII. SIMULTANEOUS EQUATIONS OF THE FIBST -DEGREE
"WITH MORE THAN TWO UNKNOWN QUANTITIES.

182. If there be three simple equations and three unknown
quantities, deduce from two of the equations an equation con-
taining only two of the pnknown quantities by the rules of the
preceding Chapter ; then deduce from the third equation and
either of the former two, another equation containing the same
two unknown quantities; dnd from the two equations thus ob-
tained the unknown quantities which they involve may be found.
The third quantity may be found by subs\‘.ltutmg the above
values in any of the proposed equations. -

Example, suppose, t ) .
Jz+3y+42=16 ...oooviiiii, -(1),

3x+2y—-82=8 ...cociiiiniinnnnen, (2),
Sz—6y+32=6 ...l (3).

For convenience of reference the équations are numbered (1),

(2), and (3), and this numbermg is conthmed as we prooeed mth
the solution,

Multiply (1) by 3, and (2) by 2; thus,
62+ 9y + 122 =48,
6z+4y—10z=16;

by subtraction, ’ '
' By +222=32..ccccciitinniinnnn. ().
Multiply (1) by 5, and (3) by (2); thus, -
10z + 15y + 202 = 80,

10z 12y +62 =12;
by subtraction,
2Ty +142=168.......cccevvinrne eene(B).
Multiply (4) by 27, and (5) by 5; thus,



WITH MORE THAN..TWO UNKNOWN QUANTITIES. 93
135y + 594z = 864,

135y + 70z=
by subtraction,’ 5242 =524,
therefore, z=1.
Substitute the value of z in (4) ; thus,
' Sy+22=32;
therefore, y=2.
Substitute the values of ¥ and z in (1) ; thus,
20+6+4=16;
therefore, x=3.

Sometimes it is convenient to use the following rule: fromn
two of the equations express the values of two of the unknown
quantities in terms of the third, and substitute these values in
the third equation; hence the third unknown quantity can be
found, and then the other two,

Example, suppose _
3x+4y—162=0....ccc00eerrrrnnnnn. (1),
52 -8y +102=0........cceeeerrnnnn(2),
’ 46y + T2=52 cooerrreernrnnnn vee(3)

Multiply (1) by 2, and add to (2) ; thus
112 —222=0 ; therefore =22,
Multiply (1) by 5, and (2) by 3, and subtract ; thus

44y —1102=0; therefore y= 5—;

Substitute in (3) ; thus
42+ 152+ 72=052; that is 262=52;
therefore z= 2; and z=22=4, y_—-5

The same methods may be applied when the number of slmple
equations and of unknown quantities exceeds three. :
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EXAMPLES OF SIMULTANEOUS EQUATIONS OF THE FIRST DEGREE
WITH MORE THAN TWO UNKNOWN QUANTITIES.

3z +2y—42=15, 52— 3y +22=28, Sy+4s-z=24,
z+y-z=1, 8z+3y-6zm], 32-4z-y=1.

2% ~Ty+42=0, 3x-3y+2=0, 9z+5y+32=28.
4x-3y+22=9, 2zx+8y—-3s=4, Bz+6y—22=18.
2e—4y+92=28, Tz+3y-56:=3, 9x+10y-1la=4.
z—2y+32=6, 2x+3y—42=20, 3x—2y+52=26.
42—-3y+22=40, bx+9y—-T2=47, 92+ 8y—32=09T.
3x+2y+2=23, bx+2y+42=46, 10z+5y+42="T75.
bx—6y+42=15, Tx+4y—32=19, 2x+y+ 6z=46.
11 1
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13.

10z + 4y — 52 _4z+6y—3z
[ - 9 !
10z + 4y — 5z =4z + 6y — 32—

10x+4y—5z+ 4x+6y—32z x+y+2
10 3 T4

14
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15. Tz-3y=1, 16. 8u-—-2y=2,
112-Tu=1, bx—T3=11,
42-Ty=1, 2z + 3y = 39,

192 —-3u=1. 4y + 3z =41.

17. 2z-3y+2z=13, 18, Tu-—132=87,

W 4y + 22=14, 10y - 3z=1],

-2z =30, © 3u+14x=57,
5y + 3u=32. 22 — 112 =50.

19, T#-22+3u=17, 20. 3x-4y+32+3v-6u=11,
dy-22+ v=11, 3x—by + 22— 4u=11,
Sy—-3z—-2u=_§, 10y-32+3u—-20=2,
4y —3u+20=9, b2+ 4u+20—-22=3,

3z +8u=33. 6u—3v+4x~-2y==6.

21. §+%=i, §+z=-l, %+§=l.

22. ay+ba:=c,v cx+az=b, bz+cy=a.

23, .01 bifar, %4001
z y y =z z x|

24, z+y+2=0,

(b+c)a:+(c+a)y+(a+b)z 0,

bex + cay + abz = 1.
25. ax+by+ce=A,

a'z+by +c'z=A"

&’z +b% +c’z=A4"° -
26. wyz=a(yz—2x—ay)=b(x—ay— yz)—c(xy -yz— ).
27. z+y+z=a+b+e

be+cy +az=cx+ay+bz=a"+b"+c"
28. z—ay+az=ad’

z-by + b% =0

z—cy +c2=c .
T. A, _ 7
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XIII, PROBLEMS WHICH LEAD TO SIMPLE EQUATIONS WITH
MORE THAN ONE UNKNOWN QUANTITY.

183. We shall now give some examples of problems which
lead to simple equations with more than one unknown quantity.

4 and B engage in play; in the first game 4 wins as much
as he had and four shillings more, and finds he has twice as much
as B; in the second game B wins half as much as he had at first
and one shilling more, and then it appears lie has three times
as much as 4 : what sum had each at first

Let = be the number of shillings which 4 -had, and y the
number of shillings which B had ; then after the first game 4
has 2z +4 shillings and B has y—z—4 shillings. Thus by the

question,

] 2e+4=2(y-z—4)=2y—-22-8;
therefore, 2y—4x=12;
therefore, y—2z=6.

Also after the second game A has 22+ 4~¥ 1 shillings, and
B has y—:c—4+%+l shillings. Thus by the question,
y-z-4+%+1=3(2z+4-g_1)=6z+12_§2-f—’-3;

therefore, 2y—-22-8+y+2=122+24-3y-6;
therefore, 6y — 14z = 24,
and, Sy-Tz=12.
And from the former equation,
3y -62=18;
hence by subtraction, x=6;
therefo;'e, y=18.
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184. A sum of money was divided equally among a certain
number of persons; had there been three more, each would have
received one shilling less, and had there been two fewer, each
would have received one shilling more than he did: required the
number of persons, and what each received.

Let  denote the number of persons, y the number of shillings
which each received. Then ay shillings is the sum divided ; thus
by the question, ’

(z+3)(y-1)==y,

and also, =-2)(y+1)=2y.
The first equation gives
_ ay+3y—az—-3=ay;
thus, . 3y—z=3.
The second equation gives
wy-Y+z-2=2y;
thus, . z—2y=2.
By addition, y-z+x-2y=5;
that is, y=35.
Hence, z=2y+2=12.

185. What fraction is that which becomes equal to § when
its numerator is increased by 6, and equal to § when its denom-
inator is diminished by 2 ?

Let = denote the numerator and y the denominator of the
fraction ; then by the question,

z+6 3
v i
z 1
a'nd1 F2 = § .
Clear the first equation of fractions by multiplying by 4y ;
thus,
, 4(x+6)=3y;
therefore,. Sy—4x=24,
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Clear the second equation of fractions by multiplying by
2 (y—2); thus,

dx=y-2;
therefore, y—22z=2,
and, 3y—-6x=86.
By subtraction,
3y-4x—-(3y—62)=24-6;

that is, 22=18,
and, - z=9.
Hence, y=2+2z=20.

Thus the required fraction is 596

EXAMPLES OF PROBLEMS,

1. A certain fraction becomes 1 when 3 is added to its nu-
merator, and } when 2 is added to its denominator. What fraction
is it} ,

2. A and B together possess £570, If A’s money were three
times what it really is, and B’s five times what it really is, the
sum would be £2350. 'What is the money of each ? :

3. If the numerator of a certain fraction is increased by one
the value of the fraction becomes }; if the denominator is in-
creased by one the value of the fraction becomes 3. What is the
fraction ¥

4. Find two numbers such that if the first be added to four
times the second, the sum is 29 ; and if the second be added to
six times the first the sum is 36.

5. If A's money were increased by 36s. he would have three
times as much as B ; but if B’s money were diminished by 5s. he
would have half as much as 4. Find the sum possessed by each.

6. A and B lay a wager of 10s.; if 4 loses he will have
twenty-five shillings less than twice as'much as B will then have ;
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but if B loses he will have five-seventeenths of what 4 will then
have: find how much money each of them has.

7. Find two numbers, such that twice the first plus the
second is equal to 17, and twice the second plus the first is
equal to 19.

- 8. Find two numbers, such that one-half the first and three-
fourths of the second together may be equal to the excess of three
times the first over the second, and this excess equal to 11.

9. For five guineas can be obtained either 32 pounds of tea
and 15 pounds of coffee, or 36 pounds of tea and 9 pounds of
coffee : find the price of a pound of each.

10, Determine three numbers such that their sum is 9 ; the

" sum of the first, twice the second, and three times the third, 22;

and the sum of the first, four times the second, and nine times the
third, 58. '

11. A pound of tea and three pounds of sugar cost six shil-
lings, but if sugar were to rise 50 per cent. and tea 10 per cent.
they would cost 7 shillings. Find the price of tea and sugar,

12. A person has £2550 to invest. The thiree per cent. con-
sols are at 81, and certain guaranteed railway shares which pay
a half-yearly dividend of 10s. on each original share of £25 are af
£24. .Find how many shares he must buy that he may obtain
the same income from the railway shares as from the rest of his
money invested in the consols. ’

13. A person possesses a certain capital which is invested at
a certain rate per. cent. A second person has £1000 more capital
than the first person and invests it at one per cent. more ; thus
his income exceeds that of the first person -by £80. A third
person has £1500 more capital than the first and invests it at two
per cent. more ; thus his income exceeds that of the first person
by £150. Find the capital of each person and the rate at which
it is invested,

14. A sum of money is divided equa]ly among a certain num-
ber of persons; if there had been four more each would have
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received a shilling less than he did ; if there had been five fower
each would have received two shillings more than he did : find the
number of persons and what each received.

15. Two plugs are opened in the bottom of & cistern con-
taining 192 gallons of water ; after three hours one of the plugs
becomes stopped, and -the cistern is emptied by the other in
eleven more hours ; had six hours occurred before the stoppage, it
would have required only six hours more to empty the cistern.
How many gallons will each plug hole discharge in an hour, sup- -
posing the discharge uniform %

16. A person after paying a poor-rate and also the income-

_saX of 7d. in the pound, has £486 remaining; the poorrate
amounts to £22. 10s. more than the income-tax : find the original
income and the number of pence per pound in the poor-rate.

17. A certain number of persons were divided into three
classes, such that the majority of the first and second together
over the third was 10 less than four times the majority of the
second and third together over the first; but if the first had 30
more, and the second and third together 29 less, the first would
have outnumbered the last two by one. Find the number in each
class when the whole number was 34 more than eight times the
majority of the third over the second.

18. A farmer would spend all his money by buying 4 oxen
and 32 lambs ; instead of doing this he bought the same number
of oxen and half as many lambs, and had a surplus of £9 after
paying for them and for their conveyance by railway at an average
cost of six shillings per head. Each ox cost a8 many pounds as
its carriage by railway was shillings, and the lambs altogether cost
three times as many pounds as the carriage of each was shillings.
How much money had the farmer to begin with ?

19. A4 and B play at bowls, and 4 bets B three shillings to
two upon every game ; after a certain number of games it appears
that 4 has won three shillings ; but if 4 had bet five shillings to

two and lost one game more out of the same number, he would
have lost thirty shjllings, How many games did each win ?
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20. TFive persons, 4, B, C, D, E play at cards; after 4 has
won half of B’s money, B one-third of C’s, C' one-fourth of D’s,
D one-sixth of E’s, they have each £1. 10s. Find how much
each had to begin with. '

21. If there were no accidents it would take half as long to
_Aravel the distance from 4 to B by railroad as by coach; but
\ three hours being allowed for accidental stoppages by the former,

the coach will travel the distance all but fifteen miles in the
same time ; if the distance were two-thirds as great as it is, and
the same time allowed for railway stoppages, the coach would
take exactly the same time : required the distance,

22. A and B are set to a piece of work which they can
finish in thirty days working together, and for which they are
Mo receive £7. 10s. When the work is half finished 4 intermits
working eight days and B four days, in consequence of which the
work occupies five and a half days more than it would otherwise
have done. How much ought 4 and B respectively to receive ?

~ 23. 4 and B run a mile. First 4 gives B a start of 44
yards and beats him by 51 seconds ; at the second heat 4 gives
B a start of 1 minute 15 seconds, and is beaten by 88 yards.
Find the times in which 4 and B can run a mile separately.

24. A and B start together from the foot of a mountain to -
go to the summit. A4 would reach the summit half an hour
before B, but missing his way goes a mile and back again need-
lessly, during which he walks at twice his former pace, and reaches
the top six minutes before B. C starts twenty minutes after
4 and B and walking at the rate of two and one-seventh miles per
hour, arrives at the summit ten minutes after B, Find the rates
of walking of 4 and B, and the distance from the foot to the
summit of the mountain.

_Y~ 25. A railway train after travelling for one hour meets with
an accident which delays it one hour, after which it proceeds at
three-fifths of its 'former rate, and arrives at the terminus three
hours behind time ; had the accident occurred 50 miles further on,
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the train would have arrived 1 hour 20 minutes sooner. Required
the length of the line, and the original rate of the train.

26. A4, B, and C sit down to play, every one with a certain
" number of shillings. A loses to B and to C as many shillings as
each of them has. Next B loses to 4 and to C as many as each of
them now has. Lastly C loses to 4 and to B as many as each
of them now has. After all every one of them has sixteen shillings.
How much had each originally ?

27. Two persons 4 and B could finish a work in m days;
they worked together n days when 4 was called off and B finished
it in p days. In what time could each do it ?

28. A railway train running from London to Cambridge
meets on the way with an accident, which causes it to diminish

its speed to ,I;th of what it was before, and it is in consequence

a hours late, If the accident had happened b miles nearer Cam-
bridge, the train would have been ¢ hours late. Find the rate of
the train before the accident occurred. :

29. The fore-wheel of a carriage makes six revolutions more
than the hind-wheel in going 120 yards; if the circumference of
the fore-wheel be increased by one-fourth of its present size, and
the circumference of the hind-wheel by one-fifth of its present
size, the six will be changed to four. Required the circumference
of each wheel. '

30. There is a number consisting of two digits; the number
is equal to three times the sum of its digits, and if 45 be added to
the number the digits interchange their places: find the number.

31, There is a number consisting of two digits ; the number
is equal to seven times the sum of its digits, and if 27 be sub-
tracted from the number the digits interchange their plaoes find
the number.

32. A person proposes to travel from 4 to B, either direct
by coach, or by rail to C, and thence by another train to B. The
_trains travel three times as fast as the coach, and should there be
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1o delay, the person starting at the same hour could get to B
20 minutes earlier by coach than by train. But should the train
be late at C, he would have to wait there for a train as long as
it would take to travel from C to B, and. his journey would in
that case take twice as long as by coach. Should the coach how-
ever be delayed an hour on the way, and the train be in time at
C, he would get by rail to B and half way back to C, while he
would be going by coach to B. The length of the whole circuit
ABCA is 76 miles. Required the rate at which the coach travels,

33. A offers to run three times round a course while B runs
twice round, but 4 only gets 150 yards of his third round
finished when B wins. A4 then offers to run four times round
for B’s thrice, and now quickens his pace so that he runs 4 yards
in the time he formerly ran 3 yards. B also quickens his so that
he runs 9 yards in the time he formerly ran 8 yards, but in the
second round falls off to his original pace in the first race, and in
the third round only goes 9 yards for 10 he went in the first race,
and accordingly this time 4 wins by 180 yards. Determine the
length of the course.

34. A man starts p hours before a coach, and both travel uni-
formly ; the latter passes the former after a certain number of
hours. From this point the coach increases its speed to six-fifths
of its former rate, while the man increases his to five-fourths of his
former rate, and they continue at these increased rates for ¢ hours
longer than it took the coach to overtake the man. They are then
92 miles apart; but had they continued for the same length
of time at their original rates they would have been only 80
miles apart. Shew that the original rate of the coach is twice
that of the man. Also if p + ¢=16, shew that the original rate
of the coach was 10 miles per hour, and that of the man 5 mlles

/ per hour.
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XIV. DISCUSSION OF SOME PROBLEMS WHICH
LEAD TO SIMPLE EQUATIONS.

186. 'We propose now to solve some problems which lead to
Simple Equations, and to examine certain peculiarities which
present themselves in the solutions. 'We begin with the following
problem : What number must be added to a number & in order
that the sum may be 5% Let = denote this number ; then,

' a+x=b;
therefore, z=b-a.

This formula gives the value of 2 corresponding to any as-
signed values of 4 and b. Thus, for example, if a=12 and
=25, we have 2=25-12=13. But suppose that =30 and
b=24; then =24-30=—6, and we naturally ask what is
the meaning of this negative result? If we recur to the enun-
ciation of the problem we see that it mow reads thus: What
number must be added to 30 in order that the sum may be 24 %
It is obvious then, that if the word added and the word sum are
to retain their arithmetical meanings, the proposed problem is
impossible, But we see at the same time that the following
problem can be solved : What number must be taken from 30
in order that the dfference may be 249 and 6 is the answer to
this question. And the second enunciation differs from the first
in these respects ; the words added to are replaced by taken from,
and the word sum by differencs.

187. Thus we may say that, in this example, the negative
result indicates that the problem in a strictly Arithmetical sense
is impossible ; but that & new problem can be formed by appro-
priate changes in the original enunciation to which the absolute
value of the negative result will be the correct answer.

188. This indicates the convenience of using the word add
in Algebra in a more extensive sense than it has in Arithmetic.
Let @ denote a quantity which is to be added algebraically to a ;
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then the Algebraical sum is @ + 2, whether z itself be positive or
negative. Thus the equation @ + 2 =5 will be possible algebraically
whether a be greater or less than b.

‘We proceed to another problem.

189. A’s age is a years, and B’s age is b years; when will 4
be twice as old as B? Supposed the required epoch to be x years
from the present time ; then by the question,

a+z=20+x);
hence, z=a-2b.

Thus, for example, if =40 and b=15, then x=10. But
suppose a=35 and 5=20, then 2=-5; here, as in the pre-
ceding problem, we are led to inquire into the meaning of the
negative result. Now with the assigned values of @ and b the
equation which we have to solve becomes

35+ =40 + 2z,
and it is obvious that if a strictly arithmetical meaning is to be
given to the symbols 2 and +, this equation is impossible, for 40 is
greater than 35, and 2z is greater than z, so that the two members
cannot be equal. But let us change the enunciation to the fol-
lowing: A’s age is 35 years, and B’s age is 20 years, when was 4
twice as old as B? Let the required epoch be x years from the
present time, then by the question,
35—2=2(20-x)=40 - 2z;

thus, z=5.

Here again we may say the nmegative result indicates that the
problem in a strictly Arithmetical sense is impossible, but that a
new problem can be formed by appropriate changes in the original
enunciation, to which the absolute value of the negative result
will be the correct answer.

We may observe that the equation corresponding to the new
enunciation may be obtained from the original equation by chang-
ing z into — 2.

190. Suppose that the problem had been originally enun-

ciated thus: A's age is o years, and B's age is b years; find the

2 S, -
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epoch at which A's age is twice that of B. These words do not
intimate whether the required epoch is before or after the present
date. If we suppose it after we obtain, as in Art. 189, for the
required number of years z=a—2b. If we suppose the required
epoch to be x years before the present date we obtain = 2b-a.
If 25 is less than a, the first supposition is correct, and leads to
an arithmetical value for z; the second supposition is incorrect,
and leads to a negative value for @ If 2b is greater than a, the
second supposition i8 correct, and leads to an arithmetical value
for «; the first supposition is incorrect and leads to a negative
value for 2. Here we may say then that a negative result indi-
cates that we made the wrong choice out of two possible supposi-
tions which the problem allowed. But it is important to notice,
that when we discover that we have made the wrong choice, it is
not necessary to go through the whole investigation again, for we
can make use of the result obtained on the wrong supposition.
‘We have only to take the absolute value of the negative result
and place the epoch before the present date if we had supposed
1t after, and afler the present date if we had supposed it before.

191. One other case may be noticed. Suppose the enuncis-
tion to be like that in the latter part of Art. 189; 4’s age is a
years, and B's age is b years, when was 4 twice as old as B}
Let a denote the required number of years; then

a—z=2(b-2x),
hence, z=2b-a.

Now let us verify this solution. Put this value for 2; then
a —x becomes a — (25 —a), that is, 2a — 2b; and 2 (b — ) becomes
2(b— 2b + a), that is, 2a—2b. If b is less than a, these results
are positive, and there is no Arithmetical difficulty. But if b is
greater than a, although the two members are algebraically equal,
yet since they are both negative quantities, we cannot say that we
have arithmetically verified the solution. And when we recur
to the problem we see that it is impossible if a is less than b;
because if 4t a given datée A’s age is less than B’s, then A’s age
never was twice B’s and never will be. Or without proceeding to
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verify the result, we may observe that if b is greater than a, then
x is also greater than @, which is inadmissible. Thus it appears
that a problem may be really absurd, and yet the result may not
immediately present any difficulty, though when we proceed to
examine or verify this result we may discover an intimation of the
absurdity

192. The equation a+ 2= 2(b +x) may be considered as the
symbolical expression of the following verbal enunciation: Sup-
pose a and b to be two quantities, what quantity must be added
to each so that the first sum may be twice the second? Here the
words gquantity, sum, and added may all be understood in Alge-
braical senses, so that z, @, and b may be positive or negative.
This Algebraical statement includes among its admissible senses
the Arithmetical question about the ages of 4 and B. It appears
then that when we translate a problem into an equation, the same
equation may be the symbolical expression of a more comprehen=
sive problem than that from which it was obtained.

‘We will now examine another problem.

193. A4 and B travel in the same direction at the rate of a
and b miles respectively per hour. A arrives at a certain place P
at a certain time, and &t the end of n hours from that time B
arrives at a certain place . Find when 4 and B meet.

P Q R

Let ¢ denote the distance PQ; suppose 4 and B to travel in
the direction from P towards @, and to meet at 2 at the end of =
hours from the time when 4 was at P; then since 4 travels at the
rate of ¢ miles per hour, the distance PR is ax miles. Also B
goes over the distance QR in x—n hours, so that QR is b(z—n)
miles. And PR is equal to the sum of PQ and @R ; thus,

ar=c+b(x—n)=c+bx—bn;
' c—bn -
a-b"

‘We shall now examine this result on different suppositions as

to the values of the given quantities.

therefore, z=
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I. Suppose a greater than b, and ¢ greater than bn; then the
value of « is positive, and the travellers will meet, as we have
supposed, after 4 arrives at P. For when 4 is at P, the space
which B has to travel before he reaches @ is bn miles, and since bn
* i8 less than ¢, it follows that when A is at P he is bekind B;
and 4 travels more rapidly than B, since a is greater than b.
Hence 4 must at the end of some time overtake B,

The distance PR=a.'c=a(%f:—’2. Thus,
QR_a(c-bn)_c_a(c—bn)—c(a—b)__cb—alm_b(c—an)
T a-b B a-b ~a-b  a-b

Now if ¢ be greater than an, this expression is a positive quantity,
so that R falls, as we have supposed, beyond @; we see that this
must be the case, for since ¢ is greater than an, it will take 4
more than n hours to go frora P to @, so that he cannot overtake
B until after passing Q. If, however, ¢ be less than an, the ex-
pression for QR is a negative quantity, and this leads us to sup-
pose that some modification is required in our view of the problem.
In fact A now takes less than n hours to go from P to @, so that
he will overtake B bsfore arriving at . Hence the figure should

now stand thus:
P R Q

And now, since PR = PQ - RQ), the equation for determining |
2 would naturally be written
az=c~b(n—x)=c—bn+bx.
This, however, we see is really the same equation as before.

Again, if ¢ be equal to an the value of RQ is zero, Thus
R now coincides with @; and

¢e—bn_an-bn_
a-b a=bp ™

Hence 4 and B meet at Q at the end of »n hours after 4 was
at P,

IL. ‘Next suppose that a is greater than b, and ¢ less than
bn. The value of « is now negative, and we may conjecturs
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from what we have hitherto observed respecting negative quanti-
ties that 4 and B instead of meeting — c—bn hours after 4 was

at P, will now really have metlm = hours defore A was at P.

And in fact, since ¢ is less than bn it follows that B was behind 4
when 4 was at P, so that 4 must have passed B before arriving
at P. Hence the correct solution of the problem would now be

as follows: .
R P q

Suppose that 4 and B meet = hours befors 4 arrives at P ; let
R be the point where they meet. Then RP =az, and RQ=b(z +n).
Also RP= RQ— PQ; thus,

ax=>b(x+n)—c;
bn-c
therefore, z=——p.

III. Next suppose that a is less than b, and ¢ greater than
bn. In this case also the expression originally obtained for # is
negative, and we shall accordingly find that 4 and B met before
4 was at P. For B now travels more rapidly than 4, and is
before A when A is at P; so that B must have passed 4 before 4
wasatP Theresultnowm,asmthe second case, that 4 and B

hours before A was at P,

met b

IV. Last suppose that @ is less than b, and- ¢ less than bn.
Here the expression originally obtained for « is a positive quantity,
bn-c

[
than 4 and is behind 4 when A is at P; thus B must at some
time overtake 4. If we suppose 4 and B to meet afler 4 is at Q,
the figure will stand thus :

P q R

Here we should naturally write the equation thus,

ax=c+b(@-n)=c+ bz~ bn.

for it may be written thus, . Now B travels more rapidly
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If we suppose A and B to meet before 4 is atQ, the figure

will stand thus ;
P R Q

- Here we should nn.tumlly write the equation thus,

. ax=c-b(n—z)=c—bn+bx
~ In the two cases we have, however, really the same equation,
and we obtain z=bn—c.

b-a

194. The preceding problem may be variously modified ; for
instance, instead of supposing that 4 and B travel in the same
direction, we may suppose that 4 travels as before, but that B
travels in the opposite direction. In this case, if we suppose, as
before, that 4 and B meet « hours after 4 arrived at P, we shall
find that z= 2",

+b
be after A leaves P, and the travellers meet at some point to the
right of P. The student should notice that the value of 2 in the
present case coincides with the result obtained by writing — b for
b in the original value of # in Art, 193.

Thus the time of meeting will necessarily

195. Or instead of supposing that the arrival of B at @ |

occurs n hours after the arrival of 4 at P, we may suppose it to
occur n hours defore ; and we suppose 4 and B. to travel in the
same direction. In this case if x have the same meam.ng as
before, we shall find that 2= “%‘;‘
if @ is greater than b, and the travellers then really meet after the
arrival of 4 at P. If, however, a is less than b, the value of =z is
& megative quantity ; this suggests that the travellers now meet

cb+ bm hours defore the arrival of 4 at P, and on examination this

This is a positive quantity

will be found correct. The student should notice that the value of
z in the present case coincides with the result obtained by writing
—n for  in the original value of  in Art. 193.
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196. Again, let us suppose that 4 and B travel in opposite
directions, and that the arrival of 4 at P occurs n hours before
that of B at @; and suppose the positions of P and @ in the
former figures to be interchanged, so that now 4 reaches Q before
he reaches P, and B reaches. P before he reaches @. If z have

the same meaning as before, we shall now find that = bn+ bc .

If then dn is greater than ¢, the value of x is a positive quantity,
and the travellers meet, as we have supposed, after the arrival of
4 at P If however bn is less than ¢, the value of z is a mgative
quantlty, and it will be found that the travellers meet f:
hours before the arrival of 4 at P. The student should notice
that the value of « in the present case coincides with the result
obtained by writing —¢ for ¢ in the value of z in Art. 194;
it also coincides with the result obtained by writing — & for 3, and
—c¢ for ¢ in the original value of z in Art. 193.

197. From a consideration of the problems discussed in the
present Chapter, and of similar problems, the student will acquire
confidence and accuracy in dealing with negative quantities. We
will lay down some general principles which have been illustrated
in the preceding Articles, and the truth of which the student will
find confirmed as he advances in the subject.

(1) A negative result may arise from the fact that the
enunciation of a problem involves a condition which cannot be
satisfied ; in this case we may attribute to the unknown quantity
a quality directly opposite to that which had been attributed to it,
and may thus form a possible problem analogous to that which
involved the impossibility.

(2) A negative result may arise from the fact that a wrong
supposition respecting the quality of some quantity was made
when the problem was translated from words into Algebraical
symbols; in this case we may correct our supposition by attri-
buting the opposite quality to such quantity, and thus obtam
a positive result.

(3) When we wish to alter the suppositions we have madeé

T. A 8




114 DISCUSSION OF SOME PROBLEMS

respecting the guality of the known or unknown quantities of a
problem, and to attribute an opposite quality to them, it is not
necessary to form a new equation ; it is sufficient to change in the
old equation the sign of the symbol representing each quantity
which is to have its quality changed.

198. We do not assert that the above general principles have
been demonstrated ; they have been suggested by observation of
particular examples, and are left to the student to be verified in
the same manner. Thus when a negative result occurs in the
solution of a problem the student should endeavour to snferpre
that result, and these general principles will serve to guide him.
‘When a problem leads to a negative result, and he wishes to form
an analogous problem that shall lead to the corresponding positive
result, he may proceed thus: change z into —z in the equation
that has been obtained, and then, if possible, modify the verbal
statement of the problem, so as to make it coincident with the
new equation. 'We say, if possible, because in some cases no such
verbal modification seems attainable, and the problem may then
be regarded as altogether impossible.

199. We will now leave the consideration of negative quan-
tities, and examine two other singularities that may occur in
results.

c—bn

In Art. 193 we found this result, z = oy

a=2>, then the denominator in the value of z is zero ; thus, denot-

Suppose that

ing the numerator by &, we have x = %, and we may ask what is

the meaning of this result? Since 4 and B now travel with
equal speed, they must always preserve the same distance ; so that
they never meet. But instead of supposing that a is exactly
equal to b, let us suppose that a is very nearly equal to 4 ; then
N
py 3 may be a very large quantity, since if @ —b is very small
compared with &, it will be contained a large number of times in
' N

N; and the smaller a-bh,thehgerﬂﬁm This is
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abbreviated into the phrase “%r is infinite,” and it is written
thus, %r =w, But the student must remember that the phrase
is only an abbreviation, and no absolute meaning can be attached
to it,

200. The student should examine every problem, the result

of which appears under the fo.rm %7, and endeavour to tnterpret

that result. He may expect to find in such a case that the pro-
blem is impossible, but that by suitable modifications a new
problem can be formed which has a very great number for its
result, and that this result becomes greater the more closely the
new problem approaches to the old problem,

201. Again, let us suppose that in Art. 193 we have a=5,
and also ¢=bn; then the value of x takes the form g On

examining the problem we see that, in consequence of the sup-
positions just made, 4 and B are together at P, and are travelling
with equal speed, so that they are always together. The question,
when are 4 and B together, is in this case said to be indeterminate,
since it does not admit of a single answer, or of a finite number of
answers.

202. The student should also examine every problem in

0
which the result appears under the form 5, and endeavour to

interpret that result. In some cases he will find, as in the ex-
ample considered above, that the problem is not restricted to a
finite number of solutions, but admits of as many as he pleases.
‘We do not assert here, or in Art. 200, that the interpretation of

the singularities %ra.nd -g will always coincide with those given

in the simple cases we have considered; the student must there-
fore consider separately each distinct class of examples that may

occur.
8§—2

s e —
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10.

" Shew that

EXAMPLES. XIV.

MISCELLANEOUS EXAMPLES., CHAPTER XIV.
Simplify the expression

Sa—[b+{2a— (- c)}]+;+2°' 3

2+ 1°
Reduce to its lowest terms the expression

6z* + 102® + 22* — 20 — 28
32’ + 14x® + 222 + 21

]
Find the value of :c_a_u when z=_ e
b a -b

o1 1 1 1
S T E=a T Ea-a -9 E-o"
a”(a-b)(—-c)+b"(a—d)(c—d) b-d
(a-b)(a-d)+a"(b-c)(c—d) a—c
when m=1, or 2.

@+ 0+ c* — Babe
(@=0°+(d-o+(c—a)

If xy + yz + 2z =1, shew that

Reduce to its simplest form

x Y 4xyz
-z 1= y’ 1- z' (1-2"(1-3"(1-2")"
Solve the equation
(#—2a)* +. (2 - 2b)°=2 (x — a - b)".
Solve the simultaneous equations

r+y+2=a+b+e,
bx+cy+az=cx+ay+ bz=ab+be+ca
Find the least common multiple of
o+ 62"+ 11z + 6, o'+ 72"+ 142 + 8,
&'+ 82"+ 192 + 12, and a®+ 92" + 262 + 24.
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'XV. AN OMALOUS FORMS WHICH OCCUR IN THE
SOLUTION OF SIMPLE EQUATIONS.

203. We have in the preceding Chapter referred to the forms

%r and % which may occur in the solution of an equation of the

first degree. 'We shall now examine the meaning of these forms

when they occur in'the solution of stmultaneous equations of the
first degree. 'We will first recall the results already obtained.

204. Every equation of the first degree with one unknown
quantity may be reduced to the form ax=5. Now from this we

obtain z=?—'. If a=0 the value of x takes the form %; in this

case no finite value of  can satisfy the equation, for whatever
finite value be assigned to z, since az =0, we have 0 =4, which is
impossible. If a=0 and =0, the value of & takes the form g;
in this case every finite value of z may be said to satisfy the
equation, since whatever finite value be given to z we have 0=0.
If 5=0 and @ is not =0, then of course =0 ; this case calls
for no remark.

205. Suppose now we have two equations with two unknown

quantities; let them be
ax+by=c and a'z+by=¢.

‘We will first make a remark on the notation we have here
adopted. We use certain letters to denote the known quantities
in the first equation, and then we use corresponding letters with
accenis to denote corresponding quantities in the second equation;
here @ and a’ have no necessary connexion as to value, although
they have this common point, namely, that each is a coefficient
of «, one in the first equation and the other in the second equa-

tion. Experience will establish the advantage of this notation.

' Instead of accents subscript numbers are sometimes used ;
thus a, and a, might be used instead of a and a’ respectively.
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By solving the given equations we obtain
b c—bd _adc—ac
ba—ba’ Y ab-ab"
L Suppose that b'a—ba’=0; then the values of = and y take
the forms %1 and g ; we should therefore recur to the given equa-
tions to discover the meaning of these results, From the relation

’

b'a—ba'=0 we obtain g =% =k suppose ; thus a'=ka and b'=kb.

By substituting these values of a’ and b’ we find that the second
of the given equations may be written thus:

kaz + kby = ¢,
(4
whence, az+by=z.

J
Now if (7"- be different from ¢, the last equation is ¢nconsistent

with the first of the given equations, because ax+by cannot be
equal to two different quantities. 'We may therefore conclude
that the appearance of the results under the forms -4 and é’
indicates - that the g;ven equa.tlons are inconsistent, and therefore
cannot be solved.

IL Next suppose that b'a—ba’=0, so tha ‘i—%,andazso
¢ a 4 .
that = and therefore of course =3 In this case the nu-

merators in the values of z and y become zero as well as the
denominators, so that the values of z and y take the form 8
Now by what we have shewn above, the second of the given
equations may be written

az+by=%.

But now Z=c, so that the second given equation is only a
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repetition of the first ; we have thus really only one equation
involving two unknown quantities. We cannot then determine
2 and y, because we can find as many values as we please which
will satisfy one equation involving two unknown quantities, In
this case we say that the given equations are not independent, and
that the values of x and y are indeterminate,

206. 'We have hitherto supposed that none of the quantities
a, b, ¢,a,b,c can be zero; and thus if the value of one of the

g or %1 the value of the other

takes the same form. But if some of the above quantities are
zero, the values of the two unknown quantities do not necessarily
take the same form. For example, suppose ¢ and a’ to be zero;

then the value of z ‘takes the form %, and the value of y takes

unknown quantities takes the form

Now in this case the given equations reduce to
by=c¢, and by=c’;

the form —g— .

these lead to

'

y=7, and y= b"

e~l°

Thus we have two cases. First, if < mmtequalto

b b’
two equations are inconsistent. Secondly, 1f is equal to b’ the
two equations are equivalent to one only. In the second case,

since the relation %=§’ makes the numerator of z also vanish,

‘the values of both z and y take the form '(Q)

determinate but y is not, for it is really equal to %

; in this case z is in-

207. Before we consider the peculiarities which may oceur in
the solution of three simultaneous simple equations involving
three unknown quantities, we will indicate another method of

solving such equations.
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Let the equations be
ar+by+cz=d, az+by+dz=d, a"z+b'y+cz=d".
Let I and m denote two quantities, the values of which are at
present undetermined ; multiply the second of the given equations
by /; and the third by m ; then, by addition, we have
ax +by +cz+1l(a'z+by +c2)+m (a"c+b"y +c"2)=d +1d' + md’,
that is,
z(a+la+ma”)+y b+ W'+ mb")+z(c+ld+me”)=d+ ld'+ md".
Now let such values be given to ! and m as will make the
coefficients of y and z in the last equation to be zero; that is, let
b+t +mb"=0, c+ld+me’=
Thus the equation reduces to
z(a+la'+ma”)=d+ld'+md";
_d+ld+ md"
" a+ld + ma”
‘We must now find the values of ! and m,-and substitute them
in this expression for #, and then the value of # will be known.
We have

therefore,

b+ +mb" =0, c+lc+mc”"=0;
from these we shall obtain
1= b"c—be” e b'—bc
b/cll b// Ty _ blc//_ b//c/ 2
substitute these values in the expression for x, and after simplifi-
cation we obtain
_a@e” b’ ') +d’ (b"c —be”) +d” (b’ — b'c)
a B —bc)+w (b”c bc”) +a” (bc’ —b'c)”
By a similar method the values of ¥ and z may also be obtained.

208. The above method of solution is called the method of
indeterminate multipliers, because we make use of multipliers
which we do not determine beforehand, but to which a convenient
value is assigned in the course of the investigation. The multi-
pliers are not finally indeterminate ; they are merely at first un-
determined, and if it were possible to alter. established language,
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the word undetermined might here with propriety be substituted
for tndeterminate.

209. We now proceed to our observations on the values of
2, ¥, and % which are obtained from the equa.tlons

ax+by+cez=d, dz+by+cdz=d, a"z+b'y+z=d".

The value of = has been given in Art. 207 ; if the student
investigates the value of y he will find that the denominator of it
is the same as that which occurs in the value of =, or can be made
to be the same by changing the sign of every term in the nume-
rator and denominator. The same remark holds with respect to
the denominator in the value of 2.

210. We may however obtain the values of y and z from the
expression found for the value of . For the original equatlons
might have been written thus:

by +ax+cz=d, Vy+adz+cz=d, Vy+a'z+dz=d";
we may say then that the equations in this form differ from those
in the original form only in the following particulars ; # and y are
interchanged, a and b are interchanged, a’ and &’ are interchanged,
and a” and b” are interchanged. 'We may therefore deduce the
value of y from that of x by the following rule: for a, &, and &”
write b, &, and b” respectively, and conversely. Thus, from

A" =b"c)+d (b"c—bc”) +d” (b’ — b'e)
Tal=b0")+d (b'c—bd") +a” (b’ — bc)
we may deduce that - : :
_d(dd’—a"c) +d’ (a"c—ac”) + d” (ac’ — a'c)
T b (@ —a") + ¥ (a"c—ac”) + b (ad —a'c)’

It will be found on comparison that the denominator of the
value of y is the same as that of the value of x with the sign of
every term changed.

Similarly by interchanging a, o/, and a” with ¢, ¢/, and ¢’
respectively, we may deduce the value of z from that of z; or by
interchanging b, ¥, and 4” with ¢, ¢/, and ¢” respectlvely, we may
deduce the value of 2 from that of .
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211. There is another system of interchanges by which the
values of y and z may be deduced from that of # The given
equations are

77,

ax+by +cz=d, dz+by+cdz=d, a"z+b'y+c’z=d";
they may also be written thus,
by+ecz+ax=d, Vy+cdz+az=d, by+c2+a"'z=d"

‘We may say then that the second form differs from the first
only in the following particulars;  is changed into y, y into z,
z into =, a into b, b into ¢, ¢ into a, @’ into &, and so on. We
may therefore deduce the value of y from that of « by this rule:
change @ into 3, b into ¢, ¢ into a, and make similar changes in the
letters with one accent, and in those with two accents. The
value of 2z may be deduced from that of y by again using the
same rule.

212. These methods of deducing the values of y and z from

that of by interchanging the letters may perhaps appear difficult
to the student at first, but they deserve careful consideration,
especially that which is given in Art. 211.

‘We shall now proceed to examine the peculiarities which
may occur in the values of the unknown quantities deduced from
the equations

ax+by+cz=d, adz+by+cz=d, a'z+b'y+c'z=4d".
213. The most important case is that in which d, d’, and 4"
are all zero. The given equations then become
aa::l-by +02=0, dz+by+cd2=0, a"z+b"y+c"2=0.
It is obvious that =0, y=0, 2=0 satisfy these equations;
and from the values found in Art. 210 it follows that these are

the only values which will satisfy the equations wnless the deno-
minator there given vanishes, that is, unless

a (b’ -b"¢)+a’ (e —be") + a” (b’ - b'c) = 0.
If this relation holds among the coefficients, the values found

|
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for z, y, and 2 . take the form g, and we must recur to the given

equations for further information,

‘We observe that when this relation holds the equations are
not independent'; from any two of them the third can be deduced.
For multiply the first of the given equations by &”¢—¥'c”, the
second by bc” — b”¢, and the third by b'c — b¢/, and then add the
results. It will be found that by virtue of the given relation we
arrive at the identity 0=0; thus, in fact, if the first equation be
multiplied by 4”¢' - 4'c”, and the second equation by b¢” — b”, and
the two added, the resnlt is equivalent to the third equation, for it
may be obtained by multiplying that equation by be’ —¥'e.

Suppose then that this relation holds; we may confine our-
selves to the first two of the given equations, for values of z, g,
and z which satisfy these will necessarily satisfy the third equa-
tion. Divide these equations by #; thus

by cz+ =0, by+_+a, 0;

hen y_ca—da z _ab—ad
enee 2 bd—be' @ bi-bc’

‘We may therefore ascribe any value we please to x, and deduce
corresponding values of ¥ and 2. Or we may put our result more
symmetrically thus; let p denote any quantity whatever, then
the given equations will be satisfied by

z=p (b -bc), y=p(ca’—ca), z=p(ab’—a'd)

‘We might in the same way have used the second and third of
the given equations, and have omitted the first ; we should thus
have deduced solutions of the form

@=q (B¢ ~7), y=q(da'-dd), 2=q (@b -ab),
where ¢ is any quantity. These values however are substantially
equivalent to the former; for it will be found that by virtue of
the supposed relation among the coefficients,

poe’=be) _ pled —w) P (ab' —a’d)

¢ CF=F%) " q(éa" )~ g (@b~ aB)’
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214. We shall now consider the peculiarities which may occur
when d, d’, and d” are not all zero.

We shall first shew éhat if the value of any one of the un-
known quantities tekes the form %r, the given equations are

inconsistent. Suppose, for instance, that the value of z takes this
form, that is, suppose that
a(b'c"—b"¢) + a’ (b"c—be”) +a” (b’ - b'c)

is zero. Of course if the given equations were consistent, any
equation legitimately deduced from them would also be true.
Now multiply the first of the given equations by b"¢’ —b'¢”, the
second by b¢” — b”, and the third by b’c—b¢’ and add. It will be
found that the coefficients of ¥ and 2 in the resulting equation
vanish ; and the coefficient of « is zero by supposition. Thus the
first member of the resulting equation vanishes, but the second
member does not ; hence the resulting equation is impossible, and
therefore those from which it was obtained cannot have been con-
sistent.

215. We cannot however affirm certainly, that if the value of

one of the unknown quantities takes the form g, the equations are

consistent, but not independent. For it is possible that the value
of one of the unknown quanintxes should take this form, while

the value of a.not.her takes the form 5 and, as we have shewn

in the preceding Article, the occurrence of the form %V is an indi-

cation that the given equations are inconsistent. For example,
suppose the equations to be

ax+by+cz=d, dz+by+cz=d'), d'z+by+cz=d".

Here it will be found that the values of y and = take the form

%r’ and that of « takes the formg.
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Moreover, if the values of all the unknown quantities take

the form g, we cannot affirm certainly that the given equations

are consistent, but not independent. For example, suppose the
equations to be

azx +by+cz=d, ax+by+cz=d’, ax+by+cz=d”;
here it will be found that the values of all the unknown quan-

tities take the form g-,

inconsistent, unless d, &', and d” are all equal. .

216. We may shew that if the numerators in the values of
x, ¥, and 2, all vanish, the denominator will also vanish, assuming
that d, d’, and @” are not all zero.

For supposing these numerators to vanish we have
d'c’=b'¢)+d (bc—be")+d" (b - b'c) =0,
d(da"—c"d) +d ("a—ca”) +d" (ca’ — ca) =0,

d (b~ a'"t) +d' (a"b—ab”) + d” (ab’— a'd) = 0.
Let us denote these relations for shortness thus,
Ad+Bd'+Cd"=0, A'd+Bd +Cd'=0, A"d+B"d'+C"d"=0.
By Art. 213, since d, d' and d” are not all zero the following
relation must also hold,
A (B'C"-B'C’)+ A’ (B"C-BC")+ A" (BC' - B'(C)=0.
It will be found that
BC"-B'C'=a{a (b -b"c) +a’ ("c—bc") +a” (b’ — ¥e)} ;
and B”C— BC"” and B(C’ — B'C may be similarly expressed, so that
finally the relation becomes
{a (¥’ =b"¢) + & (¥'c—bc") + a” (b’ —b'c)}' =0.
This establishes the required result.
217. If we adopt the method of indeterminate multipliers
given in Art. 207, it may happen that the two equations for find-
ing ! and m are inconsistent ; we will examine this case. Suppose

but the equations themselves are obviously

then 3"¢'~ 8'¢”=0, so that these two equations are inconsistent -

{Art. 205). In this case the value of # may be obtained from the
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second and third of the given equations, without using the first.
For multiply the second of the given equations by ¢”, and the
third by ¢, and subtract ; thus the coefficients of y and 2z vanish,
and we have an equation for- determining 2. For example, sup-
pose the equations to be

42+ 2y+32=19, z+y+42=9, x+2y+8z=15,

Here the value of z may be found from the second and third
equations ; we shall obtain =3 ; substitute this value of = in
the three given equations ; from the first we have 2y + 32="7, and
from the seoond or third y + 42 =6 ; hence y=2 and 2 =1.

Aguin, the values of / and m may take the form g, so that
the two equations for finding them are not independent ; we will
examine this case, Here we have b”¢’ — ¢’ =0, b¢” — b"c=0, and

—bd’=0; these suppositions are equivalent to the two relations
4 7 '’
%:% and %_%. Suppose then that 3 =pb, and therefore
¢’ =pe, and that b”=gb, and therefore ¢’=ge. Thus the given
equations are

ax+by+cz=d, dz+pby+pez=d, a"z+qby+gez=a",

and they may be written thus,

"’ U4

a’ d a
ax+by+cz=d, —zx+by+cz=—, —z+by+cz=—.
by " P by 2’ ¢ by 7

Here = may be found from any two of the equations ; if we do
not obtain the same value from each pair, the given equations are
of ‘course inconsistent ; if we do obtain the same value for z, then
the given equations are not independent ; and in fact we shall in
the latter case have only one equation for finding by + ¢2, so that
the values of y and 2 are indeterminate. For example, suppose the
given equations to be

x+2+32=10, 3z+4y+62=23, z+6y+92=24

From any two 'of these equations we can find £=3; then
substituting this value of « in any one of the three equations we
obtain 2y + 32=17, and thus y and 2 are indeterminate. If, how-
ever, the right-hand member of one of the given equations be
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altered, we shall not obtain the same value of # from each pair of
the equations, and thus the given equations will be inconsistent.

218. In the preceding Articles we have supposed the given
equations to be solved, and from the peculiar forms of the solu-
tions have drawn inferences as to the nature of the given equa-
tions. We will now take one example of investigating a relation
between the equations without solving them. Suppose, as before,
that the equations are

ax+by+cz=d, az+by+cz=d, a’z+b'y+c’2=4d"
and let us find the relations which must exist among the known
quantities, in order that the third equation may be deducible fram
the other two by multiplication by suitable quantities and addition.
Suppose then that by multiplying the first equation by A, and the
second by p, and adding, we obtain a result which is coincident
with the third equation. Thus,

Aa+ pa’)x+ (Ab + ub)y + (Ac + pe)z=Ad + pd’
is equivalent to a’z+b"'y+cd'z=d"
that is, we suppose that )
Ma+pa’ a”  Ab+pb B Xe+pd
Mipd = d”? Nipd " &7’ Mrpd T

From the last three equations we deduce ‘

A _a'd-dd” A _YV&-¥d" A _c'd-dd”
poed—dd’ T bd-bd’ p ed'-dd

Hence in order that the third equation may be deducible from
the other two in the manner proposed, we must have the follow-
ing relations among the known quantities,

a'd-ad’ by'd-bd" 'd-dd’
ad’—a’d _ bd'—b'd  ed —cd

It is easy to shew that if these relations hold, the values of
x, 9, and 2z take the form -g For by multiplying up we obtain
results which shew that the numerators in the values of z, ¥,
and 2 vanish; and then by Art. 216 the denominator will also

vanish,
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MISCELLANEOUS EXAMPLES. CHAPTER XV.

o + 32® — Ta* — 21z 36

&+ 22— 107 — 1lz-12
2. Shew that

(@+b+¢) (a+ B+ "+ abc) — (ab+ bo + ca) (a* + B*+ ) = a* + b* + ¢*

2 2 2 2

3. If t=2_w, w=2_z, z=2_y’ y=2-—x’

1. Reduce to its simplest form.

find the

relation between ¢ and 2.

4. If 28=a+b+ ¢, shew that
a ., .11 abo
s—a s-b s—c s s(s—a)(s—d)(s—0)
5. Shew that the g.c.M. of two quantities is the L.c.M. of
their common measures.

6. Solve the equation
(®=9)(x—T)(z-b)(z—1)=(z—2) (x~ 4) (x - 6) (x-10).
7. Solve the simultaneous equations

z+y+2=0, ar+by+cz=0,

bex + cay + abz+ (a —b) (b—c) (¢ —a)=0.

8. If -1—+1+-l~= L
. a

3%e m N shew that

1 1 1\*¢ 1
G*5+e) ~ErEra

9. A person leaves £12670 to be divided among his five
children and three brothers, so that after the legacy duty has been
paid, each child’s share shall be twice as great as each brother’s.
The legacy duty on a child’s share being one per cent. and on a
brother’s share three per cent., find what amounts they respectively
receive.

10. Solve the equation

1 2 3 6
“+6a " z-% &+la @+a’
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XVI. INVOLUTION.

219. If a quantity be continually multiplied by itself, it is
said to be involved or raised, and the power to which it is raised
is expressed by the number of times the quantity has been em-
ployed in the multiplication. The operation is called Jnvolution.

Thus, as we have stated (Art. 16), a x a or a is called the
second power of a; axaxa or a®is called the third power
of a; and so on.

220. If the quantity to be involved have a negative sign
prefixed, the sign of the even powers will be positive, and the
sign of the odd powers will be negative.

For, —ax—a=a', —-ax—ax-a=a'x—a=-a’,

—AX=aAX—@X—G=—~a"x—a=a'
and so on.

221. A simple quantity is raised to any power by multiply-
ing the index of every factor in the quantity by the exponent of
that power, and prefixing the proper sign determined by the pre-
ceding Article,

Thus @™ raised to the n* power is a™; for if we form the
product of n factors, each of which is a™, the result by the rule of
multiplication is a™. Also (ab)*=ab xabx ab... to n factors,
that is, axaxa... to n factors xbxbxb... to n factors, that
is, a" x b~ ~ Similarly, a™° raised to the fifth power is a'%'c".
Also — g™ raised to the n®t power is + o™, where the positive or
negative sign is to be prefixed according as z is an even or odd
number. Or a8 —a"=-1 xa™, the n™® power of —a™ may be
written thus (—1)"xa™ or (-1)a™.

222. If the quantity which is to be involved be a fraction,

‘both its numerator and denominator must be raised to the pro-
posed power. (Art. 142.)

T. A, 9
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223. If the quantity which is to be involved be compound,
the involution may either be represented by the proper index, or
may actually be performed.

Let a+b be the quantity which is to be raised to any
power,

a+bd a*+2ab +0* &'+ 3a’h + 8al* + b*

a+d a+bd a+b

a'+ab a +2 o +ab® - «* + 3a°b + 3a’b* + ab®
+ab+0* a'h +2ab* +0* +a® + 3a'®* + 3ab® + b*

a'+2ab+b6° a’+3ah+3ab"+0*  a'+4a’h+ 6a'b* + 4ab® + b

Thus the square or second power of a+b is a® + 2ab + b*, the
cube or third power of a+b is a’+ 3a' + 3ab’+ 8", the fourth
power of a +b is a'+ 4a" + 6a’0" + 4ab® + b4, and so on.

Similarly, the second, third, and fourth powers of a —b will
be found to be respectively a*— 2ad + b', a® —3a"+ 3ab* — 5", and
a* — 4a°h + 6a'b* — 4ab® + b*; that is, wherever an odd power of b
occurs, the negative sign is prefixed.

‘We shall hereafter give a theorem, called the Binomial Theo-
rem, which will enable us to obtain any power of a binomial ex-
pression without the labour of actual multiplication.

224, Tt is obvious that the »'® power of a™ is the same as the
m*® power of 4", for each is ¢™; and thus we may arrive at the
same result by different processes of involution. We may, for
example, find the sixth power of a +b by repeated multiplication
by a+b; or we may first find the cube of a +3, and then the
square of this result, since the square of (a +5)" is (a+ b)°; or we
may first find the square of a + b and then the cube of this result,
since the cube of (a + )" is (a + b)".

225. It may be shewn by actual multiplication that -

(a+b+c)' =a"+b"+¢" +2ab + 2bc + 2ac,

(a+b+c+d) =a"+b"+c" +d"+2ab + 2ac +2ad + 2bc + 2bd + 2¢d.

The following rule may be observed to hold good in the above
and similar examples: the square of any multinomial consists of
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the square of each term, together with twice the product of every paiy
of terms.
Another form may also be given to these results,
(@+d+c)'=a+2a(b+c)+ b + 2bc+ ',
(@+b+c+dy=a"+2a(d+c+d)+ b+ 2b(c+d) + c* + 2ed + d".
The following rule may be observed to hold good in the above
and similar examples : the squars of any multinomial consists of the
square of each term, together with twice the product of each term by
the sum of all the terms which follow .

These rules may be strictly demonstrated by the process of
mathematical induction, which will be explained hereafter.

226. The following are additional examples in which we
employ the first of the two rules given in the preceding Articls,
(@a—b+c) =a"+b"+c'—2ab - 2bc + 2ac,
(1 -2z+ 327" =1+ 42" + 9z* — 4= — 122" + 62*
=1-4z+ 102" - 122" + 92,
Q+z+2’+2") =1+2"+ 2 + 2"+ 22+ 22" + 22° + 22 + 2o + 22°
=1+ 2z + 32" +42® + 32" + 22° + 2.

227. The results given in Art. 55 for the cube of a + b, the
cube of @ — b, and the cube of a+ b + ¢ should be carefully noticed.
The following may also be verified.

(a+b+c+df=a*+BP+S2+d?
+3a"(b+c+d)+ 3 (@a+e+d)+3c" (a+b+d)+3d"(a+b+4)
+ 6bcd + 6acd + 6abd + 6abe.

EXAMPLES OF INVOLUTION, .
Find (1 + 22 + 32" 2. Find (1-z+a'—2")"
Find (a +b—0)" 4. Find (1+2z+a).
Find (1 + 32 + 32" + @)" + (1 - 3z + 32" - )",

(3Ta*~18a%—b%  (9a*-BY (B'—a") .,
Shew that e me—" + iy 0

& &

9———2
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7. Shew that (az’+ 2bxy + cy’) (X "+ 20XY +¢Y'*)
={axzX + cyY + b (zY + yX)}'+ (ac - b*) (z¥ —y X ).

8. Shew that (z*+ pzy +qy") (X*+ pXY +q¥")
=@X+pyX+qyY) +p(X+pyX+qyY) (zY-yX)+q(x¥-yX)*
and-also
=@X+p2Y+qyY )+ p(xX +px¥ + qyY)(yX—2Y) + q(xY—yX)"

9. Simplify

(1= 102" + 52%) (5 — 302"+ 52°) + (52— 102" + ) (202 — 2027)

.- (6 — 102" + 2°)* + (1 ~ 10z* + 5x*)*

10 Shew that (a"+8"+c*+d") (p"+¢" +7* +4)
= (ap—bq + cr — ds)" + (aq + bp —cs — dr)*
+ (ar'— bs — cp + dg)* + (as + br + cg + dp)’.

XVIL EVOLUTION.,

228. Evolution, or the extraction of roots, is the method of
determining a quantity, which when raised to a proposed power
will produce a given quantity.

229. Since the n'* power of a™ is a™, an 7 root of a™ must
be a™; that is, to extract any root of a simple quantity, we divide
the index of that quantity by the index ef the root required.

230. If the root to be extracted be expressed by an odd
number, the sign of the root will be the same as the sign of the
proposed quantity, as appears by Art. 220. Thus,

Y-a)=-a

231. If the root to be extracted be expressed by an even
number, and the quantity proposed be positive, the root may be
either positive or negative ; because eithier a positive or negative
quantity raised to an even power is positive by Art. 220. Thus,

J@)=%a.

232. If the root proposed to be extracted be expressed by an

even number and the sign of the proposed quantity be negative,




EVOLUTION. 133

the root cannot be extracted ; because no quantity raised to an
even power can produce a negative result. Such roots are called
impossible.

233. A root of a fraction may be found by taking that root
of both the numerator and denominator. Thus,

V)5 = D5

234, 'We will now investigate the method of extracting the
square root of a compound quantity,

Since the square root of a'+2ab +b* is @+ b, we may be led
to a general rule for the extraction of the square root of an alge-
braical expressuon by obsemno in what manner ¢ and b may be
derived from a®+ 2ab + b,

a'+ 2ab +b* (a +b

a’

2 +b) 2ab +5*
2ab + &*

Arrange the terms according to the dimensions of one letter a,
then the first term is @°, and its square root is @, which is the first
term of the required root. Subtract its square, that is af, from
the whole expression, and bring down the remainder 2ab + "
Divide 2ab by 2a and the quotient is b, which is the other term
of the required root. Multiply the sum of twice the first -term
and the second term, that is 2a + b, by the second term, that is b,
and subtract the product, that is 2ab + 5%, from the remainder.
This finishes the operation in the present case. If there were
more terms we should proceed with a@+b as we did formerly
with a; its square, that is a'+2ab+ ', has already been sub-
tracted from the proposed expression, so we should divide the
remainder by the double of a+b for a new term in the root, and
then for a new subtrahend we should multiply this term by the
sum of twice the former terms and this term, The process must
be continued until the required root is found.
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235. For example, required the square root of the expres-
sion 4a*—~ 122"+ 52"+ 6z + 1,
4ot 192 4 Ba® + 62+ 1 (2= 36— 1
4z
4o* 32 ) - 122"+ 52" + 6z £ 1
—124* + 92*

- 6x—-1) 42"+ 6z +1
-4+ 6z 1

Here the square root of 4a* is 22, which is the first term of
the required root. Subtract its square, that is 4x‘, from the
whole expression, and the remainder is —12z®+ 5z*+ 6z + 1.
Divide —12z* by twice 22, that is by 4", the quotient is — 3,
which will be the next term of the required root; then mul-
tiply 4a*— 3z by — 3z and subtract, so that the remainder is
— 42+ 6z+1. Divide by twice the portion of the root already
found, that is by 4a®—6x; this leads to —1; the product of
42*—6x—1 and —1 is — 42"+ 6z + 1, and when this is subtracted
there is no remainder, and thus the required root is 2+*— 3z — 1.

For another example, required the square root of the expres-
sion a° — 6ax® + 154" — 20a°c* + 15a°z" — 6a°z + a®. The operation
may be arranged as before,

2° - 6az’+15a’z" — 208’ + 150z - 6a’z+a® (2*—3az’+ 3a"z — a®

zd

2¢* — 3ax’ ) - 6ax® + 15a"z* — 200’z + 15a'z* — 6a’z + a°
— 6az® + 9a’x*
24" - 6az* + 3a’z ) 6a’z — 20a’2” + 15a°x* — 6a°z + a°
6a’z* — 18a°z® + 9a'z’
22* — 6ax’ + 6a’z — a® ) — 222" + 6a's" — 6a’z +a’
- 2a’" + 6a‘2® —6a’z +a’
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236. It has been already remarked, that all even roots admit
of a doublesign. (Art. 231.) Thusin the first example of Art. 235,
the expression 2a'—3z—1 is found to be a square root of the
expression there given, and — 22" + 3z +1 will also be a square
root, as may be verified. In fact, the process commenced by the
extraction of the square root of 4z‘, and this might be taken as
22" or as — 2z'; if we adopt the latter and continue the opera-
tion in the same manner as before, we shall arrive at the result
—2¢*+ 3z+ 1. Similarly in the second example of Art. 235 we
see that — &® + 3ax® — 3a"z + a* will also be a square root.

237. The fourth root of an expression may be found by ex.
tracting the square root of the square root. Similarly the eighth
root may be found by three successive extractions of the square
root, and the sizteenth root by four successive extractions of the
square root, and so on.

For example, required the fourth root of the expression

81z — 4322 + 864" — 768 + 256.
Proceed as in Art. 235, and we shall find that the square root
of the proposed expression is 9x'— 24z +16; and the square root
of this is 32 — 4, which is therefore the fourth root of the proposed
expression.

238. The preceding investigation of the square root of an
Algebraical expression will enable us to prove the rule for the
extraction of the square root of a number, which is given in
Arithmetic.

The square root of 100 is 10, of 10000 is 100, of 1000000 is
1000, and so on; hence it will follow that the square root of a
number less than 100 must consist of only one figure, of & number
between 100 and 10000 of two places of figures, of a number be-
tween 10000 and 1000000 of three places of figures, and so on.
If then a point be placed over every second figure in any number
beginning with the units, the number of points will shew the
number of figures in the square root. Thus the square root of
4356 consists of two figures, the square root of 611524 of three

figures, and so on.
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239. Suppose the square root of 4356 required.
Point the number according to

the rule; thus it appears that the 4356 (60+6
root consists of two places of figures. 3600 :
Let a + b denote the root, whereais 120+6 )756
the value of the figure in the tens’ 756

place, and b the figure in the units’
place. Then @ must be the greatest multiple of ten which has
its square less than 4300 ; this is found to be 60. Subtract a',
that is the square of 60, from the given number, and the remain-
der is 756, Divide this remainder by 2a, that is by 120, and the
quotient is 6, which is the value of 5. Then (2a+ b) b, that is
126 x 6 or 756, is the quantity to be subtracted ; and as there is
now no remainder, we conclude that 60 + 6 or 66 is the required
square root,

It is stated above that a is the greatest multiple of ten which
has its square less than 4300. For & evidently cannot be a
greater multiple of ten. If possible suppose it to be some multi-
ple of ten less than this, say «; then since « i8 in the tens’ place,
and b in the units’ place, # + 6 is less than a ; therefore the square
of z +b is less than @’ and consequently x+b is less than the
true root. .

If the root consist of three places of figures, let a represent
the hundreds and b the tens; then having obtained @ and & as
before, let the hundreds and tens together be considered as a new
_ value of @, and find a new value of b for the units.

The cyphers may be omitted for the sake of brevity, and the
following rule may be obtained from the process.

Point every second figure beginning with

the units’ place, and thus divide the whole . 4356 (66
number into several periods. Find the great- 36

est number whose square is contained in the 126 )75 6

first period ; this is the first figure in the 756

root ; subtract its square from the first period, —
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‘and to the remainder bring down the next period. Divide this
-quantity, omitting the last figure, by twice the part of the root
already found, and annex the result to the root and also to the
divisor, then multiply the divisor as it now stands by the part of
the root last obtained for the subtrahend. If there be more
periods to be brought down the operation must be repeated.

240. Extraet the square root of 611524 ; also of 10246401.

6i1524(782 1024640i(3201
49 9
148)1215 62)124
1184 124
15623124 64016401
3124 6401

In the second example the student should observe the occur-
rence of the cypher in the root.

241. The rule for extracting the square root of a decimal
follows from the preceding rule. 'We must observe, however, that
if any decimal be squared there will be an even number of decimal
places in the result, and therefore there cannot be au exact square
root of any decimal which in its gimplest state has an odd number
of decimal plages. '

The square root of 21-76 is one-tenth of the square root of
100 x 2176, that is of 2176. 8o also the square root of ‘0361 is
one-hundredth of that of 10000 x *0361, that is of 361. Thus we
may deduce this rule for extracting the square root of a decimal :
put a point over every second figure beginning at the units’ place,
and continuing both to the right and left of it; then proceed as
in the extraction of the square root of integers, and mark off as
many decimal places in the result as the number of penods in the
decimal pa.rt of the proposed number,
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242, The student will probably soon acquire the conviction
that many integers have strictly speaking no square root. Take
for example the integer 7. It is obvious that 7 can have no
integer for its square root ; for the square of 2 is less than 7, and
the square of 3 is greater than 7. Nor can 7 have any fraction as
its square root. For take any fraction which is strictly a fraction
and not an integer in a fractional form, and multiply this fraction
by itself ; then the product will be a fraction : this statement can
be verified to any extent by trial, and may be demonstrated by
the principles of Chapter L. Thus 7 has no square root, either
integral or fractional. In like manner no integer can have a
square root unless that integer be one of the set of numbers
1, 4, 9, 16, ... which are the squares of the natural numbers
1, 2, 3, 4,..., and are called square numbers.

" 243. In the extraction of the square root of an integer, if
there is still a remainder after we have arrived at the figure in
the units’ place of the root, it indicates that the proposed number
has not an exact square root. 'We. may if we please proceed with
the approximation to any desired extent by supposing a decimal
point at the end of the proposed number, and annexing any even
number of cyphers and continuing the operation. 'We thus obtain
a decimal part to be added to the integral part already found.

It may be observed that in such a case by continuing the
- process we shall not arrive at figures in the root which circulate
or recur. For a recurring decimal ¢an be reduced to a fraction by
a rule given in books on Arithmetic, and which will be demon-
strated in Chapter xxx1; and therefore, if the square root were
a recurring decimal it could be expressed as a fraction, and so
there would be an exact square root, which is contrary to the
supposition.

Similarly, if a decimal number has no exact square root, we
may annex cyphers and proceed with the approximation to any
desired extent.
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. 244. The following is the extraction of the square root of
twelve to seven decimal places.

130000..,(34641016
9

64)300
256

686)4400
4116

6924)28400
27696

69281370400
69281

2 e ey

6928201,11190000
6928201

693820306)426179900
415692156

10487744

Thus we see in what sense we ean be said to approximate to
the square root of 12 : the square of 3-4641016 is less than 12,
and the square of 34641017 is greater than 12 ; the former square
differs from 12 by the fraction which has 10487744 for numerator
and 10 for denominator.

245. Tt can be demonstrated by the principles of Chapter Lit.
that no fraction can have a square root unless the numerator and
denominater are both square numbers when the fraction is in-its
lowest terms, But we may approximate to any desired extent
to the square root of a fraction.
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Suppose for example we require the square root of ;-.

We might proceed thus: :57 ; then approximate to the
squa,re root of 3 and to the square root of 7, and divide the former
result by the latter. But the following methods are preferable.
Convert ; into a decimal to any required degree of approxi-
mation ; and approximate to the square root of this decimal,

.3 AxT_J@xT)_Jen. .
Orprooeedthus. \/7'— 7x7—’m— 7 ; the:

approximate to the square root of 21 and divide the result
by 7.

246. When n + 1 figures of a square root have been obtained
by the ordinary method, n more may be obtained by division only,
supposing 2n + 1 to be the whole number,

Let N represent the number whose square root is required,
a the part of the root already obtained, « the part which remains
to be found ; then

JN=G+¢,
so that N =a' + 2ax + x*,
therefore, N -a*=2ax+ 2,
and M:x-Fi.
" 2a 2q
Thus N —-a° divided by 2a will give the rest of the square

root required, or z, increasedby;;—; and we shall shew that 2—“::
is a proper fraction, so that by neglecting the remainder arising
from the division we ‘obtain the part required. For = by sup-
position contains n digits, so that z* cannot contain more than
2n digits ; but @ contains 2n+1 digits, and thus % is a proper
fraction, |
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The above demonstration implies that & is an integer with
an exact square root: but-we may easily extend the result to
other cases. For example, suppose we require the square root
of 12 to 4 places of decimals. 'We have in fact to seek the square
root of 1200000000, and to, divide the result by 10000. Now
the process in Art. 244 shews that 1200000000 — 1119 = (34641)".
Here N may stand for 1200000000—-1119; and then a may
stand for 34600 and b for 41. Thus the demonstration assures
us that we can obtain 41 by dividing 2840000 by 69200, that is
by dividing 28400 by 692 : and this coincides with the rule given
in books on Arithmetic,

In like manner if we require the square root of 12 to 6 places
of decimals, the last three figures, namely 101, can be obtained by
dividing 704000 by 6928. :

247. We will now investigate the method of extracting the
cube root of a compound quantity.

The cube root of a®+ 3a'h + 3ab®+b* is a+b, and to obtain
this we may proceed thus: Arrange: . P
the terms sccording to the dimen- a.+3ab+3ab +8' (a+b
sions of one letter a, then the first d
term is a® and its cube root is @, 3a') 3a'd+3ab’+&
which is the first term of the re- 3a’0+3a6"+3"
quired root. Subtract its cube, that - _ ’
is @, from the whole expression, and bring down the remainder
3a’h + 3ab® +b*. Divide the first term of the remainder by 3a?
and the quotient is b, which is the other term of the required
root ; then subtract 3a% + 3al®+5® from the remainder, and the
whole cube of a + b has been subtracted. This finishes the opera-
tion in the present case. If there were more terms we should
proceed with a+b as we formerly did with @ ; its cube, that is
a® +3a"h + 3ab" + 5%, has already been subtracted from the pro-
posed expression, so we should divide the remainder by 3 (@ + b)*
for a new term in the root ; and so on.




142 EVOLUTION.

248. It will be convenient in extracting the cube root
of more complex algebraical expressions, and of numbers, to
arrange the process of the preceding Article in three columns,
as follows:

3a+d 3a* a'+3a%+3ab" + 8 (a+b
(3a+2)b ¢
3a'+ 3ab + 86" 3a'b + 3ab* + b
3a'h + 3ab" + b*

Find the first term of the root, that is @ ; put a* under the
given expression in the third column and subtract it. Put 3a
in the first column, and 3a* in the second column ; divide 3a%
by 3a% and thus obtain the quotient b; add b to the quantity
in the first column ; multiply the expression now in the first
column by &, and place the product in the second column and add
it to the quantity already there ; thus we obtain 3a®+ 3ab +b%;
multiply this by b and we obtain 3ad + 3ab® + b*, which is to be
placed in the third column and.subtracted. We have thus com-
pleted the process of subtracting (a +5)* from the original ex-
pression. If there were more terms the process would have to
be continued.

249. In continuing the operation we must add such a quan-
tity to the first column as to obtain there thres times the part of
the root already found. This is conveniently effected 3a+ b
thus: we have already in the first column 3a+b; 2b}
place 2b under the b and add ; so we obtain 3a+ 3,
which is three times @+ 5, that is, three times the 3@+ 3b
part of the root already found, Moreover, we must add such a
quantity to the second column as to obtain there ¢hree times the
square of the part of the root already found,

This is conveniently effected thus: we have , (3‘”'6)1:
already in the second column (34 +3)5, and 3a "‘3“6*1”
below that 3a*+ 3ab +b*; place 5* below and b

add the expressions in the three lines; so we 3a" + 6ab + 30’
obtain 3a’+ 6ad + 30", which is three times
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(a + )", that is, three times the squars of the part of the root
already found.

250, Example; extract the cube root of
8x° — 36cx* + 66¢™* — 63¢°2® + 33c'a” — Iz + C°,

6" — 3cx 1224
- 6@} = 3cx (62* — o)
62" — 9cx + ¢* 12z* —~ 18c2* + Qc'x’}
+ 9c*x*

122" — 36¢ca” + 27¢%*
+¢* (62" — 9ex + ¢*)

12z - 36¢x® + 33¢*%"— 9%z + ¢*

8a® — 36¢x’® + 66c°z* — 63¢°” + 33¢'z" — 9c"z+ ¢ ( 22° - 3ex + ¢
8z°

-— 36¢cx® + 66c%c* — 63c2” + 33c*'z® — 9%z + ¢°
— 36ex® + bdc'xt —- 27"
12¢%* — 36¢%® + 33c'z® — 9c*z + ¢°
12c%* - 366°2° + 33c*x® — Oc*z + ¢°

The cube root of 8z°is 2x" which will be the first term of the
root; put 8z° under the given expression in the third column and
subtract it. Put three times 2a° in the first column, and three
times the square of 2z° in the second column; that is, put 6z* in
the first column, and 122* in the second column, Divide — 36¢cx®
by 12z, and thus obtain the quotient — 3¢z, which will be the
second term of the root; place this term in the first column,
and multiply the expression now in the first column, that is,
62" —3cx by — 3cx; place the product under the quantity in the
second column and add it to that quantity; thus we -obtain
122* — 18¢a® + 9¢’="; multiply this by — 3cx, and place the product
in the third column and subtract. Thus we have a remainder in
the third column, and the part of the root already found is
24 — 3cz.
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‘We must now adjust the first and second columns in the
manner explained in Art. 249. We put twice — 3oz, that is,
— 6cx, under the quantity in the first column, and add the two
lines ; so- we obtain 6z®— 9cx, which is three times the part of
the root already found. 'We put the square of — 3cx, that is, 9¢'z",
under the quantity in the second column, and add the last three
lines in this column; so we obtain 12z*— 36cx*+ 27¢"", which
is three times the square of the part of the root already found.

, Now divide the remainder in the third column by the ex-
pression just obtained, and we atrive at ¢* for the last term of
the root; proceed as before and the operation closes.

251. The preceding investigation of the cube root of an
Algebraical expression will enable us to deduce a rule for the
extraction of the cube root of any number.

The cube root of 1000 is 10, of 1000000 is 100, and so on;
hence it will follow that the cube root of a number less than
1000 must consist of only one figure, of a number between 1000
and 1000000 of two places of figures, and so on. If then a point
be placed over every third figure in any number beginning with
the units, the number of points will shew the number of figures
in the cube root.

252. Suppose the cube root of 405224 required.

210+4 14700 405224 (70+4
856 343000
15556 62224
62224

Point the number according to the rule; thus it appears that
the root consists of two places of figures. Let a+ b denote the
root, where a is the value of the figure in the tens’ place, and b
the figure in the units’ place. Then ¢ must be the greatest multi-
ple of ten which has its cube less than 405000; that is, @ must be
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70. Place the. cube of 70, that is 343000, in the third column
under the given number and subtract. Place three times 70, that
is 210, in the first column, and three times the square of 70, that -
is 14700, in the second column, Divide the remainder in the
third column by the number in the second column, that is, divide
62224 by 14700; we thus obtain 4, which is the value of 5. Add
4 to the first column; multiply the sum thus formed by 4, that is,
multiply 214 by 4; we thus obtain 856; place this in the second
column and add it to the number already there. Thus we obtain
15656 ; multiply this by 4, place the product in the third column
and subtract. The remainder is zero, and therefore 74 is the re-
quired root. The cyphers may be omitted for breuty, and the
process will stand thus:

214 147 405224 (74
856 343
15656 62224

62224

253. Example; extract the cube root of 12812904,

63} 19 198149904 (234
6 189 8
694 '1384 1813
9 4167
1587 645904
2776 645904
161476 T

After obtaining the first two figures of the root 23, we adjust
the first and second columns in the manner explained in Art. 249,
‘We place twice 3 under the first column and add the two lines
giving 69, and we place the square of 3 under the second column,
and add the last three lines giving 1587. Then the operation is
continued as before. The cube root is 234, ,
T. A - 10 -
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254. Example; extract the cube root of 144182818617453.

152 75 144182818617453 (52437
4} 304 125
1564} 7304} 19182
8 4 15608
15723} 8112 3574818
6 6256 03269824
157297 817456} 304994617
16 247259907
823728 57734710453
. 47169 57734710453
82419969} B
9
82467147
1101079
8247815779

The cube root is 52437.

255. - If the root have any number of decimal places the cube
will have thrice as many; and therefore the number of decimal
places in a decimal number, which is a perfect cube, and in its
simplest state, will necessarily be a multiple of three, and the
number of decimal places in the root will be a third of that
number. Hence if the given cube number be a decimal, we
place a point over the units’ figure, and over every third figure to
the right and left of it ; then the number of points in the decimal
part of the proposed number will indicate the number of decimal
places in the cube root.

If a number have no exact cube root we may, as in the ex-
traction of the square root, proceed with the approximation to
any desired extent. See Art, 243,
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256. Required the cube root of 1481:544.

31} -3 1481544 (114
af 31 1
334 337} 481
1 331
363 150544
1336 150544
37636 ‘
The cube root is 11+4.

257. When n+2 figures of a cube root have been obtained
by the ordinary method, n more may be obtained by division only,
supposing 2n + 2 1o be the whole number.

Let NV represent the number whose cube root is required,
a the part of the root already obtained, « the part which remains
to be found ; then

YN =a+u,
so that N =a"+3a"z + 3ax’ + 2’ ;
therefore, N—a*= 30"z + 3aa* + z*,
and y-a —ac+z’ i
3a* 3a*
Thus N ~a® divided by 3a wxll give the rest of the cube

root required, or z, increased by ;',, and we shall shew

that the latter expression is a proper fradwn, so that by neglect-
ing the remainder arising from the division, we obtain the part
required. For by supposition, « is less than 10% and a is not

less than 10™*'; thus i is less than - 0,_“, that is, less than 110

10 1
An d3 ,mlesstha.n3 10‘,+,,thatls,lesstha.nd 17" Hence
2
z f,mlessthanm 3% 10,+,,a.ndisthuslessthanunity.

Remarks similar to those in the latter part of Art. 246 apply

here.
10—2
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EXAMPLES, XVII

EXAMPLES OF EVOLUTION.

Extract the square roots of the expressions eonta.med in the
following examples from 1 to 15 inclusive :

1

© OO m:®

10.

11,

13.

14.
15.

16.

ot — 22° + 32" — 22 + 1. 2. z'-42+8z+4.

4+ 122 + 52— 62 +1. 4. 4x'—42’+52" 22+ 1.
4x* — 1202* + 25a%* — 240’z + 164"

25z — 30ax® + 49a’s" — 24a’z + 16a*.

o — 6ax’® + 15a%c* — 208’ + 15a'c" — 64’z + a°.
(@=0)*~2(a*+0") (a—0)"+2(a*+d*).

4 {(a*— ") cd + ab (c* — d)}* + {(a* - ") (c" — d") — 4abed}”
a'+ b +c'+d*—2a* (b* + d%) - 2b* (' — d") + 2¢" (' - d°).

1 s 1 . x* 4
(+)-4(e-D). 12 wewiZismonid,
a‘+£+ﬁ— 2+“'

z P I

‘+2(20—c)a’ + (40* - 4be + 3¢*) @’ + 2¢* (2 —c) a + ¢
(a—2b)'2*—2a (a — 2b) 2 + (a” + 4ad — 6a — 80" + 12b) z*
— (4ab—6a)x + 46" —12b + 9.

Find the square root of the sum of the squares of ‘2, 4,
*6, *86.

Extract the cube root of the expressions and numbers in the
following examples from 17 to 23 inclusive :

17.
18.
19.
20.
22.

24.

2®— 92° + 332* — 632 + 662" — 36 + 8.

82° + 48cx® + 60c’z* — 80c’x® — 90¢*z” + 108¢%x — 27¢°

8a° — 36¢x® + 102¢%x* — 171c%" + 204¢'x” — 144c%z + 64c®
167-284151. 21, 731189187729.
10970645048, 23. 1371742108367626890260631.

]
Extract the fourth root of (a:'+ :cl’) ~4(=+ %)’+ 12.
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95. If a number contain n digits, its square root “contains -
1{on +1— (- 1)} digits. )

26. Shew that the following expression is an exact square :
@ - 32 + (' - =) + (& - 2y)* - 3 (2"~ y2) (" —22) (2" — xy)-

~XVIII. THEORY OF INDICES.

258. We have defined a™, where m is a positive integer, as
the product of m factors each equal to a, and we have shewn. that

a™ x a" =a"*", andtha.t—=a“'"o —— according as m is greater

or less than n. H.ltheru) then an exponent has always been a
positive integer ; it is however found convenient to use exponents
which are not positive integers, and we shall now explain the
meaning of such exponents.

259. As fractional indices and negative indices have not yet
been defined, we are at liberty to give what definitions we please
to them ; and it is found convenient to give such definitions to
them as will make the important relation o™ xa"=a"*" always
true, whatever m and n may be,

For example ; required the meaning of al,

By supposition we are to have atxal=a'=a, Thus ot must
be such a number that if it be multiplied by itself the result is a ;
and the square root of a is by definition such a number ; therefore

a? must be equivalent to the square root of g, that is, at = ./a.
Again ; required the meaning of at.
By supposition we are to have dxatxat=d*diog—q
Hence, as before, at must be equivalent to the cube root of g,
that is a¥ = ¥a.
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Again ; required the meaning of af,

By supposition, ai xatxadxdl=g
therefore ol = Yo,

These examples would enable the student to understand what
is meant by any fractional exponent ; but we will give the defini-
tion in general symbols in the next two Articles.

260. Required the meaning of a.'l' where 1 18 any positive whole
number.

By supposition,
1 1 1 1,1 1
= = = S+ +_ 4+ ...ton terms
a" xa" xa* x ... to n factors =g* "* * =a'=a;

1
therefore @* must be equivalent to the n root of a,.
. .
that is, s = Ja.

261. Requmdthemaanmgqfa“ wheremandnmanypon-
tive whole numbers.

By supposition,
a® xa* xa* x ... ton factors = a""’"ﬂl+ R an;

therefore a* must be equivalent to the 2* root of a™,
that is, as= N

Hence ¢* means the »n™ root of the m* power of a ; that is,
in a fractional index the numerator denotes a power and the
denominator a root.

262. We have thus assigned a meaning to any positive index,
whether whole or fractional ; it remains to asmgn a meaning to
negative indices.

For example, required the meaning of a™,

By supposition, a*xa*=a""=da'=aq,
therefore a* = §° = :_,

‘We will now give the definition in general symbols.
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263. Required the meaning of a™"; where n is any positive
number whole or fractional.
By supposition, whatever m may be, we are to have

a"xa"=a""",

Now we may suppose m positive and greater than %, and then,
by what has gone before, we have

- ., a”
a"""xa"=a"; and therefore @™ "=—_.
a
aﬂ
Therefore a"xa "= =i
R |
therefore a "= =

In order to express this in words we will define the word
reciprocal. One quantity is said to be the reciprocal of another
when the product of the two is equal to unity ; thus, for example,

xisthereciprocalof%.

Hence a™ is the reciprocal of a*; or we may put this result
symbolically in any of the following ways,
.1 .1

= @' =—=, a"xa =1,

264. It will follow from the meaning which has been given
to a mnegative index that a™--a"=a""" when m is less than n, as
well a8 when m is greater than n. For suppose m less than n;
we have
a~ 1

= a—(ﬁ—ﬁ)= an-n.
a a

Suppose m =n ; then a™=-a* is obviously =1; and a™ "=a".
The last symbol has not hitherto received a meaning, so that we
are at liberty to give it the meaning which naturally presents
itself ; hence we may say that a’=1.
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265. Thus, for example, according to these definitions,
at= Ja’, at= Ja' at= Jat=d',
P | g 1 1 1

a =?, a =‘:£=7;],’ a,.

4
¢ i =—=

Sl =

Thus it will appear that it is not absolutely necessary to intro-
duce fractional and negative exponents into Algebra, since they
merely supply us with a new notation for quantities which we had
already the means of representing. It is, as we have said, a con-
venient notation, which the student will learn to appreciate as he
proceeds.

The notation which we have explained will now be used in
establishing some propositions relating to roots and powers.

1 1 1
266. To shew that a* x 5" = (ab)‘.

1 1 .
Let a* x b" =z; therefore

1 I\» 1\ » 1\ » '
= ={d xb“) - (a) x (b' , (by Art. 41), =axb.
1
Thus &* = ab, therefore z = (ab);, which was to be proved.

In the same manner we can prove that

b= (O)

267. As an example of the preceding proposition we have
Ja x /b =,/(ab). Now, as we have seen in Art. 236, a square
root admits of a double sign; hence strictly speaking our result
* should be stated thus: the product of one of the square roots of
a into one of the square roots of b is equal to one of the square
roots of @b. A similar remark applies to other propositions of the
present Chapter. In the higher parts of mathematics the matter
here noticed is discussed in more detail : see Theory of Equations,
Chapter xI.
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1 1 1 1 1 1
268. Hence a" x5 xc* = (ab)" xc* =(abc)".
And by proceeding in this way we can prove that
1 1 1 1 1
XXX ...... x k" = abc....k):.

Suppose now that there are m of these quantities a, J, ¢, ... &,
and that each of them is equal to a ; then we obtain -

-

1 -m
But (a")‘ is, by Arts. 260, 261, a*; thus

()=

Hence comparing this with Art. 261 we see that the n* root
of the m* power of a is equivalent to the m* power of the n** root
of a.

141 1
269, To shew that (f-)-‘ — ™,
141 1
Let aa=(a;' * ; therefore z"=a™; therefore 2™ =a; there-

1 N1 1
fore z=a™. Thus (a‘)" = @™, which was to be proved.

270, To shew that a~ = a7,
Let « =a"; therefore z"=a™; therefore 2™ =a™ ; therefore
mp m wp
x =a". Thus a"=a":,whichwastobeproved.
271. The student may infer from what we have sald in
Art. 265, that the propositions just established may also be

established without using fractional exponents. Take for example
that in Art. 266 ; here we have to shew that

Jax b= 2(ab).
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Proceed as before ; let #=7/a x /b ; therefore
z* = (Jax 2/b)" = (Ya)" x (Jb), (by Art. 41), =axb.
Thus «* = ab, therefore x =2/(ab), which was to be proved.

272. We have been led to the definitions of Arts. 260...265
as consequences of considering the relations a™ x a"=a™*" and
(a™)*=a™ to be universally true, whatever m and n may be; we
shall now proceed to shew conversely that if we adopt these defi-
nitions the relations a™xa"=a™*" and (a")"=a™ are universally
true, whatever m and n may be.

e 2t 2t
" 273, To shew that a'xa'=a" "
I T
a' x a'=a" x a¥, by Art. 270,
1 1
= (a")" x (a" , by definition,
1
= (a"- x a")", by Art. 266,

1 F i S 4
- (arﬂ')!-: ™ =af °
274. In the same way we can shew that
~ : r 2

ad+a'=a'’

275. Thus the relation a" x a"=a™"" is shewn to be true
when m and n are positive fractions, so that it is true when m
and n are any positive quantities. It remains to shew that it is
also true when either of them is a negative quantity, and when
both are negative quantities.

(1) Suppose one to be a negative quantity, say = ; let

n=—v.

Then g™ xa"=a"xa™”=a" x ‘—1’-, =‘;—,=a""', (by Art. 274),

= a-ﬂ-n.
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(2) Suppose botk to be negative quantities ; let
m=—p and n=—v

Then ‘

1

a* x a”

1
a*

+n

@ xa" = a7 xa™ = = s (by Art, 273),

1
X —=
al’
=a* " =qg"

276. Similarly o™ x a® x a® = a™" x a® = a™**? ; and so on.
Thus if we suppose there to be r quantities m, =, p, ..., and
that each of the others is equal to m, we obtain :
(a-)r = aw’
whatever m may be.

r ”

277. To shew that (af>; =a®,

r " or
Let x=(a7 *; therefore 2* = (aﬂ) =a?, by Art. 276 ; there-
fore 2® =a?"; therefore z = az, which was to be proved.

278. To shew that (a™)*=a™ universally.

By the preceding Article this is true when m and # are any
positive quantities ; it remains to shew that it is true when either
of them is a mnegative quantity, and when both are negative
quantities.

(1) Suppose n to be a negative quantity, and let it =—v.

Then (a™)=(a™ "=——=F,=a"'=a"".

(2) Suppose 7 to be a negative quantity, and let it =—p.

1\ 1
" = (g V" =(—) =—=a"P*"=a™
Then  (a™)*=(a™") ( a}‘) praal a™.

(3) Suppose both m and n to be negative quantities ; let
m=—p and n=—yv,

1 1

Then (@) =@")"= @y e a*” = a™.
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b.

-1

EXAMPLES. XVIIIL

X EXAMPLES OF INDICES.

Simplify (a:% x x")ﬁ.
Find the product of aé, a‘i, a'*, and o=t

Find the product of ""’) (y,)* ( 0 é

Simplify the product of .
at, a7t Ya', a1, :/a"', and (a'*)*n

(= (=)
{(«/b'(sb'}}' l(b)}
Multiply ad+pdtraty by ab=d—ad + 3},

Simplify

Multiply :c‘—my* +a:5y—y’ by z+x§y§+y
Multiply Pt S~ B JpE s S I | by al+l.
Multiply d-at+r1-adigt by at+1+at

Multiply — 3a™*+ 247" by —2a7%— 3a~4b.
Divide af - zy& + :c&y y! by z? -y*.

Divide ! + za} + a! by ot + adad + ol

= 3 - e "
Divide a®* ~a * by a* —a *.
Divide 2’y - Sa'y™* + Ty~ — bx* + 2xy
by &’y —afy t+ay.
Divide o' —alb + ab? — 2387+ ¥ by o? — b+ a? -8t
oot s ate_ ot

—azrT+a’x—x

Simplify - ¥

a®—a'c® +3a’z LY JHPE T
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§_.4
17. Extractthesqnaremotofy'+£+2y it
24

18. Extract the square root of
da—12a0% + 9} + 16abct — 2408t 4+ 161

19. Extract the square root of
9560 - 5122 + 64028 — 51228 + 304 — 12824 + 402~ ~ 821 4 2},

90. If a*= b, shew that (%)%=a%-'; and if a=25, shew
that b= 2. '

XIX. SURDS.

279. When a root of an Algebraical quantity which is re-
quired, cannot be exactly obta.ined, it is called an #rrational or
surd quantity. Thus 3/a’ or al is called a surd. But Ya® or af,

though apparently in a surd form, can be expressed by a', and so
is not called a surd.

The rules for operations with surds follow from the proposi-
tions established in the preceding Chapter, as will now be seen.

280. A rational quantity may be expressed in the form of a
gwen surd, by raising it to the power whose root the surd expresses,
and affixing the radical sign.

Thus a =,/a* = }/a’, &c. ; and a+:c=(a+a:)’!"'. In the same
manner the form of any surd may be altered ; thus

(a'+:c)%=(a+a:%=(a+=c)%......

The quantities are here raised to certain powers, and the roots of
those powers are again taken, so that the values of the quantities
are not changed.
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281, The coefficient of a surd may be introduced under the
radical sign, by first reducing it to the form of the surd and then
multiplying according to Art. 271,

For example,

aJa=Ja' xJz=Ja's); ayt=(@y);
2 J(2a-2)= (2 ~); ax(a-2f={a*(@-2};
4,/2=,/(16 x2) = ,/32.

282. Conversely, any quantity may be made the coefficient of

a surd, if every part under the sign be divided by the quantity
raised to the power whose root the sign expresses.

lems ,,/(a’-—aa:):a*x,/(a-z); J@—-a)=a,/(a-x);
(a’—z')’xT:a'%x(l—a'—:)'l"; J60 = J(4 x 15) =2, /15 ;
(_1___ __(1 b’)b__l x’_l)l Catnd ) b')i

283. ‘When surds have the same irrational part, their sum or
difference i3 found by affixing to that irrational part the sum or
difference of their coefficients.

Thus a,/z+b, /z=(a=d) /x;

300+5,/3=10,/3+5,/3=15,/3 or 5,/3;

J(3a™8) +,/(3x'0) = a ,/(3D) + = ,/(3b) = (a + x) ./(3D).

284. If two surds have the same index, their product is found
by taking the product of the quantities under the signs and retain-
ing the common index.

Thus o x b= (ab)", (Art. 266); o/2xJ/3=./6;
(@+b)}x (a—b)} = (a*— 21)}.
285. If the surds have coefficients, the product of these coeffi-

clents must be preficed.
Thus a/xxb,/Jy=ab/(xy); 3./8x5,/2=15,/16=60.
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286. If the indices of two surds have a common denominator,
let the quantities be raised to the powers expressed by their respective
numerators, and their product may be found as before.

Thus ot 3dogtx 3t (20)d;

(a+ a:)j x (a— a:)’ ={(a+z)(a— cc)'}".
287. If the indices have not a common denominator, they may

be transformed to others of the same value with a common deno-
minator, and their product found as in Art. 286.

Thus (o~ 2 x (a—a)! = (@~ &) x a2t = ("~ 2) -2}
obx 38 g¥ 3t =gt ot = (12)%.

288. If two surds have the same rational quantity under the
radical signs, their product i8 jfound by making the sum of the
indices the index of that quantity.

11 2,1
Thus a* xa™=a" ", (Art. 273);
Joxy2=2bxab_gdti_of

289. If the indices of two surds have a common denominator,
the quotient of one surd divided by the other is obtained by raising
them respectively to the powers expressed by the numerators of their
indices, and extracting that root of the quotient which 8 expressed
by the common denominator. .

1
m

Thus, %:(b) , (Art. 266); —:= b,):;

b
booto (V1. (I_’);A Va2 (75
dett=(g)' =30 (F+Cr-GoF
290. If the indices have not a common denominator, reduce
them to others of the same value with a common denominator, and
proceed as before,

Thus (a* - &)f-+(a* - &)} = (a* ~ )} +- (@ - ) = {E: '::))’}
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291. If the surds have the same rational quantity under the
radical signs, their quotient is obtained by making the difference of
the indices the index of that quanisty.

11 11
Thus, a”+a" =a™ *, (Art. 274);
J2+ Y2 =obsgboob-d_ ot

0292, Tt is sometimes useful to put a fraction which has a
simple surd in its denominator into another form, by multiplying
both numerator and denominator by a factor which will render the
denominator rational. Thus, for example,

2 28 2/ _§

J3 J3xJ8 T '
If we wish to calculate numerically the appronma’w value of
m it will be found less laborious to use the equivalent form
2J3 o . _ab *
—g—- . Slm.l]&l‘l Y, Jb b .

€ 293. ' It is also easy to rationalise the denominator of a frac-

tion when that denominator consists of {wo quadratic surds.

For _° a(fomy)  _al/bry)
JoxJe T a ) (WJor ) b—c
So also [ a(b-ch) a(ba-,/c)

bx Jo (b= Jobwde) b—c .
. 3+,/6 (3+./5)(83+,/5) 14+6,/5 7+3J5
Similarly 3-55 TB=VB) B+ 9-5 2

" 294, By two operations we may rationalise the denominator
of a fraction when that denominator consists of three quadratic
surds. For suppose the demominator to be fa+,/b+,/c; first
multiply both numerator and denominator by ,/a +4/b— /¢, thus
the denominator becomes a +b—c + 2,/(ab); then multiply
both numerator and denominator by a+b—c—2,/(ab), and we
obtain a rational denomma.tor, na.mely (@ + b —c)*— 4ab, thatis,
& +b"+ ¢ - 2ab - 2bc -
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0 295, A factor may be found which will rationalise any binomial.

11 1 1

(1) Suppose the binomial @® +b¢. Put z=a?, y=0; let

n be the least common multiple of p and ¢ ; then «* and y* are
both rational. Now

@+y) (@ -2 Y+ Y - ey ) =2y

where the upper or lower sign must be taken according a8 % is odd
or even, Thus
‘ 2 -2y Y eyt
is a factor which will rationalise =+ y.
1 1
(2) Suppose the binomial a# — 4. Take z, y, and n s be-
fore, Now : :

(-y) (@ +ay + 2% + ...... +y ) =2 -y
Thus a2y + Y+ . +y?
is a factor which will rationalise z — Y.
Take, for example, at ot ; here n=6. Thus we have as a
rationaliging factor
2oy + Py -y +my -,

that is, a* — a¥bt 4+ a¥b% — ot ¥ 4 ad b - 33,
that is, af - ¥ + a0 — ab + a¥id — 3%,

The rational product is &°— 3, that is, af — 5%, that is, a® - b".

296. The square root of a rational quantity cannot be partly
rational and partly a quadratic surd.

If possible let \/o=a+,/m; then by squaring these equal
quantities we have n=a'+2a \/m+ m ; thus 2a ,/m=n —a'—m,

— ’—
md Jm=tZEm
the supposition, See Art, 242, -

T. A, 11

, & rational quantity, which is' contrary to
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297. If two quadratic surds cannot be reduced to others which
have the sams irrational part, their product is srrational.

Let ,/z and ,/y be the two quadratic surds, and if possible
let ./(xy) =rx, where r is a whole number or a fraction. Then
xy =r’’, and y=1"z, therefore ,/y=r ,/z, that is, \/y and ,/z
may be so reduced as to have the same irrational part, which is
contrary to the supposition.

298. quuadraticam'doammtbcmadcf@qftwbothen
which have not the same irrational part.

If possible let ,/w=,/m +,/n; then, by squaring, we have
x=m+n+2,/(mn), and /(mn) =} (x—m—n), a rational quan-
tity, which is absurd. See Art. 242.

299.- In any equation x +,/y =a + /b which involves rational
quantities and quadratic surds, the rational parts on each side dre
equal, and also the trrational parts.

For if z be not equal to a, suppose z =a +m ; then

Ca+m+,Jy=a+,/b,
so that m+,/y=,/b; thus ,/b is partly rational and partly a
quadratic surd, which is impossible by Art. 296. Therefore =g,
and consequently ,/y =,/b. .
300. If \/(a+./b) == +./y, then /(& —,/b) =2~ ,/y.
For since ,/(a + /b) = @ + ,/y, we have by squaring
a+, b=o"+22Jy+y;
thercfore a=2'+y, and ,,/b=2z,,/y,. (Art. 299).

Hence a-Jb=o"- 2, Jy+y,
and ‘ N(CENET TN
Similarly we may shew that if

N@+ Jb) = Jz+ g,
then W(a-b) = Jz - Jy.
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301. Tke squars root of & binomial, one of whoss terms s
quadratic surd and the other rational, may sometimes be expressed
by a binomial, one or each of whose terms s a quadratic surd.

Let a + /b be the given binomial, and suppose
@+ JB)= Jz+ .

By Art, 300, - N(@— b) =z~ \y.
By multiplication,  ,/(a’-3)=2-y.

By squaring both sides of the first equation,

a+b=z+2/(@y)+y;

therefore - a=z+9.

Hence, by addition and subtraction,

a+,/(@-b)=22  a-,(@"-b)=2y;

therefore  a=4{a+,/(a’-d)}, y=3}{a-J(a'-D)}

Thus # and y are known, and therefore ,/(a+ 4/b), which is
NE+ Y.

Also \/(a— A/b) is known, for it is \/z —\/y.

302. For example, find the square root of 3 + 2 ,/2.

Here a=3, NJb=242, a'-5=9-8=1;
therefore x=4(3+1)=2, y=4(3-1)=L
Thus NE+2V2)=J2+J1=./2+1.

303. Again; find the square root of 7—2,/10.

Tnstead of using the result of Art. 301 we may go through the
whole operation as follows :

Suppose V(T -2J10)=\Jz— Jy;
then, by squaring, 7-2J10=2-2/(zy) +¥;

hence RV (R ),
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and 2./(zy) = 3J10;
therefore (z+ y)' — 4ay = 49— (2,/10)',
that is, (x-y)'=49-40=)9,
and Z=Y=3 cerrrrrenniinnin @);
therefore, from (1) and (2), z="5, and y=2.

Thus (T =210) = /5 - 2.

7 304, Tt appears from Art. 301 that

J"’=J{a+ ,Jga'—b)}’ Jy=J{a—Jga’—b)};

hence, unless a®— b be a perfect square, the values of /z and ,/y
will be complex surds, and the expression ,/+ /¥ Will not be so
simple a8 ,/(a + ,/b) itself.

305. A binomial surd of the form /(a'c) + /b may be written
thus, \/c (a + Jg) If then a* — gbe a perfect square, the square

root of a+J§ may be expressed in the form ,/z+,/y; and
therefore the square root of ,/(a’c) + /6 Will be Ve (J/z + A/y).

306. For example, find the square roat of ,/32 + /30.

Here 32+ 4/30=,/2 (4 +,/15);
thus - (V824 ,/30) = Y2 x J(4+ J15);
and it may be shewn that

,\/(4+,/15)=\/g+ 4/%

Henoe (/32 + 30) = 42 ( J o+ J 3= :./32 (J5 +/3)




SURDS. 165

307. Sometimes we may extract the square root of a quantity
of the form a +,/b + /¢ + ,/d by assuming

J@ bt Jer Jd)= ooy +o)5
then a+,/b+,/c+ Jd=x+y+2+2,/(xy) + 2./(y2) + 2./(2) ;
'we may then put
2N@) =  2N@R)=Ne  2J()=Vd,
and if the values of x, y, ‘and z, found from these, also satt’sfy
« + y + z=a, we shall have the required square root.
308. For example, find the square root of
© 842./24+3,/5+2,/10.
Assume ,/(8+2,/2+2,/5+2,/10)= Jx+,/y+,/2; then
8+4+2,/2+2,/5+2,/10=a+y+2+2/(xy)+2 J(yz) +2 J(2x).

Put 2/@)=242 2J)=2J5  2J(2)=210;
hence, by multiplication, ./(xy) x /(y2) =,/10,

and N (zx) = /10,
therefore, by division, y=1;
hence =2, and z=35.

These values satisfy the equation 2 +y+2=8. .
Thus the required square root is /2 +,/1 +./5,

that is, - 1+ ,/2+ /5.
309. If Y(a+,/b)=z+.Jy, then Y(a— . b)=z—-./y.
For suppose Ha+O)=2+,Jy; '

then, by cubing, a + ,/b=2"+3" \Jy+3zy +y /v ;

therefore  a=a" + 3xy, No=32" Jy+yJy, (Art. 299);
hence a-Jb=2a"— 3" Jy +3xy—y VY,

and . a— o) =z Jy.
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310. The cubs root of a binomial a /b may be somelimes
JSound.

Asgsume - S(a+ B) =2+ ]y,
then Ya—Jb)=2—Jy.

By multiplication, 2/(a'-b)=a"-y.

Suppose now that a’ —b is a perfect cube, and denote it by ¢,
thus . c=2"'-y;
and, as in Art. 309, a=2a"+ 3xy.

Substltute the value of y;
thus a=2"+3x (z*—¢c);
therefore 4z® - 3cz=a. .

From this equation = must be found by ¢rial, and then yis
known from the equation y=2x*—ec.

Thus it appears that the method is inapplicable unless a*-b
be a perfect cube; and then it is imperfect sinca it leads to an
equation which we have not at present any method of solving
except by trial. The proposition, however, is of no practical
importance.

311. For example, find the cube root of 10 + ,/108.

Assume /(10 +,/108) =z + ,/y, then 3/(10—,/108)=z— ,/y.

By multiplication, }/(100 —108) =z*'—y, thatis, —2 =a*—y.
Also 10=2"+3zy =a"+ 3z (a* + 2) ; therefore 42®+ 6z =10.

‘We see that this equation is satisfied by 2 =1; hence y=3,
and the required cube root is 1+ ,/3.

Again ; find the cube root of 18 /3 + 14 /5.

18J3+14J5=3J3(6+EJ§ .

The cube root of 3,/3 is /3 sad the cube roct of 6+ 14 , /3

can be found. For here a'—b = 36—-:liti -5-=——- so that

9 "3 21’
¢=—73 . Hence we have the equation 4a*+ 2= 6, which we see is
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satinfod by 2= 1. Thus the required cubo root s /3 (1 + 4/%) ,
that is /3 + /5. ‘

312. We will now solve an equation involving surds which
will serve as a model for similar examples : the equation resembles

those already solved in the circumstance that we obtain only a
single value of the unknown quantity.

Solve M@ +2) + /(@ —14) =8

By transposition, J@+2)=8-J(z-14);

square both sides, 2+2=64-16 /(x—14)+2=~14;
transpose, 16 \/(x—14)=48;

divide by 16, Nz-14)=3;

square both sides, x~-14=9;

therefore x=23.

EXAMPLES OF SURDS.
Find a factor which will rationalise PLI ]

Find a factor which will rationalise ,/2— /3.

Find a factor which will rationalise /3 + /5.

4 Given y/3 = 17320508, find the value of _IT»

(3 +4/3) B+./9)(/5-2) _1

5. Shew CENOIIEV, R
15

J10+ /20 +,/40 - /5 - /80
7. Extract the square root of

9‘-‘-24\/&34-24JL9£
v ¥ PRl

8. Extract the square root of (a+ b)" -4 (a —8) J/(ab)-

6. Shew that = J5(1+J2)
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Extract the square root of the.expressions in the following
examples from 9 to 18 inclusive :

0. 44243 10 T-4,8,

11 7+2.J10. 12. 18+ 8,5.

18, 75-12,2L 14, 16451,

15, @b+ @ -NE - 16. 2+ 15
17. —9+46.J3. 18. 1+(1—c).

19. Find the value of

l+2 l-2
T+ J0+2) I+ J1-2)

20. Find the value of

l+a 1-2 3
T+./0+a FToyi=s) "0 *="g

21. Extract the square root of 6 + 2,/2 +2,/3 + 2,/6.

22, Extract the square root of 5 + /10— /6 — \/15.

23. Extract the square root of
15-2,/3-2,/15+6,/2-2 ,/6+2 /52 /30,

24. Extract the cube root of 7 + 5 ,/2.

25. Extract the cube root of 16 + 8 /5.

26. Extract the cube root of 9 ,/3 — 11 ,/2.

27. Extract the cube root of 21,/6 — 23 /5.

28. Shew that Y(/5+2)—Y(J/5-2)=1

29. Solve the equation ,/(z+11)—- /z=1.

30. Solve the equation ,/(3z + 4) + /(3 — 5) = 9.

31. Solve the 'equaﬁon aJb-2x)=b,/(a—=)

32. Solve the equation ,/(x+ a) +,/(z + b)= \/c.

when = ";3 .
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XX. QUADRATIC EQUATIONS.

313. When an equation containg only the square of the
unknown quantity the value of this square can be found by the
rules for solving a simple equation ; then by extracting the square
root the values of the unknown quantity are found. For example,

suppose .
8x'— 72+ 102" =7 — 242* + 89 :

by transposition, - 42«*=168;
by division, ‘ a*=4;
therefore ) =, d=22.

The double sign is used because the square root of a quantity
may be either positive or negative. (Art. 231.)

It might at first appear that from 2*=4 we ought to infer,
not that # =2, but that &2z==2, It will however be found
that the second form is really coincident with the first, For
sx=w2 gives either +x=+2, or +2=-2, or —2=+2, or
—z=-2; that is, on the whole, either =2, or z=—2. Hence
it follows, that when we extract the square root of the two mem-
bers of an equation it is sufficient to put the double sign before
the square root of one of the members,

314. Quadratic equations which contain only the square of
the unknown quantity are called pure quadratics. Quadratic
equations which contain the first power of the unknown quantity
as well as the square are called adfected quadratics, 'We proceed
now to the solution of the latter.

315. We shall first shew that every quadratic equation may
be reduced to the form «* + pz =g, where p and ¢ are positive or
negative. For we can reduce any quadratic equation to this form
by the following steps : bring the terms which contain the unknown
quantity to the left-hand side of the equation, and the known
quantities to the right-hand side ; if the coefficient of * be nega-
tive, change the sign of every term of the equation ; then divide
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every term by the coefficient of z'. Thus we may represent any
quadratic equation by
' +pr=gq.

To solve this equation we add %p’ to both sides ; thus

] ¢
a:'+pz+%.—.%+q.

The left-hand member is now a complete square,; extract the square
root of each member ; thus

erjee /(o)

transpose the term , and we obtain

e

316. TFor example, suppose
- 32"+ 36x—1056=0;

transpose, ~32" + 362=105;
change the signs, 3z'—~36z=—-105;
divide by 3, o —122=-35;

add to both sides 12) that is, 36 ; thus

2'-122+36=36-35=1;
extract the square root of both members ; thus
z2-6=ul,

Therefore x=61; that is, =7, or 5. If either of these
values be substituted for z in the expression — 3z* + 36z — 105, the
result is zero.

317. Hence the following rule may be given for the solution
of a quadratic equation :

By transposition and reduction arrange the equation 8o that
the terms involving the unknown quantity are alons on one side
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and the coefficient of x* is +1; add to both sides of the equation
the square of half the cocfficient of x, and extract the square root of
both sides.

318. As another example we will take
ax’ +bx+c=0;
transpose, - ax'+br=—c;

- bz ¢
divide by a, ‘ac' a="a

b\* b A -4
wa(Z), el E_ P o Pote,
-I-,,/(b 4ac)

2a

~ b (8" dac)
tra.nspgse, .'c—_—2a—"—

The pa.rt.lcula.r case in which ¢=0 should be noted. Then, takmg
the upper sign we have 2=0; and taking the lower sign we have
a==—%. In fact in this case the equation reduces to ax’+bx=0,
or x(ax+b)=0: and it is plain that this is satisfied, either when

x=0; or when az+ b =0, that is when x=—g.

extract the square root, z+2

319. When an example is proposed for solution instead of
going through the process indicated in Art. 317, we may make use
of the formula in Art. 318, Thus, take the example in Art. 316,
namely, — 3z*+ 362 ~105 =0, and by comparing it with the formula
in Art. 318 we see that we may suppose a=~—3, =236, c=—105.
Hence if we put these values for a@, b, and ¢ in the result of
Art. 318, we ghall obtain the value of 2. Here

B — dac=(36)"— 12 x 105 = 36;;

=36+ 6—7 or 5.

therefore =
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320, For another example take the equation

' —br=-2;

add(g)', o —6z+9=0-2=7;
extract the square root, x—3=x,/7,
transpose, z=3u&,/7.

Here ,/7 cannot be found exactly; but we can find an ap-
proximate value of it to any assigned degree of accuracy, and thus
obtain the value of « to any assigned degree of accuracy.

321. In the examples hitherto considered we have found two
different roots of a quadratic equation ; in some cases however we
shall find really only one root. Take for example the equation
2'— 122+ 36 =0 ; by extracting the square root we have z— § =0,
and therefore £=6. It is however convenient in this case to say
that the quadratic equation has two equal roots.

322. If the quadratic equation be represented by
az* +bx +¢=0,
we know from Art. 318 that the two roots-are respectively

—b+,J(' - 4ac) 48 N 4ac)
2a 2a
Now these will be different unless b*—4ac =0, and then each of
them is — % . This relation 3" — 4ac =0 is then the condition that
must hold in order that the two roots of the qua.dra.tnc equation
may be equal.

323. Consider next the example z*— 10z + 32=0.
By transposition, &*'-—10z=-32;
by addition, . 2'-10z+25=25-32=-7.

If we proceed to extract the square root we have
z-5=u,/-T.




EXAMPLES. XX. 173

But the negative quantity —7 has no square root either exact or
approximate (Art. 232); thus no real value of z can be found to’
satisfy the proposed equation. In such a case the quadratic
equation has no real roots ; this is sometimes expressed by saying
that the roots are tmaginary or impossible, We shall return to
this point in Chapter xxv.

324, If the quadratic equation be represented by
ax'+ bz +¢=0,

we see from Art, 318 that the roots are real if b* — 4ac is positive,
that is, if b* is algebraically greater than 4ac, and that the roots
are impossible if b*— 4ac is megative, that i u, if 5" is algebraically
less than 4ac.

EXAMPLES OF QUADRATICS.

1 #—dz+3=0, 9. @-Sz+4=0,
3. 62’-132+6=0. 4 32"—Tw=20,

5. % —Tz+3=0. 6. 3a'—53z+34=0;
7. of+10z+24=0, 8. 72— 3z=160.

9. ldz—of =33, 10. 24~ 22— 3 =0,
1L #-8=3 (-9 12. 4(@-1)=4dz—1
13. 110e*- 21z +1=0. 14. 780" T3z+1=0.
15. (z—1)@@-2)=6. 16. (3z-2)(z—1)=14

17. (3z-5) (2z—5)=(x+ 3) (x—1).
18. " (2z+1)(x+2)=3z"-4.

19. (z+1) (2 +3) = 42" - 22.
2. (z-1)(z—2)+(x—-2)(x—4)=6(2z-5).

21. (2z-3)'=8a 22, (5z-3)'-T=44x4+5.
23, (z—-T)(z— 4)+ (22~ 3)(x—5)=103.
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24,
25.
26.
27,
28,
30.
32,
34,
35.
36.

38,

0.
42,
4.
46.

48,

b

7x'+‘g$+m—0.

e EDE-D-6-De-D
(2(‘3 ‘3("‘4‘(4‘(5'
g+2_z+3

272 3 &

bx 1 4
2—1(z+1)—--7(2ﬁ'+2—1)=§5(z+1).

7 _21+652 6 = 5(z-1)
8z+11+a-— 7 K 29. ;+é— i .
z 21 23 ‘ 31 21 =z 23
T7z+6 T° b= 1 T°

1 3 1 3 2 3
2@-1) "@-1 1 33, T@-1) i@+l 8
LR 40  3(10+2)

1567 3(10~-2) 95 °

2_:c+ 32—-50 122470

15 3(10+a:)_ 190

' - bx 1 x+2 4-2 T
F¥3 CE34g 8. 22172 T3
L_E_}_'_m—l 39 w+4+a:-4_1__0
z-1 2 @z ° ‘-4 xz+4 3°
z+2 -2 5 ® e+1 13
22 @32 6 . vt T
-6 2-12 b : 1 2 3
z2—12 z-6 6 ~ 43 -2 x+2 b

4 5 12 5 5 8_ 1
z+1 z+2 x+3° - z+8tzTmrd”
22-3  3z-5_5 4, ®-2_%-5_8
3z—-b 2z-3 2° * 9%%-5 3z-2 3°
z+3 -3 2x-3 49 a:-2+a:+2_2(z+'3)

z+2 @-2 ®—1° e+l xz-2 -3
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50. 10 (2z+3) (z—3)+ (T +3)*=20 (x+ 3) (x - 1).
bl. (7T—-4,/3)a*+(2-,/3)xz=2.

b2. 2*—2ax+a*—05'=0.

53, &'—2ax+0b*'=0.

b4, (3a*+0") (a'—x+1)=(30+a) (&' + 2+ 1).

55. 1 + ! + 1 =0,
z—a w©-b x-—c
1 11 1
5 ehe-9 GToEd  @ro@E=9  @rhE=y
s 1 1,11

a+b+z a5
58. (ax—0b)(bx—a)=c"
a b 2¢
+ = .
z—a x-b =z-¢
3a’xc 6a'+ab-20" b

60. aw+-—c—=———c’—— _._c...

59.

z+a x+b xz+c

6l. . x—a x-b x—0C

a+c(a+x) a+xz_ o

62. atc@a-2) & a-2=

XXI. EQUATIONS WHICH MAY BE SOLVED
LIKE QUADRATICS.

325. There are many equations which, though not really
quadratics, may be solved by processes similar to those given in
the preceding Chapter, For example, suppose

o' — 92"+ 20=0.

Transpose, o' — 92" =—-20;
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by addition, z—9z+() () 20_..

extract the square root, x'_;-_-.n.E,
9 1 .
therefore x'=§.h§=5’ or 4;
therefore xz=u,/5, or =2.
326. Similarly we may solve .any equation of the form
ax™ + bz +¢=0.
Transpose, ax™ + bz*=—c;
divide by a, 4 ’E_;E;

s b= /b\* /b\' ¢ b —4dac
by sddtdon, =+ () - () ~ =
extract the square root, z‘+2—-—l(i2;_);
therefore #:."_biﬁ’ﬂ

Hence by extracting the n* root the value of 2 is known.
327. Suppose, for example,

z+4,Jo=21;
therefore a+4,Jz+4=25;
therefore NE+2=25;
therefore NJe=—2x5=3, or -T;
therefore =09, or 49,

328. Again, suppose

"tz =6

therefore x"...g-l_,.%_zg,
1 =5

therefore Pt et 3=
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therefore w‘*:—%-ﬁgad, or -3;
therefore z'=4, or 9,

1
and w=z, or 9"

329, ~S»uppose we require the solutions of the equation
z+,/(bz+10)=8.
By transposition, ,/(fz+10)=8-x;
square both sides ; thus
52+10=64—-16z+2";

therefore o -2le=-54;
21\* /21\' 225
therefore o — 21z + (7) - (—2-) ~54=22;
: 21 15
therefore | z-5 = ™ 5
therefore w:%t%:l& or 3.

Substitute these values of 2 in the left-hand side of the given
equation ; it will be found that 3 satisfies the equation but that 18
does not ; we shall find however that 18 does satisfy the equation

x—,/(5z+ 10)=8.

In fact the equation 5z+10=64—16z+a® which we obtained
from the given equation by transposing and squaring might have
arisen also from z—,/(6z+10)=8. Hence we are not sure that
the values of « which are finally obtained will satisfy the proposed
equation ; they may satisfy the other form.

330. Again, consider the example
z-2,/(c*+2+b5)-14=0.

By transposition, —-14=2,/(z'+ 2 +5) ;

T. A, : i2
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by squaring, o' - 282+ 196 =4x"+ 42 +20;
therefore 32" + 322 = 176.

From the last equation we shall obtain =4, or # It will,

however, be found on trial that neither of these values satisfies the
proposed equation ; each of them however satisfies the equation
z+2,J(@'+x+5)-14=0.

From this and the preceding example we see that when an
equation has been reduced to a rational form by squaring, it will
be necessary to examine whether the roots which are finally
obtained satisfy the equation in the form originally given. This
remark applies for instance to equations like those solved in
Arts. 312, 327, and 328.

331. Suppose that all the terms of an equation are brought to
one side and the expression thus obtained can be represented as
the product of simple or quadratic factors, then the equation can
be solved by methods already given. For example, suppose

(z—c) (@* — 3az + 2a") = 0.
The left-hand member is zero either when #—¢=0, or when
2'—3ax+2a*=0; and in no other case. But if z—c=0, we
have z=¢; and if «* — 3ax + 2a" = 0, we shall find that 2=a, or 2a.
Hence the proposed equation is satisfied by z=c, or a, or 2a;
and by no other values, ’

332. TFacility in separating expressions into factors will be
acquired by experience ; some assistance however will be furnished
by a principle which we .will here exemplify, Consider the
example

z@—c)y=a(a—c)
Here it is obvious that x=a satisfies the equation; and we shall
find that if we bring all the terms to one side z— a will be a factor
of the whole expression. For the equation may be written

- -2 (@' -a)+ct(x—a)=0;
th.ati_.s, (x—“){#+m+a'—2c(w+a)+p’}=O.»
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Hence the other roots besides a will be found by solving
the quadratic
\ & +ax+a*—~2¢(x+a)+c'=0.

In this manner when one root is obvious on inspect;ion, we
may succeed in arranging the equation in the manner indicated in
Art, 331,

333. 'We will now add some miscellaneous examples of equa-
tions reducible to quadratics,

(1) Suppose .
o' =Tz +,/(x" - Tx + 18) = 24,

Add 18 to both sides ; thus .
o —Tx+18 +,/(2* — T + 18) = 42;
combplete the square ; thus

B To+ 18+ (- To+18)+ [ =42} = 10 ;
therefore J@-To+18)+ =222
therefore J@'—Te+18)=6, or =T ;
therefore o — Tz + 18 = 36, or 49,

Hence we have now two ordinary quadratic equations to
solve. We shall obtain from the first =9, or — 2, and from the
second z= 4 (7% ,/173). It will be found on trial that the first
two only are solutions of the proposed equation ; the others apply
to the equation '

'~ Tx— /(=" — Tx+ 18) = 24.

(2) Suppose ‘
Cat+at—dat+x+1=0.

Divide by «* ; thus

‘w’+w-4+-l-+—1;=0;
z . &
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or - w'+z,+:c+1—4 =0;
1
therefore (z-l- ) (x+ ) 6=0;
1
therefore (z+-) + (x+ —):6,
* 1
and (z+ ) (z+ )+-_
1 1
therefore +a:+-2-—*§;
therefore z+i =2, or -3.
. 1
First suppose z+5=2;
therefore 2'-22+1=0;
therefore =1,
Next suppose w+%=—3;
therefore @+ 3x=-1;
therefore a:’+3:c+2=g—1=5,
1 : 4 4
therefore z+§—*£ and z=—3:‘/5,
(3) Suppose
z‘+3a:+l=3x’+éx’.
Transpose z—3z‘+3z+1_iaf
. 3x\' 92’ 4z
therefore (:c-—-z— - + 3z 1__9.

therefore (z’—— 2(3:’_3” -1 1_4_’5_’
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o 42* 25s°
therefore (ﬁ'—-— 2(&"-———-) 1=-4—+T=T‘36_. .
Extract the square root, then a
3z S5x
G'—?—].:lﬁ‘g-.
o . 3z bx
‘We have now ordinary quadratics, namely, « ——2-—1--5,
and z'—-——l-—%f. From the former we shall obtain

z=3}(7=,/85), and from the latter &=4(1« ,/10).

(4) Suppose
6z \Jx—11x+6,/z—1=0.

We may write the ‘equation in the form
(z—3.Jz)" +2(= - 3Jx)+1=z"
Hence © - e-3Jr+l=wa
Take the upper sign ; thus
z-3,/e+l=2x;

_therefore’ . .,/x=-13~, and a;=«;».

Take the lower sign ; thus
z-3,Je+l=—2x;
therefore . 22-3 Jx+1=0, .
From this we obtain \Jz =1, or%, and therefore =1, or %
(5) Suppose

z+c+,J(z'-c) 9(z+0) ’ M
w+c—J(x'—c‘)_ B .

In solving this equation we shall employ a principle which
often abbreviates algebraical work,
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e6_p
Suppose that 3¢’
then will
a+b p+gq a-b p-gq a+b p+q
5 ¢ ° b ¢’ a-b p- '3

For the first of these three results is obtained by adding unity
to each of the given equal quantities, the second is obtained by
subtracting unity from each of the given equal quantities, and the
third result is obtained by dividing the first by the second. Each
result is sometimes serviceable. For the present example we
employ the third. Thus from (1) we deduce

o 2(x+e)  9z+17c
2 /(& ~c") 9z+c °

Square both sides, and simplify the left-hand member ; thus
m;i- ¢ _(9z+17c)
@y e ()8
Agnin, by employing the third of the above results we deduce
from (2)
z _ (92+17c)'+ (92 +¢)*  (9z+170)' + (92 +¢)*
¢ (9z+17c)f —(9z+c)* ~  16¢(18z+ 18c)

By reducing, we obtain -
632" — 18z¢ — 145¢* = 0,
. 5 29
_andfromthzs, zag, orz=-—ﬂ€.
(6) - Suppose '

| J(———z)+J(M 2) =32 /1~ o)
ﬂ‘mnspose ; thus
% - 40) - J (— - ) = /(3= °y
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t ] - " N

By squaring, ?‘-:—(1 - 4z) - 3a /(1 - 4x) \/(ig —x) = 3a.x..‘§:.f
4 =-20-1)
Divide by /(1 - 4=) ; thus - ‘
9a+3a S ta)= MJ———:»

By squaring, (1 +3a)'(1-42) =16 (T -z);

therefore 4z {(1+ 3a) — 4} = (1+ 3a)* - 12 = (1 - 3a)';

therefore 4z(3a+3) (3a—1)=(3a—1);
3a-1
»therefore & =m¢;—+—1) .

Also corresponding to the factor ,/(1—-4«), which was removed,
we have the root m=%.

This example is introduced in order to draw the attention of
the student to the circumstance that when both sides of an equa-
tion are to be squared, an advantageous arrangement of the terms
on opposite sides of the equation should be made before squaring.
If in this example as it originally stands we square both sides, no
terms will disappear ; but by transposing before squaring we ob-
tain a result in which — « occurs on both sides, and may therefore
be cancelled.

(7) Suppose
JE+9)+ /(& —9)=/(34) + &
‘We have identically
P9 (—9)=18=34—16. ,
Hence, dividing the members of this identity by the cor-
responding members of the proposed equation, we obtain
V@ +9) = /(- 9)=/(34) - 4.
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Therefore, by addition, ,/(z'+9)=./(34);
therefore =25, and x=b.

+  This equation is introduced for the sake of illustrating the
artifice employed in the solution. This artifice may often be em-
ployed with advantage; for instance, example (6) may be solved
in this way. .
122-8
® N2z +4)-2/2-2)= J(Qz'+lb)

We nmy write this equation thus,

\/(23*'4)—2J(Q_w)=2{2(f/.2.92z)':41(62)_z)}.

The factor ,/(2x+4)~2,/(2—=) can now be removed from

both sides ; thus we obtain
(02 +16)=2{/(2x + 4)+ 2 /(2 - z)}.
By squaring, 9x*+16=4{12-2x+4,/(8-2z"};
therefore o'+ 8z =4 (8 — 22") + 16 /(8 — 22);
therefore '+ 8z + 16 =4 (8 - 22*) + 16 /(8 — 22*) + 16.
A Extract the square root ; thus
e (z+4)=2,/(8-22")+ 4.
The solution can now be completed ; we shall obtain

and also a pair of imaginary values,
Also, by equating to zero the factor ,/(2z+4)-2,/(2 —2),

which was removed, we shall obtain 2= g—

It will be seen that very artificial methods are adopted in some
of these examples; the student can acquire dexterity in using

such transformations only by practice, More examples will-be
found in Chapter. Liv.
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11.

13.

27.

28,
29.

EXAMPLES. XXI.

EXAMPLES OF EQUATIONS REDUCIBLE TO QUADRATICS.

32+2,/z—1=0. 2
3o + 4224 = 3321, 4.
2°— 3528+ 2316 = 0. 6
z+2 ,/(ax) +c=0. 8
&t~ 14a? + 40 = 0. 10.
(22) = Tz = 52. 12,
z+5—J@+5)=6. 14
ot + 54— 22 =0, 16.
%o+ (42 +8)=1. 18,
x4+ T)+ Y (3x — 18) ,,/(7ac+ 1)
JE@-18) | twr3)=

ez e+ 9= 7y,

J(@+2)+,J(a—=) =\/b.
N@E+9)=2 /x-3.

z+,/(5x+10) =8.

x®— 4:c+x—l
x—2 @+ 1

(@ +x)

24,

= 39.

Ja-=) -

Ja +. /(e +2) Ja N

(Jch) *(m _
(3 +b) J(@*+ B+ o) — (a—B) J(a*+ b* —
+ /(@ +2z)=a.

x4+ Jr+ J(z+2)

) =n(n-—l)‘.

2+ 3128 = 33,
o — 1325 = 14,
o+ 2 =0,
84— Ta? = 43076,
ac*+2—i-*=3{.
%"

32 Y+ = 10,

2
2Jx+ :/;=5.

3ot 42t
1 1 -
2(@‘+$-")=5o

2'*'+4'=80;

x*)=a'+ b
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30.

3L

32.

33.
34.

35.
36.
37.
38.
40,
41.
43.
44.
45.
46.

47.

48.
49,

50.

EXAMPLES. XXI,
2+ J(2+2z)=c(1_z).

a+2 Jﬁ
J“"‘J(“ z) JG+J(a+z)

V(@ + 2a) —, —(z-4 2a)
N(CES 2a)+,,/(z+2a) 2¢

@ +8) - J(z + )=z
J(Z+3)+J(w+8)=5Jz.
—a® 2*+a' 34
Err Rt LN
N(a+82) - Ja=c J/(b).

J(”+4)—J;!=='\/.(z+g),

1 1 850 _'(at—a)
z.+=?_a’—a_'=0' 8. =

JE+)+ @ -1) S +1) - J@-1) '
JE+) =S -1) @)+ J@—1) =4 /(- 1)
o’+z’+a‘ P
a+x a—x

(ad + 2l = (@¥ + L, 42.

Jl-z+a) - J1+z+a)=m

g+ (@-1) a-J@-1) 4
= J@—1) Tzr f@E=1)"

V(@ = 3az + a*) + ,/(2* + 3az + a*) = /(24" + 207),

zJ(g-z)=1;xf,
‘:/(w’")—%c(:/za, Yz)=0.

Ve + Sz - J(1-2)} =1
(z+a)‘ (z - a)*=2424"

aé‘+l ‘ .\/6
=a.|.

—da
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52.
53.

54.

55.
56.
57.
59.

60.

61.

62,

63.

64.
65.
66.

67.
68.
69.
70.

71.
72.
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N +az + 8) + /(@ + bz + a”)=a + b.

252" ~16 _3(z*—4)z
102-8 = 2z-4 °

@z + 9)+ /(82— 15) = /(Tz + 8).

Vi

M@t +22-1) +, /(@ + 2+ 1) =,/2+,/3.
J@ +ax—1) + /(@ + bz - 1) =, Ja + /b '
@ +1)(z+2)=2. 58. (ac'+a)(w+b)=abf
(x-a)(x—b) (z—c)+abe=0.

1 1° 4z
I-z T+a 1+

| 1 N { 1
z+a+b z-— a+b+z+a 3tzat™

=0.

fa — z) (x + m) =(a+:c)(z—m).
z+n >—n

a + z\* cx

(a—w> =1+% )

22 +1 42z J(z*+2)+ (z+1) J(=* + 22+ 3)=0.
2 +3=2,/(z"—22+2)+22.

& +be+d= 5J(z'+5z+ 28).

.J(a:’ 2x+9)——=3 .

3a* +15z 2 Je' + 5z +1)=2.
(z+5) (x—2)+ 3 \J{(x+ 3)}=0.

43— J(zz'_u+2)=g(z+1).
z(x+1)+3J(2z’+6:c+5) 25 — 2.
a:’—2,J(3a:’—2aw+4)+4=——(z+ +1)
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73.

74.
75.

K

79.
81.

83.
84,

86.
87.
88.

89.

9l.
93.
94,
95.
96.

98,

99.
101.

EXAMPLES. XXI,

& ~w+3 /(2 -3z +2) =5 +T.

9 “owh 179
l+xz+ z'=5 z-a Chos L7 V} 77
(x +a) (z + 2a) (x + 3a) (2 + da) = c".
16z (x+1)(z+2)(x+3)=9.

Zt:::: :—,; 78. Ta=zt+(1-2)%.
zt— 22"+ x = a. 80. ‘-2 +x=132.
Nz + S+ T)+2 /(" + Tz) = 35 - 2z.

o' —8(x+1)/r+182+1=0.
2(x’+a¢)i+~/z+~/(a+w)=6—2x.
o'+ 24" - 112" + 4z + 4 =0. 85. o'+ 4dz=a"

z* +a,z’+ba:'+m:+£-'=0

1+J(1-~) J 142

w'+;,+2(z:&~£)=1;0.

NG VSRS
2+1=0. . 92, n’+x+n+1=0.
(@-3)(x-3) (x-4)=1.2.3.
(x-1)(z-2)(x-3)—(6- 1)(6 ")(6 3) =0,
(@-1)(z-3) (x-3)=24&

o

62® — b2* + = 0. 97. +a'-4x-4=0.
al’+Il+b’—1+b ¥
z & a
- 2 _

30 + 8 — 82 = 3. e S
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102. = (2 — 2)=m (z* + 2me + 2). ;
103. (2*-a*) (x+a)b + (a*— D) (a+b)z+(b’—z’)(b+z)a=0.

104, x*+pw*+(p—1+L1 2+1=0.

105. (p—l)’x’+pz’+(p-—1+p—i—l>z+l=0...

XXII. THEORY OF QUADRATIC EQUATIONS AND
QUADRATIC EXPRESSIONS.

334, A quadratic equation camnot have more than two roots.

For any quadratic equation will take the form az'+bx+e¢=0
if all the terms are brought to one side of the equation ; and then
by Art. 318 the value of 2 must be either

—b+,/(b" - 4ac) -b— /(- 4ac)
2a 2a
that is the value of # must be one or the other of fwo quantities.

The result is sometimes obtained thus. If possible let three
different quantities a, B, y be roots of the quadratic equation
ax’ + bz + ¢=0 ; then, by supposition,

aat+ba+c=0, af'+dB+¢=0, ay'+by+c= 0
By subtraction,
a(@—-B)+b(a-B)=0;
divide by a — 8 which is, by supposition, not zero ; thus

a(a+B)+5=0.
Similarly we have a(a+y)+b=0.
By subtraction, a(B—v)=0;

this however is impossible, since by supposition a is not zero, and
B -7 is not zero. Hence there cannot be three different roots
to a quadratic equation.
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335. In a quadratic equation where the coefficient of the first
term is unity and the terms are all on one side, the sum of the roots
18 equal to the cocfficient of the second term with its sign changed,
and the product of the roots is equal to the last term.

For the roots of ax® + bz +¢ =0 are

—b+ B —dac) o ~b— J(B~ dao)

2a 2a ;
hence the sum of the roots is —-ab, and the product of the roots is
s _(}® —
b—(i—,L“f’), that is, &, And by dividing by @ the equation

may be written z’+§?+——0 and thus the proposition is esta-

blished,
336. Let a and 8 denote the roots of the equation
ax'+bx+¢=0;
then a+,3=—§'andaﬁ-§. T]:eserelationsareusefulinﬁnding

the values of expressions in which a and 8 occur in a symmetrical
manner. For example,
¥ 2

o+ f'=(a+B)- 2aﬁ=-—-—;—- :
(a=B)'=(a+B) ~ 4o =122,

The relations demonstrated in Art. 335 are useful in verifying
the solution of a quadratic equation ; of course if the roots ob-
-tained do not satisfy these relations we are certain that there is
some error in the work. 4
‘When we know one root of a quadratic equation we can
deduce the other root by the aid of either of these relations. Ta.ke
for example the equation
a+c  b+e: 2(a+'b+c)
zratarb wra+b
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Here z=c obviously satisfies the equation ; clearing of fractions
we obtain '
(@+B8)a*+{a*+ 8" —c(a+B8)}z—c(a’+05") =0.

] ¢
Thus the product of the roots is _c_(a++bb ) ; and as one root
2 2
is ¢ the other must be —Z +6—.
. . a+bd

337. We have .
az'+bz‘+~c=a{x'+’ﬁ +€};

a a
now put for % and ;their values in terms of @ and 8 ; thus

a’ +bz+e=a{r'—(a+B)z+af}=a (x—a)(x-fB).

Thus the expression ax’+bx + ¢ is identical with the expres-
ston a (x—a)(x— B); that is, the two expressions are equal for
all values of .

Hence we can prove the statement of Art. 334 in another
manner. For no other value of x besides a and B can make
(2 —a) (z— ) vanish; since the product of two quantities cannot
vanish if neither of the quantities vanishes.

The student may naturally ask if the identity

%' +bx +c=a(z-a)(z—f)
holds in those cases alluded to in Art. 323, where the roots of
ax® +bx +c=0 are impossible ; we shall return to this point in
Chapter xxv.

338. The student must be careful to distinguish between a
quadratic equation and a quadratic expression. In the quadratic
equation ax®+bx+c¢=0 we must suppose % to have one of two
definite values, but when we speak of the quadratic ewpression
ax® + bx + ¢, without saying that it is to be equal to zero, we may
suppose 2 to have any value we please.

339. We have

as® + bw+Ac=’-a{x’:+ b—¢+£}
: a a

{ AR B\' 8- dac)
=a (a: 2—'a ;—4a,}—a{(z+—2;) ——_——4(}' j.
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Now first suppose that b'—4ac is megative; then ——— Y -dac

b)'_b'_m

is
T4a*
also negative; hence (x + %a v i8 mnecessarily positive

for all real values of @. In this case, aa®+ bx + ¢ being equal to
the product of @ into some positive quantity must have the same
sign as @, Thus if 3"—4ac be negative, ax’+dz+c has the
same sign as a for all real values of z,

Next suppose that b* — 4ac is zero ; then

az’+bx+c=a(x+£)'.

Here, as before, ax®+ bx + ¢ has the same sign a8 a; in this
case the expression ax'+ bx +c is a perfect square with respect
to 2, and its square root is

-h,ja(a:-!-%).

Last, suppose that b* - dac is positive ; then
a:c’+ba:+c=a{a:+ b "/(6’ 4“)}{ "/(' 4“)}
2a 2a 2a

2a
=a(z—a)(z-B)
where a a.nd B are both real qua.nﬁties, namely,
_—b+,/(b*— 4ac) =b- /- 4ac)
- 2a and f= 2a
The expression @ (z — a)(x— B) must have the same sign as
@ except when one of the factors #—a and 2— B is positive, and
the other is negative; and we shall now shew that this can only
be the case when x lies in value between a and B. Of the two
quantities o — 8 and B —a one must be positive; suppose the
former, so that a is algebraically greater than B. Now if =z is
algebraically greater than a, then z—a is positive, and therefore
also x—B is positive, and if = is algebraically less than B, then
@ — f3 is negative, and therefore also = —a is negative. But if =
lies between a and B, then z— a is negative, and z— 8 is positive.
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For such a value of 2 the sign of the expresmon aa:’+6a:+c is
the contrary to the sign of a. ‘

The conclusion of the investigation of the three cases is this:
whatever real value 2 may have ax*+ bz +¢ and & never differ in
sign, except when the roots of ax®+bx+¢=0 are possible and
different, and z is taken so0 a3 to lie between them.

340. The ro6ts of

L ]
az® + bz +c= Q. are, —-bi“léba——mc)
andtherootsofA
o az’_bw.'.c:O are M_a_ga_c_

1t is obvious that the latter roots are the same as the former with -
their signs changed. Hence if two quadratic equations differ only
in the sign of the second term, the roots of one may be obtained
by changing the signs of the roots of the other.

341. Suppose we want to divide az®+bx+¢ by 2—A. The
first' term of the quotient is ax, and the next term akh+b, and
there is a remainder aA®+ bk +¢. If this remainder vanish, so that
akh®+bh +c¢=0, then % is a root of the equation ax®+bx +¢=0.
Thus the expression ax®+ bx + ¢ is divisible by z—A4 only when
hmarootofthe aquatum ax’+bx+c=0

342. Some pa.rhcular cases of the equa.tlon ax’® + Im+c 0
may now be investigated. The roots of the equation are
b+ J(B - 4ac) —b— J(b°—4dac)
2a 2a d
we will first exarhine the results of supposing a =0.

The numerator of the first root becomes — & + b, that is, 0;

thus this root takes the form g The numerator of the second

root; becomes — 25 ; thus this root takes the form ‘—02—”. If in the

original equation we put a=0, it becomes dx+¢=0, so. that
T. A . 13
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x_—;, and we may arrive at this result from the expression

which takes the form % by a suitable transformation. For mul-

. - s _
tiply both numerator and denominator of —bi"!g;;“—c)- by

—2¢ .

—-c ~b—,/(b*— 4ac)
T L
be transformed by multiplying its numemtor and denominator by

b — /(8" — 4ac) it becomes 5_:/(6'——5’ and the smaller a is

the smaller is the denominator of this fraction, and the greater the
fraction itself: an equivalent result may obviously be obtained
without effecting any transformation of the root. Thus we may
enunciate our results as follows : in the equation ax’+bx+¢=0,
if @ be very small compared with b and c, one root is very large
and the other root is nearly equal to _5’ and the smaller & is,
the larger one root becomes, and the nearer the other root ap-

b +,/(b* — 4ac); thus we obtain

that is,

put & =0, we obtain

343. Next suppose both @ and b to be zero; then the ordi-
nary expressions for both roots take the form g By trans-
forming the roots as in the preceding Article, we shall see that
when a and b are both smali compared with ¢, both roots are very
large, and become greater the smaller & and & are,

344. Last, suppose a, b and ¢ to be zero; then the roots

take the form g In this case, if we transform the roots as in

Art. 342, we shall still obtain the form % ; we may say here that
the value of @ is really indeterminate.
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345. 'We will ‘give an example of the application of the
results of Art. 339,

o' — 2z + 21
[ V I
assume any value we please by suitably choosing the value of .

x'— 2z + 21
62—14

therefore ' — 22 + 21 =y (6x— 14) ;
therefore ' —2(1+3y)x+ 21+ 14y=0.

Let it be required to ascertain if the fraction

Put =y;

By solving the quadratic we obtain
@=1+ 3y /(99" By - 20).
Hence if & is to be real the quantity 9y"— 8y — 20 must be
positive ; that is, 9 (y—2) (y + 19—0) must be positive. Therefore

'y cannot lie between 2 and —%, but may have any other value.
We conclude then that by suitably choosing the value of =, the
fraction %2‘:—;42 may have any value we please, except

values between 2 and -1—9?. ,

EXAMPLES ON THE THEORY 61' QUADRATIC EQUATIONS AND
QUADRATIC EXPRESSIONS,

Resolve the following four quadratic expressions into the pro-
duct of simple factors :

1. 3a*-10z-25, 2. '+ 73x+780.

3. 2z'+x-6. 4. «'—88x+1612.
13—2
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10.

11.

13.

14,

15,

o

16.

EXAMPLES. XXII

- Form the quadratic equation whose roots are 6 and.8.

Form the quadratic equation whose roots are 4 and 5.
Form the quadratic equation whose roots are 1 and — 2.
Form the quadratic equation whose roots are 1 %,/5.

Find the sum, difference, and product of the roots of
- 422+117=0.

For what value of m will the equation 2z*+8z+m=0
have equal roots ¢

If a and B be the roots of #*—px +¢=0, find the value
a B 3
Of.ﬁ-'"; and of a® 4 8%

If « and B be the roots of ax®+bx + ¢ =0, construct the
equatioﬁ whose roots a.re-'l; and %

Shew that the roots of z'+pa:+q’=0 will be rational if
p= k+L,wherep,q,kareanymtionalquantities.

Shew that if az’+bz+¢=0 and a'z"+bz+c' =0 have
a common root, then (a'c — ac’)* = (a8 — ab’) (b'c - ¢b).

bz real, prove that sz;:_ 995 —§ 0 have no real

‘Jn':

value between 111 and 1,

If p be greater than unity, then for all real values of =

. x'— 2z +p* -1
p+1

p-1
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XXIII. SIMULTANEOUS EQUATIONS INVOLVING
- QUADRATICS.

346. We will now give some examples of simultaneous equa~
tions where one or more of the equations may be of a degree
higher than the first; various artifices are employed, the proper
application of which must ‘be learned by expenenoe

(1) Suppose 2'— 2y’ 71, z+y=20.

From the second equation y=20'—x; substitute in the
first, thus ,
- —2(20-2)"=T1;
therefore 2+ 80z — 800 = 71,
therefore | «' — 80x=—871. ) .

From this quadratic we shall obtain z=13 or 67; then from
the equation y= 20— we obtain the corresponding values of y,
namely, y=T7 or —47.

(2) Suppose e+y' =25, ay=12

Here o' +y* =25,
2wy =24;
therefom,byaddmon,
’ @+ %y +y'=25+24=49;
that is, (x+y)=49;
therefore by =uT,

Similarly, by subtraction,
' (z-y)'=26-24=1;
therefore . m—y=wl,
‘We have now four cases to consider ; namely,
z+y=7, z-y= 1; @+y=-T7, z-y= 1;
z+y=71, z-y=-1; =z+y=-T7, x-y=-1
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By solving these simple equations we obtain finally
x=%3, y=w4; oraz==%4 y==3
(3) Suppose -2y’ —4day + 32" =17, y*—a'=16.
Let y =z, and substitute in both equations ; thus
o' (20'-4v+3)=17, % (v'-1)=16;

i;herefore, by division,
2'-4v+3 17
) v—1 16’
therefore ) 30— 64v+48=1Tv"-17;
therefore 150" 640+ 65 = 0.

From this quadratic we shall obtain v=g or 22, ‘Teke the
former =+3; and
SI=W=*5 Agam, f.nkmg the seoond value of v we have
o:’—— therefore, a:—-kg, and y._*%

The artifice here used may be adopted conveniently when the
terms involving the unknown quantities in each equation consti-
tute an expression which is homogeneous and of the second degree ;
see Art. 24. ' ’

(4) Suppose o+ ay— 6y’=24, o+ 3zy—10y" = 32.
Let y = v ; substitute in both equations, and divide ; thus
1+3v—-10s" 32 4

l+v—60" 24 =35
therefore 6v’-50+1=0.

From this quadratic we shall obtain b=% or 31-; The value

o;% we shall find to be inapplicable; for it leads to the inad-

missible result «*x 0 =24. In fact the equations from which the
values of v were obtained may be written thus,

2 (1-20)(1+3v)=24, o (1—20)(l+D5v)=32;
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and hence we see that the value of v found from 1—~2v=0 is

inapplicable, and that we can only have -11—53: =§Q—;,~ which
gives v=%. .
2
Then z’(l-g)(l+l)=24;

therefore 2* = 36 ; therefore x==6; and y =2
(5) Suppose z+y=a, +y' =0

By division, i:{:g;
that is, .x‘—z’y+x’y'—wy'+y‘=-§;
or w‘+y‘—w(z’+y')+z’y’=§.
Now since z+y=a,
. +y'=a'-2xy;
therefore z'+y* + 22" = (a® — 2xy)° = a* — da’xy + 42"y" ;
therefore ot + y* = a* — 4a’zy + 22"y".

By substituting the values of «* + y* and «*+ y* we obtain
S
a* - 4a’zy + 2x"y" —xy (a’ — 2my)+z'y’=% ,
]
that is, 5a'y* — Sa'xy = % —at .

o We may obtain this result also in another way. ' It may be
shewn that _
a*=a*+ 9’ + by (2° + ") + 102"y* (x + y) ;

thus o’ - b* = by (2 + ) + 10az’y" ;
and @’ ="+ >+ 3wy (z +y)

' =a’+y* + Saxy:
therefore a*— b = bay (a® — 3axy) + 10ax’y’,

or bax'y* — ba’zy = b°— a’.
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N\ From this quadratic we can find two values of zy; let ¢
denote one of these values, then we have

.

‘z+y=a, zy=c;
thus (z +y)' — 4oy =a'— 4,
that is, (z—y)'=a"-4c;
therefore T z—y=%,/(a"—40)

Thus since « +y and « — y are known, we can find immediately
the values of  and y. i
0 Or we may proceed thus. Ansumez —-y= z,then since
x+y=a, We obtain :

?:=§(a+z), y=§(a—z).

Substitute in the second of the given equatlons thus
“(a+2)+(a— z)‘ = 320",
therefore 5az* + 10a°2" = 160° — a”.

From this quadratic we may find 2%, and hence 2, that is,
r—vy; a.ndhenoeﬁna.llyzandy
More examples will be found in Chapter Lrv.

EXAMPLES OF SIMULTANEOUS EQUATIONS INVOLVING QUADRATICS.

L 42Ty =148, 3a-y=1L.
2. a:+y=100, zy=2400.
1 1
3. z+y=4, ;+§=1.

4 =+y=T, x’+2f=34.
B z—-y=12, +y'=74

=3
8
|

(=] o =1
8 &
y t
%

. i
g &
1
(]
<
u‘g
o

[ )
oo




10.
11.

12.
13,
14.
15.
16.
17.
18.
19.

20.

21.

22.
23.
24.

29.
30.
31.

EXAMPLES. XXIIL

o +ay+2=T4, 20"+2y+y’'=73,

22 + 3y = 37, 14-3-1;—1;

o' +30y="54, ay+4y'=115.
Pray=15, awy—g’=2.
Pray+4y'=6, * 3" +8y =14
o +zy =12 zy—-2y'=1.
Pgyry=2l, yi- — 22y + 15 =0.
B4y =9,  ay+2y=3.
7o'~ 8wy =159, bz+dy=T.
-2y—y'=1, x+y=2.

z+y z—y 10 ’ _
2=y T zry =3’ x'+y' =45
Tty -y _ 5.

sy ary= o' +y* =20,

ly+126x=y—2, - y— bx= T5xy— 3.

3z + 126y = 3z -y, 3z — -5y ='2-26xy + 3y.

y'— day+20c'+ 3y— 264z=0,
5y'~38zy+ '~ 13y +1056z = o.}

w+y—i¢' 3y—a:=y'.

1
+y= :cy, @ —y= oy

3z

+ 2 +——=16 Se+y+ =23,
CEYTYy T y Y.
4 (x+ y) = 3wy, z+y+z’+y’ 26.
z—y=2, - =8.
z+y=5 & +y*=65.

z+y=11, 2*+3° =100L .
wy(xc+y)=30, ° a’+y’ =35,

201°
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33.
34.
35.
36.
37
38,
39.

40.
41.

42.

43.
44.
45,
46.
47.
48,
49,
50.
51.

52.

b3.

EXAMPLES. XXIIL.

§+—=18, z+y=12

z+y=18, o+ 9y = 4914,

£+Z=9’ 14.1'.:.3..

y = r y 4

o' (z +y) =80, a* (2z — 3y) =80.
1.1 6

:v'y+y’a==20, 54‘——2.

P+y=T+ay, oF+y=6zy-1

o +y' =8, é,+l=%.

<

z+y=4, z‘+y“=82.
x*— y* = 3093, z—y=3.

6:1)’ ' 63/)’_ -
(3-“’/ +(3+x_y ~82, ay=2.

-2y +y'=19, c-ay+y=4

F—ay+y'=T, at+2y'+y'=133.

= +axy +y =49, '+ 2y +y*= 931
Bty -y =84,  2'ealy ey =49,
w(12-ay)=y(oy—3), ay(y+dz—oy)=12@+y-3)
z+y+,J(zy)=14, a'+y +xy=84
e+y—J(zy)="T, ' +y* +xy=133.

z+y="T2, Y+ Yy=6.

z+,/(="-y)=8, x-y=1

] y 7 | _ma
NN () + i) =78

z+y=10, J§+ %=g.




54.

55.

56.

57,

58.
59.
60.

61.

62,

63.
64.
65.

66.

67.

68.

69.

70.
71.

72.

Setg)+ 2 (o-g) =

EXAMPLES, XXIIL
Ja-Jy=2J@),  w+y=10
2(x-1) = +y
Nz-y)’ ay
2" +,/(5y" + 4=*) = 9.

V(@ +2") +2y =8,

LY
;+b-L

o -y =d
z+y=a,
z‘+y‘=l4x’3}’,

a b

st bry
e ay
—_— e
y+b z+a

=4,

[/
-+
@

Q>

xy="0"
o'+ yt =54
z+y=a
1, z+y=a+bd.

a+b
2

z—y=a, -y =0
NE + )+ -y) =29,

=2.

RIK

+

(S

zt _yc =a'

203

_%
15

2ab(a+b)z+y" =aba’+ 2ady, abx+(a+d)y==xy.

=~ z_¥Y_
2@ -y)+ay=1, T-Y-a
sry=av@), s-y=c,/%.

N(@+y)+ Sz -y)= o,
a'—2* y*'—WN\} [a'+2’
Dy R +(:'+zb’

z",".y'_(”"'y):“’

¥+ 6_4’

& +a'/)

=be, Z4¥Y- Tiio
yz=>De, a+b_1’ ate 1.

0

+=+-=9, +

e
Q-
]I

4
y

Qe

J@+9) +J@ - y) = b

zy=ab.

d+yt+e+y—2@+y)=0

=13, 8z+3y=5.
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1 1 1
73. y+z=_, z+2=§» “’+.'/=;A-

4. ayz=a'(y+2)=d@+x)=c"(x+y)
75, :d'+yz=y’+w=c, 2+ oy =a.

_76. %9 z+y) 34(y ) 5 z+y+e=15

11 7 .
71. z+y+z=5+ +.=g = @p=Ll

78. a,*"+y’+z’=z'+y'+z'=x+y+z=l.

79. z@+y+2)=a', y(z+y+2)=0, z(x+y4:z)l=c’.

zy(x+y)+yz(y+2)+ 22 (2 +a) =162,

80. axy+xz+yz=26, h)
sy(x'+y')+yz(y'+»z’)+m(z'+z')=538.}

XXIV. PROBLEMS WHICH LEAD TO QUADRATIC

EQUATIONS,.

347. We shall now solve and discuss some problems which

lead to quadratic equations.

A man buys a horse which.he sells again for £24;

that he thus loses as much per cent. as the horse cost;
the price of the horse.

he finds
required

Let « denote the price in poundS' then the man loses z per

cent. and thus his total loss is mxz, that is, ——
loss is also 22— 24; thus
<
100

«*
100

=x—24;

but this
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therefore x* — 1002 = — 2400,

and z* — 100z + (50)* = 2500 — 2400 =100 ;
hence z—50=12%10,

and . 2 =60 or 40.

Thus all we can infer is, that the price was either £60 or £40,
for each of these values satisfies all the conditions of the problem., -

348, Divide the number 10 into two parts, such that their
product shall be 24,

Let « denote one part, and therefore 10—z the other part;
then

2(10 — ) =24;
therefore z*— 10z =— 24,
and =10z +5' =25 -2 =1;
bence x—-5==%]
and ‘ z=4or 6.

Here although 2 may have either of two values, yet there
is only one mode of dividing 10, so that the product of the two
parts shall be 24 ; one part must be 4 and the other 6.

349. A person bought a certain number of oxen for £80;
if he had bought 4 more for the same sum each ox would have
cost £1 less; find the number of oxen and the price of each. -

Let z denote the number of oien, then 8—0 is the price of each
in pounds; if the person had bought 4 more, the price of each in

pounds would have been _0 thus, by snppomtlon,

LI
.z+4 -

therefore . 80z = 80 (x + 4) — " — 4z,
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therefore o' + 42 = 320,

and o' +4x+2'=320+4=23824;
hence z+2=418,

and « =16 or — 20,

Only the positive value of z is admissible, and thus the number
of oxen is 16, and the price of each ox is £5.

~ In solving problems, as in the proposed example, results will
sometimes be obtained which do not apply to the question actually
proposed. The reason appears to be that the algebraical mode of
“expression is more general than ordinary language, and thus the
equation, which is.a proper representation of the conditions of the
problem, will also apply to other conditions, Experience will
convince the student that he will always be able to seleet the
result which belongs to the problem he is solving, and that it will
be sometimes possible, by suitable changes in the enunciation of
the original problem, to form a new problem, corresponding to any
result which was inapplicable to the original problem. Thus in
the present case we may propose the following modification of the
original problem: a person sold a certain number of oxen for
£80; if he had sold 4 fewer for the same sum, the price of each
ox would have been £1 more; find the number of oxen and the
price of each.

Let x represent the number ; then by the question we shall
have
80 _80
z—-4 =
The roots of this quadratic will be found to be 20 and —16;
thus the number 20 which appeared with a negative sign as a
result in the former case, and was then inapplicable, is here the
admissible result.

350. Find a number such that twice its square increased by
three times the number itself may amount to 65.
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Let 2 denote the number ; then, by the question,
22* + 3z = 65.

The roots of this quadratio will be found to be 5 and — 22

the first value satisfies the conditions of the question. In order to
interpret the second value, we observe, that if we write —z for =
in the equation, it becomes

22" — 32 =65 ;
and the roots of the latter equation are %

found on trial, or may be known from Art. 340. Hence —1-2§ is the

answer to a new question, namely : find a number such that twice
its square diminished by three times the number itself may
amount to 65.

and -5, as will be

351. Divide a given line into two parts, such that twice
the square on one part may be equal to the rectangle contained
by the whole line and the other part.

Let a denote the length of the line, and x the length of one
part, then a—x is the length of the other part; thus, by the
question, h

2'=a(a—-2);.
therefore 22* + ax = a',
ax a'
and W'+?='§',‘
and S+ L. (2 '_a’+a_'_9a'
2 (4 2716 16°
3a
hence z+1_"~=a=.1.,
and m=§or—a.

Here g is the required length, The negative answer sug-

gests the following problem : produce a given line, so that twice
the square on the part produced may be equal to the rectangle
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contained by the given line, and the line made.up of the given
line and the part produced ; the result is, that the part produced
must be equal to the given line.

352. In the exa.mples hitherto given, both roots of the quad-
ratic equation have applied to the actual problem, or to an allied
problem which was easily formed. Frequently, however, it will
be found that only one root applies to the problem proposed, and
that no obvious interpretation occurs for the other.

353. Problems may be proposed which involve more than
one unknown quantity, and thus lead to simultaneous equations;
we will give an example.

Two men 4 and B sell a quantity of wheat for £28. 8.
B sells four quarters more than 4, and if he had sold the quan-
tity 4 sold, would have received £10 for it ; while 4 would have
received 16 guineas for what B sold. Find the quantity sold by
each, and the rates at which they sold it. '

Let 2 denote the number of quarters which 4 sold, and there-
fore 2+ 4 the number which B sold; and suppose that 4 sold his
wheat at y shillings per quarter, and that B sold his at z shillings
per quarter. Then since the va.lue of the wheat sold is 568 shil-
lings, we have

wy+(+4)2=568.........cccerunnnnnne. .

If B had sold the quantity 4 sold, he would have received
200 shillings ; thus

Similarly, @+4)y=3886.....ce0vrrrrrerennne .(3).
From (3) we have zy =336 - 4y; by substitution in (1) we

have

336 — 4y + 200 + 42 =568 ;.
therefore 4(>-y) =32,

and . . - ZB=Y=0ieetrecrsecrnrn T (4).
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From (2) we have

B=
and from (3) we have
336
a:=—y—-—4,
A 200_3%6_,
% y
and B e B):
2y

‘We may now find y and 2 from (4) and (5). Substitute in
(5) the value of z from (4) ; thus

50 84 1:

grE=y U
thereforo 50y = 84 (y-+8) — (" + By),
hence Y ~26y—-672=0,

From this quadratic we shall find y =42 or —16. The former
is the only admissible result ; thus ¢=50; and 2=4.

EXAMPLES OF PROBLEMS.

1. Find two numbers such that their sum may be 39, and
the sum of their cubes 17199,

2. A certain number is formed by the product of three con-
secutive numbers, and if it be divided by each of them in turn,
the sum of the quotients is 47. Find the number.

3. The length of a rectangular field exceeds the breadth by
one yard, and the area is three acres : find the length of the sides.

4. A boat’s crew row 3} miles down a river and back again
in 1 hour and 40 minutes: supposing the river to have a current
of 2 miles per hour, find the rate at which the crew would row in

T. A, 14
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5. A farmer wishes to enclose a rectangular piece of land to
contain 1 acre 32 perches with 176 hurdles, each two yards long;
how many hurdles must he place in each side of the rectangle$

6. A person rents a certain number of acres of land for £84;
he cultivates 4 acres himself, and letting the rest for 10s. an acre
more than he pays for it, receives for this portion the whole rent,
£84. Find the number of acres. )

7. A person purchased a certain number of sheep for £35:
after losing two of them he sold the rest at 10 shillings a head
more than he gave for them, and by so doing gained £1 by the
transaction, Find the number of sheep he purchased.

8. A line of given length is bisected and produced : find the
length of the produced part so that the rectangle contained by
half the line and the line made up of the half and the produced
part may be equal to the square on the produced part.

9. The product of two numbers is 750, and the quotient
when one is divided by the other is 33 : find the numbers.

10. A gentleman sends a lad into the market to buy a shil-
ling’s worth of oranges. The lad having eaten a couple, the
gentleman pays at the rate of a penny for fifteen more than the
market-price ; how many did the gentleman get for his shilling

11. What are eggs a dozen when two more in a shilling’s
worth lowers the price one penny per dozen} '

12, A shilling’s worth of Bavarian kreuzers is more nume-
rous by 6 than a shilling’s worth of Austrian kreuzers ; and 15
Austrian kreuzers are worth 1d. more than 15 Bavarian kreuzers.
How many Austrian and Bavarian kreuzers respectively make &
shilling %

13. Find two numbers whose sum is nine times their differ-
ence, and whose product diminished by the greater number is
equal to twelve times the greater number divided by the less.

14. Two workmen were employed at different wages, and
paid at the end of a certain time, The first received .£4, 16s.,
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and the second; who had worked for 6 days less, received £2. 14s.
If the second had worked all the time and the first had.omitted
6 days, they would have received the same sum. How many days
did each work, and what were the wages of each ? .

15. A party at a tavern spent a certain sum of money, If
there had been five more in the party, and each person had spent
a shilling more, the bill would have been £6, If there had been
three less in the party, and each person had spent eightpence less,
the bill would have been £2.12s. Of how many did the party
consist, and what did each person spend ¢

16. A person bought a number of £20 railway shares when
they were at a certain rate per cent. discount for £1500; and
afterwards when they were at the same rate per cent. premium
sold them all but 60 for £1000. How many did he buy, and wha.t
did he give for each of them !

17. TFind that number whose square added to its cube is nine
times the next higher number,

. 18. A person has £1300, which he divides into two portions
and lends at different rates of ihterest, so that the two portions
produce equal retwrns. If the first portion had been lent at the
second rate of interest it would have produced £36; and if the
second portion had been lent at the first rate of interest it would
have produced £49. Find the rates.of interest,

19. A person having travelled 56 miles on a railroad and the
rest of his journey by a coach, observed that in the train he had
performed a quarter of his whole journey in the time the coach
took to go 5 miles, and that at the instant he arrives at home
the train must have reached a point 35 miles further than he was
from the station at which it left him. Compare the rates of the -
coach and the train, and find the number of miles in the rest of
the journey.

20. A sets off from London to York, and B at the same time
from York to London, and they travel uniformly; A reaches

York 16 hours, and B reaches London 36 hours, after they have:
14—3
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met on the road. Find in what time each has performed the
Jjourney. :

21. A courier proceeds from one place P to another place @
in 14 hours ; a second courier starts at the same time as the first
from a place 10 miles behind P, and arrives at @ at the same time
as the first courier. The second courier finds that he takes half
an hour less than the first to accomplish 20 miles. Find the dis-
tance of Q from P,

- 22, Two travellers 4 and B set out at the same time from
two places P and @ respectively, and travel so as to meet. When
they meet it is found that 4 has travelled 30 miles more than B,
and that 4 will reach @ in 4 days, and B will reach P in 9 days,
after they meet. Find the distance between P and Q.

. 23, A vessel can be filled with water by two pipes; by one
of these pipes alone the vessel would be filled 2 hours soomer
than by the other; also the vessel can be filled by both. pipes
together in 1§ hours. Find the time which each pipe alone would
take to fill the vessel.

24, A vessel is to be filled with water by two pipes. The
first pipe is kept open during three-fifths of the time which the
second would take to fill the vessel ; then the first pipe is closed
and the second is opened. If the two pipes had both been kept
open together the vessel would have been filled 6 hours sooner,
and the first pipe would have brought in two-thirds of the quantity
of water which the second pipe really brought in. How long would
each pipe alone take to fill the vessel?

25. A certain number of workmen can move a heap of
stones in 8 hours from one place to another. If there had been
8 more workmen, and each workman had carried 51bs. less at a
time, the whole work would have occupied 7 hours, If however
there had been 8 fewer workmen, and each workman had carried
111bs. more at a time, the work would have occupied 9 hours.
Find the number of workmen and the weight which each carried
at a time. ‘
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XXV. IMAGINARY EXPRESSIONS,

354. Although the square root of a negative quantity is the
symbol of an impossible operation, yet these square roots are fre-
quently of use in Mathematical investigations in consequence of a
few conventions which we shall now explain.

) 355. Let a denote any real quantity; then the square roots
of the negative quantity —a® are expressed in ordinary notation
by =,/(-a’). Now —a* may be considered as.the product of
a® and —1; so if we suppose that the square roots of this product
can be formed, in the same manner as if both factors were posi-
tive, by multiplying together the square roots of the factors, the
square roots of —a® will be expressed by +a,/(-1). We may
therefore agree that the expressions & ,/(— a) and = a ,/(— 1) hall
be wnmdered equivalent. Thus we shall only have to. use one
imaginary expression in our investigations, namely, ,/(—1).

356. -Suppose we have such an expression as a+B,J(—- 1),
where a and B are real quantities. This expression may be said
to consist of a real part a and an imaginary part 8,/(-1); or on
account of the presence of the latter term we may speak of the
whole expression as imaginary. When B is zero, the term
BJ(—1) is considered to vanish; this may be regarded then asg
another convention. If a and 8 are both zero, the whole expres-
sion vanishes, and not otherwise.

357. By means of the conventions already made, and the
additional convention that such terms as 8,/(—1) shall be subject
to the ordinary rules which hold in Algebraical transformations,
we may establish some propositions, as will now be seen.

358, In order that two imaginary expressions may be equal,
it is mecessary and suffictent thattksrealpartaahouldbcequal
and that the coefficients of J(— 1) should be equal, . X
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For suppose  a+B,/(-1)=y+8./(-1);
then, by transposition, a—y + (8-8) ,/(~1)=0;
thus, by Art. 356, a-y=0, and B-38=0;
that is, a=4y, and B8=32.

Thus the equation

a+BJ=1)=y+3J(-1)

may be considered as a symbolical mode of asserting the two
equalities a =y and 8.=23 in one statement.

359. Take now two imaginary expressions a+f,/(—1) and
y+8,/(-1), and form their sum, difference, product, and quotient.

Their sum is ‘

a+y+(B+8) /(-1
If the second expression be taken from the first, the re-

mainder is
a=y+(B-8) J(-1)
Their product is
{o+ BN(-DHy+8 V(- 1)} =ay—B8+(ad+By)J(-1) ;
for /(- 1) x /(= 1) is, by supposition, — 1.
The quotient obtained by dividing the first expression by the

second is -
a+B,/(-1)
y+3J/(=1)
This may be put in another form by multiplying both numerator
and denominator by y—38,/(—1). The new numerator is thus
ay + B8+ (By —ad) J(-1);
and the new denominator is y*+ 8'; therefore
a+B,/(-1) _ “'7"'38 ﬁY ad ,,/(—1)
Y VS ) el
360. We will now give an exa.mple of the way in which
imaginary expressions occur in Algebra. Suppose we have to
solve the equation #*=1. 'We may write the equation thus,
@-1=0;
or in factors, © (@-1)(@"+x+1)=0.
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Thus we satisfy the proposed equation either by putting
#—~1=0, or by putting «'+2+1=0. The first gives x=1;
the second may be written

e+x==1,
therefore @« +x+(2) ._-1=__
1 3
therefore x+§=a.\/(__)=.|=*/?~/(_1);
1. 3
and x=_§*~é_,/(_1),
Thus we conclude that if either of the imaginary expressions

last written be cubed, the result will be unity. This we may
verify ; take the upper sign for example, then

{-3+5 D) = (-5) +3(-3) FvED
+3(-) {Lven) + L ven).

Now (_.%).=_1,

(-3 fven-3 R ven-2E v

DD D5
(2 s-n) = {5 v v Fuen

N N S \ELL LN Y
Thus the result is unity.

If 2’=1, we have m:(l)*; it appears then that there are
three cube roots of unity, namely, 1 and-%-h?*é—:3 JEI.
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361. We have seen in Art. 337, that the quadratic expression
az’ + b + ¢ is always identical with & (z—p) (z—g), where p and
are the roots of the equation axz'+bdx+c=0. If the roots are
imaginary, p and ¢ will be of the forms a=f,/(—1); thus we
have then

ax’+bz+re=afx—a-B . J(-1)}{x-a+B.J(-1)}

This will present no difficulty when we remember the conven-
tion that the usual algebraical operations are to be applicable to
the term 8 ,/(~1). For the second side of the asserted iden-
tity is .

a{(z—a)'+B%},  that is, a{x’—-2az+a"+ 8%},
and from the values of « and 8 we have
' b
2a=_5’ and a’+ﬁ'=£;
thus the second side coincides with the first.
362. Two imaginary expressions are said to be conjugate when

they differ only in the sign of the coefficient of ,/(—1). Thus
a+B,/(-1) and a— B,/(— 1) are conjugate.

Hence the sum of two conjugate imaginary expressions is real,
and so also is their product. In the above example the sum is
2a, and the product is a* + .

363. The positive value of the square root of a*+ 8 is called

the modulus of each of the expressions
a+Bu/(=1) snd a=B/(-1).

From this definition it follows that the modulus of a real

quantity is the numerical value of that quantity taken positively.
" In order that the modulus ,/(e*+ 8*) may vanish, it is neces-

sary that am (0 and 8=0; in this case the expressions
- a+BJ(=1) and aB(-1)
vanish, And conversely, if these expressions vanish, then a=0
and 8= 0, and thus the modulus vanishes.
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364, If two imaginary expressions are equal, their moduli
are equal. It is not however necessarily true, that the expressions
are equal if the moduli are equal.

365; The modulus of the product of a+f8,/(~1) and
y+8,J(-1) is
Vi(ay— BO)'+ (By+ad)}; (seo Art. 359).
But  (ay-BY)"+(By+ad)'=(a"+£) (Y +¥);
thus the modulus is
Ja+ B x 0+ 8)
Hence the modulus of the product of two imaginary expres-
sions 18 equal to the product of their moduli.
Therefore the product of two imaginary expressions cannot
wvanish if neither factor vanishes, N
It will follow from this that the modulus of the quotient of
two imaginary expressions is the quotient of their moduli. This
can also be shewn by forming the modulus of the-expression for
the quotient given in Art. 359,

366. It is often necessary to consider the powers of \/(—1).
‘We may form them by successive multiplication ; thus,

WEDY =D, WEDY=-1,
WEDP =D x /(1) =-d(-1),  {JEDF=L
If we proceed to obtain higher powers we shall have a re-
currence of the results ,/(-1), —1, — /(~1), 1. We may then
express all the powers by four formul®, For every whole number
must be of one of the four forms 4n, 4n+1, dn+ 2, 4n+3,
according a8 it is exactly divisible by 4, or leaves, when divided
by 4, a remainder 1, 2, 3, respectively. And
WEDF =1, {JEDI =),
WEDF==1, VD == J(-1)
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367. The square root of an tmaginary expression of the form
a + B /(= 1) may be expressed in a similar form.
For suppose  y/{a+ B./(- D} =z +y./(=1);
then a+B(-1)={z+y J(-1)}=2"~y"+ 22y J(-1)
Hence, by Art, 358,
B Y =i (D),
2§y =Bt 2);
therefore from (1) and (2)
(=" +y)f =a"+ B,
thus P +Y =@+ e (3).
From (1) and (3) we obtain ’
P +B) +a), ¥ =o'+ ) a};
e { J +2B') + a}i’ you {J(a' +2B') —a i.

hence

Since the values of « and y are supposed real, z* + y* is posi-
tive, and thus the positive sign must be ascribed to the quantity
J(a*+ B%). And since the values of # and y must satisfy the
equation 2zy =B, they must have the same sign if B be positive,
and different signs if B be megative. On account of the double
sign in the values of z and y, We see that a+f8,/(—1) has two
square roots which differ only in sign.

. 368. 'We may obtain the square roots of = ,/(—1) by sup-
posing that @=0 and B=s1 in the results of the preceding
Article. Thus we shall obtain

JirJe D= 2D, g e VD,
If we suppose that 2*=-—1, we deduce 2*=+,/(-1); thus

z=2 J{&,/(-1)}. And since 2*=—1, we have z=(-1)}. Thus
there are four fourth roots of —1, namely, the four expressions




.EXAMPLES, XXYV. 219

1 /(- .
oontamed in = —3&— There are also four fourth roots of 1,

‘since if we put z —l we find 2*=«1, and z-*,/l or
z =1 ,/(—1). Similarly there are eight eighth 1oots of I or —-1
.and 8o on,

MISCELLANEOUS EXAMPLES.

Al Simpli a’ b c'
e o e ¥ s R 7y B P y ey
) o 6=b c—d _
2. Hm+m—0’ shew that
a—d _b-e and 2F° _ b+d
l+ad 1+bc l—ac 1-0d"
3. Shew that

a®+ 0 + ¢ — 3abe = .
3{@—b+@®-c)f+(c—a)t{a+b+dc},
@+ 8+ &+ Aabe=
(@+d+cf—3{a(d—c)+b(c—a) +c(a—-0)}
, (a+b+c)’~27abec= .
3 {(@+d+T7)(a~b) '+ (b+c+ Ta)(b—c)' +(c+a+Tb) (c~a)},
9 (@ +8°+ ) —(a+b+of =
(4a+ 4B +¢) (a—B) + (4b+ de+ @) (B — &)" + (4e + 4a + B) ¢ —a)".

. 4. Shew that if a+b+c¢ is zero the following expression is

also zero,
a® b* c*

Sa’+ be +26’+ca+2c'+ab—l°

5. If the square root of the product of two quantities is
rational, shew that the square root of the quotient obtained by
dividing one by the other is also rational. .
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6. Extract the square root of {1 +«} {1+ 2"+ 2(1-2").,\/z}.

7. Express in the form of the sum of two simple surds ths
roots of the equation &*- 2az"+ 5"=0.

8. Express in the form of the sum of two simple surds the
roots of the equation 4«*—4 (1 +n')a’"+n's*=0.

9. By i)erforming the operation for extracting the square
root, find a value of & which will make z*+ 62*+ 112"+ 3z + 31

@ perfect square.

10. Shew that if «*+aa®+bx"+cx+d be a perfect aqua.re,
the coefficients satisfy the relations

8¢=a (4b-a") and (4b —a")'=64d.
11. If the values of , ¥, «, " be all possible, and
l+ad’ +yy'=J1+2+¢)J(1+2"+y"),
shew that z=o and y=9.
12, Shew that the equation
a't* (- )’ + a'd* (y - ¥)* + (b°2" + a'y* — a'd*) (02" + @” —a'.b')=0
is equivalent to the two a"0* — a"yy'— b%e2’ = 0 and 2y’ — 2’y =0.

13, A man sells a horse for £24, 12s., and loses 18 per cent.
on what the horse cost him : find the original cost.

14. Divide the number 16 into three such parts that the dif-
ference of the two less shall be the square root of the greatest, and
the difference of the two greater shall be the square of the least.

15, Shew that
{'_ 1 +§/(- 3)}“ N {— 1 —5/(— 3)}"

isequaltn2ifnbeamultiplé of 3, and equal to —1 if n be any
other integer,
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Solve the following equations :

z+1 z+2 _x+3
z-1 -2 “2-3°

16.

17. —-—=——_—+m’—z.

1. ( -é)( -%)( —g)=(m—l)(x—2)(ac—3).

19. 2'— 82"+ 122"+ 160-16=0.

20. J(2z-1)+,/(8xz~2) = J(4x—3) +,/(6z - 4).
21, 2b{J(x+a)-b}+2c{/(x—a)+c}=a.

22. {J(a+ z) —Ja} {J(a— =)+ \Ja} = nz.

23. z+y=a+d, i;+§= .

a_ by (a+d)e
a+x b+y a+b+ec’

25. 66-’1 =5=6(1+1). ‘
@ 2"y

26. x(bo—=zy)=y (vy - ac), zy(ay+ba:—wy)=abc@+y—c).

z+y=c

b

1 N1 1 9
.2. (?—3y+—z-)(z+z)—6, (x+;)§=9, —+—+;=§.

28. (w+2)(y+2)=b+c—a,
('v+y)(z+ac)=c.+a— b,
(w+2)(e+y)=a+b—g,

v+a'+y' +2"=3(a+b+c).
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XXVI. RATIO.

369. Ratio is the relation which one quantity bears to
another with respect to magnitude, the comparison being mads
by considering what multlple, part, or parts, the first quantity is
of the second.

Thus in comparing 6 with 3, we observe that 6 has a certain
magnitude with respect to 3, which it contains twice ; again, in
comparing 6 with 2, we see that 6 has now a different relative
magnitude, for it contains 2 three times; or 6 is greater when
compared with 2 than it is when compared with 3. ’

370. The ratio of a to b is usually expressed by two points
placed between them, thus, @ : b; and @ is called the antecedent
of the ratio, and b the consequent of the ratio.

371. A ratio is measured by the fraction which has for its
numerator the antecedent of the ratio, and for its denominator
the consequent of the ratio. Thus the ratio of a to b is measured

by;-; then for shortness we may say that the ratio of a fo b is
a . a :
equaltos,-orz.‘ss.
872. Hence we may say that the ratio of a to b is equal to

the ratio of ¢ to d, when & 3 d

373. 1If the terms of a ratio be multiplied or divided by the
same quantity the ratio is not altered.

For 3=, (Art. 135).

374. We may compare two or more ratios by reducing the
fractions which measure these ratios to a common denominator.
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Thus suppose one ratio to be that of a to b, and another ratio to
be that of ¢ to d; then the first ratio g=g, and the second

ratio %=% Hence the first ratio is greater than, equal to, or

less than, the second ratio, according as ad is greater than, equal
to, or less than be.

375. A ratio is called a ratio of greater inequality, of less
inequality, or of equality, according as the antecedent is greater
than, less than, or equal to, the consequent.

376. A ratio of greater inequality is diminished, and a ratio
of less inequality i8 increased, by adding any quantity to both
terms of the ratio.

Let the ra.tio be g, and let a new ratio be formed by adding

2 to both terms of the original ratio: then ls greater or less

b(a+ax) a(b+z)
thanb,wcordxngasb(b+ )mgreaterorlessthan (b+w)’ that
is, according as b(a+x) is greater or less than a (b+z); that is,
according as b is greater or less than xa ; that is, according as b

is greater or less than a.

377. A ratio of greater inequality is increased, and a ratio of
less inequality is diminished, by taking from both terms of the ratio
any quamtity which is less than each of those terma.

Let the ratio be ‘—;, and let a new ratio be formed by taking
2 from both terms of the original ratio: then ‘Z_;’ is greater or

b-—
lessthang,aocordingasgg :;mgreaterorlessthang((: :;,
that i3, according as b (@ — «) is greater or less than a (b — ) ; that
ls,aceordmgasbwlslessorgreaberthmaw that is, according as
b is less or greater than a. ‘
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378. If the antecedents of any ratios be multiplied together
and also the consequents, a new ratio is obtained, which is said to
be compounded of the former ratios. Thus the ratio ac : bd is
said to be compounded of the two ratios ¢ : b and ¢ : d.

379. The ratio compounded of two ratios has sometimes been
called the sum of those two ratios. 'When the ratio a : b is ecom-
pounded with itself, the resulting ratio a* : " is sometimes called
the double of the ratio @ : 5. Also the ratio a®: &° is called the
triple of the ratio @ : b. Similarly, the ratio @ : b is sometimes

. 1 1
said to be half of the ratio a* : 3", and the ratio a* : b* is some-
times said to be ¢ of the ratio  : b

This language, however, is now not used ; the following terms
are in conformity with it, and some of them are still retained.
The ratio a* : b* is said to be the duplicate ratio of @ : b, and
the ratio a® : 8° the triplicate ratio of @ : b. Similarly, the ratio

@ : /b is called the subduplicate ratio of a : b, and the ratio
Ya : Yb the subtriplicats ratio of a : 5. And the ratio a¥ : b}
is called the sesquiplicate ratio of @ : b.

380. If the consequent of the preceding ratio be the antecedent
of the succeeding ratio, and any number of such ratios be taken, the
ratio which arises from their composmonwthatqfthcﬁrstam
dent to the last consequent.

Let there be three ratios, namely a: 5, b : ¢, ¢ : d; then the
compound ratio i8 axbdxe¢ : bxexd (Art. 378), tha.t is, @ : d
Similarly, the proposition may be established whatever be .the
number of ratios,

381. A ratio of greater inequality compounded with another
ncreases st, and a ratio of less inequality compounded with another
diminishes it.

Let the ratio «:y be compounded with the mtioa:b; the
compound ratio is wa : yb, and this is .greater or less than the
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ratio a : b, mordmgas.%—mgreaterorlesstha.nb,thatis,

according as « is greater or less than .

382. If the difference between the antecedent and the consequent
qfaratw be small compared with either qfthem,thcmtwqfthm‘
squares is nearly obtained by doubling this difference.

Let the proposed ratio be a+«: a, where « is small compared
with a; then a’+2ax +4a": a’ is the ratio of the squares of the
antecedent and consequent. But « is small compared with @, and
therefore a* or xxa is small compared with 2a x 2, and much
smaller than @ x a. Hence a'+ 2ax : o, that is, a +22:a, will
nearly express the ratio (a +)* : a"

Thus the ratio of the square of 1001 to the square of 1000 is
nearly 1002 : 1000. The real ratio is 1002:001 : 1000, in which
the antecedent differs from its approximate value 1002 only by
one-thousandth part of unity.

383. Hence we may infer that the ratio of the square root of
@+ 2x to the square root of @ is the ratio @+ : a nearly, when
z is small compared with a. That is; f the difference of two
quantities be small compared with either of them, the ratio of their
square roots i8 nearly obtained by halving this difforence. .

In the same manner as in Art. 382 it may be shewn when z is
small compared with @, that & + 3z : a is nearly equal to the ratio
(a+x)°:a’, and a+4x: a is nearly equal to the ratio (a +2)*: at.

Tr.se results may be generalised by the student when he is
acquainted with the Binomial Theorem.

384. We will place here a theorem respecting ratios which
is often of use.

Supposethat '-=— f,then each of these ratios is equal to

(I; ++______qq;: :; Wwhere p, ¢, r, n are any qua.ntmes whatever,

T. A, 16
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therefore  p (kb)"+ ¢ (kd)" +r (kf)" = pa* + gc" + re’;

pa+qc +re® - pa® + gc” + re” \;
therefore "= =gbr gd 1 and & Frgd )

The same mode of demonstration may be applied, and a gimilar
lmm®MwLﬂm&mmmmmmmemm;§§
given equal. It may be observed that p, g, , n are not neces-
sarily positive quantities.

As a particular example we may suppose n =1, then we see
that if $=%-¢ £ th patgotre

3= feacho esemtloelsequaltopb+qd+'f,
andthenasa.specmleasewe may suppose p=g¢=r, so that each
atc+e

of the given equal mtlosmequaltob+d+f

385. Suppose that we have thres unknown quantities z, y, 2
connected by the fwo equations
ax+by+cz=0, az+dy+cz2=0;
these equations are not sufficient to determine the unknown quan-
tities, but they will determine the ratios subsisting between them.
For multiply the first equation by ¢/, and the second by ¢, and
subtract: thus
(ac’ —a’c)z + (b - b'c)y=0;
z y
b —bec cd —ca’ .
Again, multiply the first equation by &', and the second by b,
and subtract: thus we shall obtain
z z
b/—bc ab—ab’
Hence we may write the results in this form :
x y 2
b/ -0 oa-ca ab-ab

therefore
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These results are very important, and should be carefully re-
membered ; the second denominator may be derived from the first,
and the third from the second, in the manner explained in
Art. 211.

Denote the common value of these fractions by &; then

x=k(bc—b'c), y=k(ca’'—ca), z=k(ab'—a'd).

Now suppose that we have also & third equation connecting
the unknown quantities #, y, 2; then by substituting in it for
x, y, » the expressions just given, we shall obtain an equation
which will determine %: thus the values of z, y, z become
known. :

Suppose, for example, the third equation is

'+ my* + n*=1,
then % is determined by
E {l(bc' - b'c)* + m(ca’— ca)’ + n (ad' — a'b)’} = 1.

EXAMPLES OF RATIO.

1. Write down the duplicate ratio of 2 ; 3, and the sub-
duplicate ratio of 100 : 144,

2. 'Write down the ratio which is compounded of the ratios
3:5and 7:9.

‘3. Two numbers are in the ratio of 2 to 3, and if 9 be added
to each they are in the ratio of 3 to 4. Find the numbers.

4. Bhew that the ratio @ :b is the duplicate of the ratio
a+ec:b+cif i=ab.

5. There are two roads from 4 to B, one of them 14 miles
longer than the other, and two roads from B to C, one of them
8 miles longer than the other. The distances from 4 to B and
from B to C' along the shorter roads are in the ratio of 1 to 2,
and the distances alongthe longer roads are in the ratio of 2 to 3
Determine the distances.

15—2

L
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6. Solve the equations

aw+by=cz+aa:=by+q=z+y+’.
cz by ax

7. Prove that if BH %" _ Gt ar Gt 4T , each of these
a,+ay a,+ay Ta+ay’

ratlosmequaltol z’ supposmga +a, + a, not to be zero.

a-b b—c c—a a+b+e
= . = = f
8 If ayibs bav + g o , then each o

these mtios=———l——, supposing a + b + ¢ not to be zero.

T+Y+2
ay ~bx cx—az bz—cy z y
9 Shewthatlf = = ’then.‘.:_:_
b ) a b
0. 1 422 b=¥_ oo 0=¢  then each of these ratios
a-a’ V-0 -
_ab—ab  b'-be  cd —c’a a+btc—(a+b +¢)
TaT—-ab T be—-b¢ ca—ca a+b’+c’—(a"+ ¥+’

11. Solve the equations
22 +y—2:=0, Te+6y—92=0, @+y" +2°=1728.
12. Solve the equations '
azx + by +cz=0, bex + cay+abz=0, xyz+abc(a®z+b"y +c2)=0.

XXVIL. PROPORTION.

386. Four quantities are said to be proportionals when the
first is the same multiple, part, or parts of the second, as the

thlrd is of the fourth; that is, when E: 3’ the four quantities

a, b, ¢, d, are called proportionals. This is usually expressed by
saying, a is to b as ¢ is to d, and is represented thus, a:b.::¢c:d,
or thus, a :b=¢:d.
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The terms a and d are called the extremes, and the terms
b and ¢ are called the means.

387. When four quantities are proportionals, the product of
the extremes 18 equal to the product of the means.

Let a, b, ¢, d be the four quantities; then since they are pro-
portmna.ls—-- (Art. 386); and by multiplying both sides of

the equation by bd, we have ad = be.

Hence if the first be to the second as the second is to the third,
the product of the extremes is equal to the square of the mean.

388. If any three terms in a proportion are given, the fourth
may be determined from the equation ad = be.

389. If the product of two quantities be equal to the product
of two others, the four are proportionals; the terms of either
product being taken for the means, and the terms of the other
product for the extremes.

Let oy = ab; divide by ay, thus,'; :-I;
or #:a::b:y(Art. 386).
390. Ifa:db:ic:d and ¢:d:: e:f, then
a:b:e:f
a ¢ ¢ )
Beca.use Z—=z&nd2=7 therefore $=:f,
or a:bue:f

391. If foyr quantities be proportumalc they are proportionals
when taken inversely.

If a:b:ic:d then b:a::d:ec

For %':f—i; divide unity by each of these equal quantities,
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392. If four quantities be proportionals, they are proportionals
when taken alternately.
If a:b:c:d then a:ec:b:d.

; multiply by 5, ; thus 2 = g ;

For g = 3
or a:cub:d

Unless the four quantities are of the same kind the alter-
nation cannot take place; because this operation supposes the
first to be some multiple, part, or parts, of the third. One line
may have to another line the same ratio as one weight has to
another weight, but there is no relation, with respect to magni-
tude, between a line and a weight. In such cases, however, if the
four quantities be represented by numbers, or by other quantities
which are all of the same kind, the alternation may take place.

393. When four quantities are proportionals, the first together

wuhtheaecondwtothesocondasthathzrdtogothermththefouﬂh
18 to the fourth.

If a:buc:d, then a+b:5:c+d:d.

For;—: 5 add unity to both sides ; thus
a c . a+bdb c+d
z+l=z+1, thatlﬂ, T=T,

or a+b:bc+d:d

This operation is called componendo.

394. Also the excess of the first above the second s to the
second as the excess of the third above the fourth is to the fowrth.

For -2 ; subtract un.iﬁy from both sides ; thus

b d
a ¢ . a-b ¢-d
pol=glithatds e =g
or a-b:bune-d:d

This operation is called dividendo.
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895. Also the first is o the excess of the first above the second
as the third 18 to the excess of the third above the fourth.

By the last Article, “_;..9___‘;"’,
a ¢
therefore a—— x-l—)- =c;§xé’ or .a_—b,-_—_?:_é;
a d ¢ a ¢
or a-b:a ::c—-d:e¢
and inversély, a:a-bzuc:c—d

This operation is called convertendo.

396. When four quantities are proportionals, the sum of the
Sirst and second is to their difference as the sum of the third and
JSourth is to their difference.

If a:b:c:d, then a+b:a-b:c+d:c—d.

By Art. 393, %5’:5*;"’,
and by Art. 394, ‘ngj:%l;
therefore .'%E-_;_“._;l’;%f%_#;
or a+b :a-bc+d: c—d.

397. When any number of quantities are proportionals, as one
antecedent 13 to its consequent, 8o is the sum of all the antecedents to
the sum of all the consequents.

Let ‘a:b::c:d.::c:f;
then a:ba+crer brd+ f. !
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For ad=0b, and af=be (Art. 386),
also ab=Dba; hence ab+ad+af=ba+bc+be;
that is, ad+d+f)=b(a+c+e)
Hence, by Art. 389, a : b6 :: a+c+e : b+d+f
Similarly the proposition may be established when more quan-
tities are taken. .

398. When four quantities are proportionals, if the first and
second be multiplied, or divided, by any quaniity, as also the third
and fourth, the resulting quantities will be proportionals,

Let a:b:c:d then ma : mb :: ne : nd.

For b d’ therefore b = nd’
or ma : mb :: ne : nd.

399. If the first and third be multiplied, or divided, by any

quantity, and also the second amd fourth, the resuliing quantities
will be proportionals.

Let a:buc:d, then ma : #b :: me : nd.

a ¢ ma me ma mec

For 5=a’ therefore T—T’and;bf i
or : ma : nb :: me : nd.

400. In two ranks of proportionals, if the corresponding terms
be multiplied together, the products will be proportionals.

Let a:bdbue:d,
and 6:fug:h
“then as : bf :: cg : dh.
For g:zmd.;.:%; therefo %‘.:(—;‘;"-;
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This is called compounding the proportions., The proposition
is true if applied to any number of proportions.

401. If four quantities be proportionals, the like powers, or
roots, of these quantities will be proportionals.

Let a:b::c:d,‘ then a* : 8" :: ¢* : d~

Forz—d,therefo b d,,wherenmaybe whole or frac-
tional ; thus

a bt dn

402 If a : b5 b :¢ thena:c::a’:b’.

a b a a a b
Forz_a, multlplybyb,thusbxz.—_bx;,
. ad a
that is, ool
or a:c¢cua': b

The three quantities @, b, ¢ are in this case said to be in
continued proportion; and b is said to be a mean proportional
between a and e.

403. Similarly we may shew thatifa : 6 :: b : ¢ :: ¢ : d, then
a:d:a’:b. Here the four quantities a, b, ¢, d are said to be
in continued proportion.

404. It is obvious from the preceding Anrticles, that if four

quantities are proportionals, we may derive from them many
other proportions. 'We will give another example.

Ifa:bd:c:d then
. ma +nb : pa+ gb :: me+nd : pe+qd.

ma me
For 5=E, thel‘efol‘e-z ‘—7-,
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add n to both sides ; thus

ma+nb mo+nd

b  d
Similarly pa+gb _potqd
: : ) d
ma+nb pa+gh me+nd pe+ed.
Hence A S S i
. ma+nb  me+nd
that is, pated ~porgd’
or ma+nb : pa+qb :: me+nd: pc+qd.

405. In the definition of Proportion it is supposed that one
quantity is some determinate multiple, part, or parts, of another ;
or that the fraction formed by taking one of the quantities as a
numerator, and the other as & denominator, is a determinate
fraction. This will be the case whenever the two quantities have
any common measure whatever. For let # be a common measure
of @ and b, and let @ = mx and b =nx ; then

where m and n are whole numbers.

406. But it sometimes happens that quantities are tncom-
mensurable, that is, admit of no common measure whatever. If,
for example, one line is the side of a square, and another line is
the diagonal of the same square, these lines are incommensurable.

In such cases the value of g cannot be expressed by any fraction

% where m and n a.re whole numbers ; yet a. fraction of this kind
may be found which will express the value of g to any required
degree of accuracy. :
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For let b=rnx, where n is an integer; also let a be
greater than maz but less than (m +1)z; then ; is greater

m+1

than g, but less than Thus the difference between =

b
and 2 is less than }‘ And since nz="b, when z is diminished
n is increased and %; is diminished. Hence by taking  small
enough, % can be made less than any assigned fraction, and

thereforo the difference between — and 7 can be made less than

any assigned fraction.

407. If c and d as well as a and b are incommensurable,

and if when - 3 lies between nmdm+l then%alsoliesbo—
tween %" ar +1 however the numbers m and n are increased,
a . c

For if g and 7: are not equal, they must have some assignable

m+1
n

difference, and beca.use each of them lies between g and

this difference must be less than :i. But since n may, by sup-
position, be increased without limit, ;l-‘ may be diminished without
limit ; that is, it mn.ybe made less than any assigned magnitude ;
therefore %' and :1; have no assignable difference, so that we may

say tha 3 = 3 Hence all the propositions respecting propor-
tionals are true of the four quantities a, 3, ¢, 4.
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408. Tt will be useful to compare the definition of proportion
which has been given in this Chapter with that which is given in
the fifth book of Euclid. The latter definition may be stated
thus ; four quantities are proportionals when if any equimultiples
be taken of the first and third, and also any equimultiples of the
second and fourth, the multiple of the third is greater than
equal to, or less than, the multiple of the fourth, according as the
multiple of the first is greater than, equal to, or less than, the
multiple of the second.

‘We will first shew that the property involved in Euclid’s
definition follows from the algebraical definition.

For suppose & : b :: ¢ : d; then 5—d’ therefore —b—=£-;
Hence pc is greater than, equal to, or less than-¢d, according as
pa is greater than, equal to, or less than gb.

409. Next we will shew that the property involved in the
algebraical definition follows from Euclid’s. Let a, b, ¢, d be four
quantities which are proportional according ta Euclid’s definition :
thenshallg=§. Forifgbenot equal to s, one must be
greater than the other, and it will be possible to find some fraction

which lies between them, Suppoe‘e g greater tha.n;i; and let%

lie between them. Then “isgreater tha.ng; therefore ¢a is

b
greater than pb : andsislessthans; therefore g is less than pd.
Thus a, b, ¢, d are not proportionals according to Euclid’s defini-
tion ; which is contrary to the supposition. Therefore g amds
cannot be unequal ; that is they are equal.

410. It is usually stated that the common algebraical defini-

tion of proportion cannot be used in Geometry, because there is no
method of representing geometrically the result of the operation
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of division. Straight lines can be represented geometrically, but
not the abstract number which expresses how often one straight
line i8 contained in another. But it should also be noticed that
Euclid's definition is rigorous and can be applied to incommen-
surable as well as to commensurable quantities, while the alge-
braical definition is, strictly speaking, confined to the latter quan-
tities. Hence this consideration alone would furnish a sufficient
reason for the definition adopted by Euclid.

EXAMPLES OF PROPORTION.

1. The last three terms of & proportion being 4, 6, 8, what is
the first term ?

2. TFind a third proportional to 25 and 400.

3. If 3, =, 1083 are in continued proportion, find z.

4. If 2 men working 8 hours a day can copy a manuscript in
32 days, in how many days can x men working y hours a day
copy it ¥,

5. If « and y be unequal and « have to y the duplicate ratio
of z+2z to y+2, prove that z is & mean proportional between z
and y.

8
6 Ifa:b:p: q,thena+b’ paw AL wpt+gt:

l

P + 's

7. If four quantities are proportiona.ls, and the second is a
mean proportional between the third and fourth, the third will be
a mean proportional between the first and second.

8. If

(@+dbtet+d)(@—-b—c+d)=(a-d+c—d)(a+b— c—d),

prove that a, b, ¢, d are proportionals.

9. Shew that when four quantities of the same kind are pro-
portional, the sum of the greatest and least is greater than the sum
of the other two.
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10. Each of two vessels contains a mixture of wine and
water ; a mixture consisting of equal measures from the two
vessels contains a8 much wine as water, and another mixture
consisting of four measures from the first vessel and one fiom
the second is composed of wine and water in the ratio of 2:3.
Find the proportion of wine and water in each of the vessels.

11. A4 and B have made a bet; the money which A stakes
bears the same proportion to all the money 4 has as the money
which B stakes bears to all the money B has. If 4 wins he will
have double what B will have, but if he loses, B will have three
times what 4 will have. All the money between them being
£168, determine the circumstances.

12. If the increase in the number of male and female crimi-
nals be 1-8 per cent., while the decrease in the number of males
alone is 46 per cent., and the increase in the number of females
is 9'8; compare the number of male and female criminals re-

spectively,

XXVIII. VARIATION.

411. The present Chapter consists of a series of propositions
connected with the definitions of ratio and proportion stated in a
new phraseology, which is convenient for some purposes.

412. One quantity is said to vary directly as another -when
the two quantities depend upon each other, and in such a man-
ner that if one be changed the other is changed in the same
proportion.

Sometimes for shortness we omit the word directly, and say
simply that one quantity varies as another. .

413, Thus, for example, if the altitude of a triangle be in-
variable, the area varies as the base; for if the base be increased
or diminished, we know from Euclid that the area is increased or

.
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diminished in the same proportion. We may express this result
by Algebraical symbols thus: let 4 and & be numbers which
represent the areas of two triangles having a common altitude, and
let B and b be numbers which represent the bases of these tri-

angles respectively ; then ;—2=€. And from this we deduce
%=%’, (Art. 392). If there be & third triangle having the same
altitude as the two already considered, then the ratio of the num-
ber which represents its area to the number which represents its
baso will also be equal to. Puty=m, then%:m and 4 =mB.
Here 4 may represent the area of any one of a series of triangles
which have a common altitude, and B the corresponding base,
and m remains constant. Hence the statement that the area
varies as the base may also be expressed thus: the area has a
constant ratio to the base; by which we mean, in accordance with
Article 392, that the number which represents the area bears a
constant ratio to the nwmber which represents the base.

‘We have made these remarks for the purpose of explaining
the notation and language which will be used in the present
Chapter, When we say that 4 varies as B, we mean that 4
represents the numerical value of any one of a certain series of
quantities, and B the numerical value of the corresponding quan-
tity in a certain other series, and that 4 =mB, where m is some
number which remains constant for every corresponding pair of
quantities.

‘We will give a formal proof of the equation 4 =mB deduced
from the definition of Art. 412.

414. If A vary as B, then A is equal to B multiplied by some
constant quantity.

Let a and b denote one pa.n' of corresponding values of the two

quantities, and let 4 and B denote any other pair; then ‘2=£

b
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by definition. Hence A=§B-mB, where m is equal to the
constant %.

415. The symbol o is used to express variation; thus 4 < B
stands for A varies as B.

416. One quantity is said to vary tnversely as another when
the first varies as the reciprocal of the second; see Art. 263.

Orif A=, where m is constant, 4 is said to vary inversely
as B, '

417. One quantity is said to vary as two others jointly when,
if the former is changed in any manmer, the product of the other
two is changed in the same proportion.

Or if A=mBC, where m is constant, 4 is said to vary jointly
as B and C. :

© 418, One quantity is said to vary directly as a second and
inversely as a third, when it varies jointly as the second and the
reciprocal of the third.

Oriu:ﬂc_B

as B and invérsely as C.

, where m is constant, 4 is said to vary directly

419. If AxB, and B=C, then A <C.

For let 4=mB, and B=nC, where m and n are constants;
then 4 =mn( ; and, as mn is constant, 4 « C.

420, If A= C, and Bo=C, then A = B C, and ,/(AB) = C.

For let A=mC, and B=nC, where m and n are constants;
then 4 + B=(m +n)C, and 4 — B =(m—n)C; therefore 4% Boc:C.
Also /(4 B) =,/(mnC") =C,/(mn); therefore ,/(4B) < C.

A A

421, IancBC,t’wnBcc-C-, a'ndCoc-ﬁ.
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lﬁ therefore Bmﬁ. Simi-

For let A=mBC, then B=m0, G

; 4

422. IfA B, and C =D, then AC=BD.

For let A =mB, and C=nD, then AC=mnBD; therefore
AC < BD. : '

433, IfA =B, then A" B~

For let 4 =mB, then A*=m"B ;. therefore 4" o< B",

424. If A =B, then AP«<BP, where P iz any quantity-
variable or invariable.

For let A=mB, then AP =mBP; therefore 4P « BP,

425. If A B whken C is invariable, and A < C when B ts
tnvariable, then will A « BC when both B and C are variable.

The variation .of 4 depends upon the variations of the two
quantities B and C; let the variations of the latter quantities
take place separately, and when B 18 changed to b, let 4 be

changed to a’; then, by supposition, g,:% Now let C be

changed to ¢, and in consequence let a’ be changed to @ ; .then, by
..o C

supposition, 2= Thus

8k

1l

I
T¥ %1

Sl 88

that is,

therefore 4 e BC.
A very good example of this proposition is furnished in

Geometry. It can be proved that the area of a triangle varies

a8 the base when the height is invariable, and that the ares varies
as.the height when the base is invariable. Hence when both the

T. A. 16
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base and the height vary, the area varies as the product of the
numbers which express the base and the height.

426. In the same manner if there be any number of quan-
tities B, C, D, &c. each of which varies as another 4 when the
rest are constant; when they are all variable, 4 varies as their
product.

Take for example three quantities B, C, D. When B alome
varies A varies as B; when C alone varies 4 varies as C': thus,
by Art. 425, when B and C both vary 4 varies as BC. Agin
when D alone varies 4 varies as D, and when B( varies 4 varies
as B(C': thus, by Art. 425, when D and BC both vary 4 varies
as BCD.

EXAMPLES ON VARIATION.

1. Given that y varies as @, and that ¥ =3 when 2 =1, find
the value of ¥ when =3

2. If @ varies a8 b and @ =15 when =3, find the equation
between a and b.

3. Given that z varies jointly as = and y, and that z=1
when =1 and y =1, find the value of 2 when =2 and y=2.

4. If 2 varies as pz+y, and if 2=3 when =1 and y=2,
and z=5 when =2 and y=3, find p.

b. If x varies directly as y when 2 is constant, and inversely
a8 2z when y is constant, then if y and 2 both vary, z will vary
Y

6. If 3, 2, 1, be simultaneous values of @, y, z in the pre
ceding Example, determine the value of  when y =2 and z=4.

. 7. The wages of 5 men for 6 weeks being £14. 5s., how many
weeks will 4 men work for £19% (Apply Example 5.)

8. If the square of # vary as the cube of y, and #=2 when
y=3, find the equation between & and y.
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9. Given that y varies as the sum of two quantities, one of
which varies as o directly, the other as 2 inversely, and that
y=4 when z=1, and y=5 when z=2, find the equation be-
tween z and ¥,

10. If one quantity vary directly as another, and the former
be § when the latter is 4, find what the latter will be when the
former is 9.

11. If one quantity vary as the sum of two others when
their difference is constant, and also vary as their difference when
their sum is constant, shew that when these two quantities vary
independently, the first quantity will vary as the difference of
their squares.

12. Given that the volume of & sphere varies as the cube of
its radius, prove that the volume of a sphere whose radius is
6 inches is equal to the sum of the volumes of three spheres
whose radii are 3, 4, b inches.

13. Two circular gold plates, each an inch thick, the diame-
ters of which are 6 inches and 8 inches respectively, are melted
and formed into a single circular plate one inch thick. Find its
diameter, having given that the area of a circle varies as the
square of its diameter,

14. There are two globes of gold whose radii are » and +';
they are melted and formed into a single globe. Find its radius.

156. If =, y, z be variable quantities such that y+2z—z is
constant, and that (x+y—2)(x +2—y) varies as yz, prove that
Z+y+ 2 varies as yz

16. A point moves with a speed which is different in different
miles, but invariable in the same mile, and its speed in any mile
varies inversely as the number of miles travelled before it com-
mences this mile, If the second mile be described .in 2 hours,
find the time occupied in describing the »™ mile.

17. Suppose that y varies as a quantity which is the sum of
three quantities, the first of which is constant, the second varies

16—2
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as @, and the third as 2. And suppose that when z=a, y=0,
when #=2a, y=a, and when #=3a, y=4a. Shew that when
z=mna, y=(n-1)'a

18. Assuming that the quantity of work done varies as the
cube root of the number of agents when the time is the same, and
varies as the square root of the time when the number of agents is
the same ; find how long 3 men would take to do onefifth of the
work which 24 men can do in 25 hours. (See Art. 425.)

XXIX. SCALES OF NOTATION.

427. The student will of course have learned from Arith-
metic that in the ordinary method of expressing whole numbers
by figures, the number represented by each particular figure is
always some multiple of some power of ten. Thus in 347 the 3
represents 3 hundreds, that is, 3 times 10*; the 4 represents 4
tens, that is, 4 times 10'; and the 7 which represents 7 wunits,
may be said to represent 7 times 10° ‘

This mode of representing numbers is called the common scale
of notation, and 10 is said to be the base or radiz of the common
scale, .

428. 'We shall now prove that any positive integer greater
than unity may be used instead of 10 for the radix, and shall shew
how to express a number in any proposed scale. 'We shall then
add some miscellaneous propositions connected with this subject.

The figures by means of which a number is expressed are
called digits.

‘When we speak in future of any radiz we shall always mean
that this radix is some positive integer greater than unity.

429. To shew that any whole number may be expressed in
terms of any radiz,

Let & denote the whole number, r the radix. Suppose that
" is the highest power of » which is not greater than & ; divide
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XN by 7°, and let p, be the quotient and ¥, the remainder ; thus
" N=pr+DN,

Here, by supposition, p, is less than r; also X, is less than #*
Next divide &, by #*~!, and let p,_, be the quotient and ¥, the
remainder ; thus

N-l =Dy e Nz’

Proceed in this way until the remainder is less than »; thus
we find & expressed in the manner indicated by the equation

N=pr+ p__lr"“ F oerenee +pr P+,

Each of the digits p,, p,_,,...... P, p, is less than r, and any
one or more of them after the first may be zero,

The best practical mode of detcrmining the digits is given in
the next Article.

430. To express a given whole number in any proposed scale.

By a given whole number we mean a whole number expressed
in words or else expressed by digits in some assigned scale. If
no scale is mentioned, we understand the common scale to be
intended.

Let & be the given number, = the radix of the scale in which
it is to be expressed. Suppose Po Py oo P, to be the required
digits by which & is expressed in the new scale, beginning with -
that on the right hand ; then -

. N=pr"+p, o'+ ..... +pr+pr+p,;
we have now to find the value of each digit.

Divide & by r, and let Q denote the quotient; then it is
obvious that
Q=pr" t+p, ... +pr+Dp,
and that the remainder is p,. Hence p, is' found by this rule;
divide the given number by the proposed radiz, and the remainder
18 the first of the required digits. .
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Again, divide @, by r, and let @, denote the quotient; then
it is obvious that ‘

Q=2 +p 4D,

and that the remainder is p,, Hence the second of the required
digits is found.

By proceeding in this way we shall find in-succession all the
required digits.

431. For example, transform 43751 into the scale of which

6 is the radix. The division may be performed and the remainders
noted thus:

6)43751
6)7291.....5
6)1216.:...1
6)202....3
6)33...4
T 5.3
Thus 43751=5.6°+3.6+4.6"+3.6'+1.6+5,

80 that the number is expressed in the new scale thus, 534315.

432. Again, transform 43751 into the scale of which 128
- the radix.

12)43751
12)3645......11
12)3083..... 9
12)256...... 3
|

Thus 43761=2.12+1.12°+3.12'+9.12 +11.

In expressing the number in the new scale we shall require
a single symbol for eleven ; let it be ¢; then the humber is e
pressed in the new scale thus, 2139,
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‘We cannot of course use 11 to express eleven in the new scale,
because 11 now represents 1.12 + 1, that is, thirteen.

433. 'We will now consider an example in which a number is
given, not in the common scale,

A number is denoted by ¢347¢ in the scale of which twelve is
the radix, it is required to express it in the scale of which eleven
is the radix.

Here ¢ stands for ten, and e for eleven. ~

e)t347Te

The process of division by eleven is performed thus, First
¢ is not contained in ¢, for eleven is not contained in ten, so we
ask how often is e contained in ¢3? here¢ stands for ten times
twelve, that is one hundred and twenty, so that the question is,
how often is eleven contained in one hundred and twenty-three %
the answer is eleven times, with two over, Next we ask how
often is e contained in 24 ; that is, how often is eleven contained
in twenty-eight # the answer is twice, with six over. Then how
often is e contained in 67 ; that is, how often is eleven contained
in seventy-nine? the answer is seven times, with two over.
Last, how often is e contained in 2¢; that is, how often is
eleven contained in thirty-five? the answer is three times, with
two over.

Hence 2 is the first of the required digits.

The remainder of the process we will indicate; the student
should carefully work it for himself, and then compare his result
with that here given,

e)e273

cm ...... 1
e)l14.... 2
e)l2..... 6




248 SCALES OF NOTATION.

Hence the given number is equal to
l.e*+3.6+6.6*+2.¢6'+1.e+2;

that is, it is expressed in the scale with radix eleven thus, 136212.

434, The process of transforming from one scale to another
may be effected also in another manner. Suppose for example
that we have to transform to the common scale 24613 which is in
the scale of seven. We have in fact to calculate the value of

2z* + 42 + 62" + x + 3,
when £=7. We may adopt the method which is explained in
the Zheory of Equations, Arxt. 11.
2+ 4+ 6+ 14+ 3
14 +126 + 924 + 6475

18 +132 + 925 + 6478

The result is 6478. This method is advantageous when we
have to transform from any other scale into the common scale.

435. Tt will be easy to form an unlimited number of self-
verifying examples. Thus, take two numbers expressed in the
common scale and obtain their product, then transform this pro-
duct into any proposed scale; next transform the two numbers
into the proposed scale, and obtain their product in this' scale;
the result should of course agree with that already obtained. Or,
take any number, square it, transform this square into any pro-
posed scale, and extract the square root in this scale ; then trans-
form the last result back to the original scale.

436. Next let it be required to transform a given fraction
from one scale to another. This may be effected by transforming
separately the numerator and denominator of the given fraction
by the method of Art, 430. Thus we obtain a fraction identical
with the proposed fraction, having its numerator and denominator
expressed in the new scale.

437. We stated in Art. 427, that in the common scale of
notation, each digit which occurs in the expression of any tnieger




SCALES OF NOTATION. ’ 249

« by figures represents some mwudtiple of some power of ten. This
statement may be extended, and we may assert that if a number
be expressed in the common scale, and the number be an tnteger,
or a decimal fraction, or partly an integer and partly a decimal
Jraction, then each digit represents some multiple of some power

" of ten. Thus in 347-958 the 3, the 4, and the 7, have the values
assigned to them in Art. 427; the 9 represents i?(-),thatis,

9 times 107'; the 5 represents that is, 5 times 10~*; and

b
100°

the 8 represents that is, 8 times 10"

1000 j

It may therefore mnaturally occur to us to consider the follow-

ing problem : required to express a given fraction by a series of

fractions in any proposed scale analogous to decimal fractions in

. the common seale. 'We will speak of such fractions as radiz-

Jractions.

438, Reguired to express & given fraction by a series of radix-
Jractions in any proposed scale. _

By a given fraction we mean a fraction expressed in words
or expressed by figures in any given scale. '

Let F denote the given fraction, » the radix of the pro-
posed scale, Suppose ¢, ¢,, ... the numerators of the required
radiz-fractions beginning from the Zeﬂ hand ; thus

F=— +:, +f; L ’
where ¢,, £, £, ...... are to be found.

Multiply both members of the equation by r; thus

The righthand member consists of an integer ¢ and an
additional fractional part. Let J, denote the integral part of Fr,
and F, the fractional remainder ; then we must have

Il=t1, FI=¢ +’,‘;+ ------
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Thus, to obtain the first numerator, #, of the series of radix-
fractions, we have this rule; mulliply the given fraction by the
proposed radiz ; then the greatest integer in the product is the firs
of the required numerators.

_Again, multiply F; by r; let I, be the integral part of the
product, and F, the fractional remainder ; then

., &4
I,=t, F.=—: r|+......

Hence ¢,, the second of the required numerators, is ascertained.
By proceeding in this way we shall determine the required nu-
merators in succession. If one of the products which occur o
the left-hand side of the equations be an exact integer, the process
then terminates, and the proposed fraction is expressed by a finite
series of radix-fractions. If no integral product occur, the proces
never terminates, and the proposed fraction can only be expressed
by an infinite series of the required radix-fractions; the numers
tors of the radix-fractions will recur like a recurring decimal.

439. TFor example, express —5— 123 by a series of radix-fractions

128
in the scale 8.

123 123 11

Multiply 128 by 8; thus we obtain — T that is 7+ +16
., 11 11

Multiply — 16 by 8; thus we obta.m , that is 5+-2-.
Multiply 1 by 8; thus we obtain 4.
“Hence 123 7 6 4

=gt te- .

440. We may remark that the radix ten is not only the bas
of the common mode of expressing numbers by figures, but is in
fact assumed as the base of our language for numbers, This wil
be seen by observing at what stage in counting upwards from
unity new words are introduced. For example, all numbers
between twenty-one and twenty-nine, both inclusive, are expressed
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by means of words that have already occurred in counting up
to twenty; then a new word occurs, namely #hirty, and we can
count on without an additional new word as far as thirty-nine ;
and so0 on.

The number fen has only two divisors different from itself
and unity, namely 2 and 5; the number #welve has four divisors,
namely 2, 3, 4, and 6. On this account twelve would have been
more convenient than ten as a radix. This may be illustrated by
reference to the case of a shilling; since a shilling is equivalent to
twelve pence, the half, the third, the fourth, and the sixth of a
shilling, each contains an exact number of pence; if the shilling
were equivalent to ten pence, the half and fifth of a shilling would
be the only submultiples of a shilling containing an exact number
of pence, Similarly, the mode of measuring lengths by feet and
inches may be noticed.

441, 'We may observe that if #wo be adopted as the radix of
a scale, the operations of Arithmetic are in some respects much
simplified. In this scale the only figures which eccur are 0 and 1,
8o that each separate step of a series of arithmetical operations
would be an addition of 1, or a subtraction of 1, or a multiplica-
tion by 1, or a division by 1. The simplicity of each operation is
however counterbalanced by the disadvantage arising from the
increased number of such operations.

‘We give in the following two Articles two problems connected
with the present subject.

442. Determine which of the series of weights 11b., 2 1bs.,
2'1bs., 2°1bs., 2*1bs.,...... must be used to balance a given weight
of N'lbs.,, not more than one weight of each kind being used.

It is obvious that this question is the same as the following;
express the number & in the scale of which the radix is 2.
Hence it follows from Art. 429 that the problem can always
be solved.

443. Suppose it required to determine which of the weights
11b., 31bs., 3*1bs., 3°Ibs,,... must be selected to weigh N lbs., not
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more than one of each kind being used, but tn either scale that
may be necessary. -

Divide &V by 3, then the remainder must be zero, or one, or
two. Let N, denote the quotient ; then in the first case we have
N=3N,, in the second case N =3¥,+1, and in the third case
N=3N +2. In the first or second case divide N, by 3; in the
third case we may write N=3 (¥, +1)~1, then we should
divide ¥, +1 by 3. Proceed thus, and we ghall finally have »
result of the following form,

N=¢3"+g. 3 ' +...... +¢3 +q,,
where each of the quantities ¢,, ¢,,...... g, is either zero, or +],
or —1. Thus the problem is solved. '

. 444. In a scale of notation of whick the radiz is r, the sum of
the digits of any whole number divided by r— 1, or by any factor of
r—1, will leave the same remainder respectively as the whole number
divided by r — 1 or by the factor of r—1.

Let N denote the whole number, p,, »,,......p, the digits be
ginning with that in the units’ place; then

N=p,+p,r+...... +p,r*

‘po "'P, +p.+ sssase +p.
+p(r=1)+p, ("~ 1)+...... +p.(r=1);
therefore N po+pi+p+...... +P.
. r-1 r—1

. »” -1
+ +p’(1'+ 1)+ ...... +p,rTl.

Bnt r-
r—

1 is an integer whatever positive integer n may be;

1
¥y _ PotPit e + s
thus 7o = some integer R R
Next let p be a factor of r—1, say that r—1=p¢. Then
multiplying the last result by ¢ we have

This establishes the propomtwn.
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445. In a scale of notation in which the radiz is r let any
whole number be divided by r+1; and let the difference between .
the sum of the digits in the odd places and the sum of the digits in
the even places be divided by r+ 1 ; then either the remainders will
be equal or their sum will be r + 1.

With the same notation as in the preceding proposition we
have

N=p,+pr+pr+...... +p
=P, =P+ Py— Pyt erees +(~1)"p,
+p(r+1) +p(r* - 1)+ pa(r® + 1) + . 4 p, " — (- 1)}
D=1 +Ps— -+ (=1)" Pa
r+l

N .
Thus 711 = Pome integer +

First, suppose p,—p,+ps— ...+ (—1)"p, to be positive, and
denote it by D ; then

—L:-—someinte er + ;
r+1 ger+ 1’

thus when I and D are divided by #+ 1 the remainders are equal.
Secondly, suppose p,—2,+Ps— ...+ (- l)" . 10 be mnegative,
and denote it by — D ; then

D

N
—— = S0mMe mteget—-r+1,

r+1
that is, ——A—r—+—=someinteger;
r+l r+l
thus when V7 and D are divided by r+1 the sum of the remain-
ders must be r+ 1, unless either remainder is zero, and then the
other remainder also is zero.
For example, suppose =10 and N =263419. Here
9-1+4-3+6-2=13=D;
and & and D when divided by 11 each leave the remainder 2.
Again, suppose =10 and N=615372. Here
2-7+3-6+1-6=—-12=—-D;
and &N and D when divided by 11 leave the remainders 10 and 1
respectively.



254 EXAMPLES. XXIX.

446. It appears from Art. 444 that a number is divisiblely
9 when the sum of its digits is divisible by 9 ; and that when any
number is divided by 9, the remainder is the same as if the sun
of the digits of that number were divided by 9. And as 3 isa
factor of 9 a number is divisible by 3 when the sum of its digits
is divisible by 3 ; and when any number is divided by 3 the re
. mainder is the same as if the sum of the digits of that number
were divided by 3.

‘Tt appears from Art. 445 that a number is divisible by 1
when the difference between the sum of the digits in the odd
places and the sum of the digits in the even places is divisible
by 11.

447. From the property of the number 9, mentioned in the
preceding Article, a rule may be deduced which will sometimes
detect an error in the multiplication of two numbers.

Let 9a + « denote the multiplicand, and 95 +y the multiplier;
then the product is 8lab + 96z + 9ay +xy. If then the sum of
the digits in the multiplicand be divided by 9, the remainder is z;
if the sum of the digits in the multiplier be divided by 9, the
remainder is y; and if the sum of the digits in the product be
divided by 9, the remainder ought to be the same as when zy
is divided by 9, and will be if there be no mistake in the
" operation. )

EXAMPLES ON SCALES OF NOTATION.

Transform the following sixteen numbers from the scales in
which they are given to the scales in which they are required:

1. 123456 from the scale of ten to the scale of seven.
2. 1357531 from the scale of ten to the scale of five.
3. 357234 from the scale of t,en'to the scale of seven.
4. 333310 from the scale of ten to the scale of eleven.
6. 545 from the scale of six to the scale of ten.
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4444 from the scale of five to the scale of ten.

3413 from the scale of gix to the scale of seven,
40234 from the scale of five to the scale of twelve,
64520 from the scale of seven to the scale of eleven.

10. 15951 from the scale of eleven to the scale of ten,

11. 1575 from the scale of ten to the scale of eight.

12. 31462-125 from the scale of ten to the scale of eight.

13. 221-248 from the scale of ten to the scale of five.

14. 444-44 from the scale of five to the scale of ten.

15. 1845-3125 from the scale of ten to the scale of twelve.

16. 3065-263 from the scale of eight to the seale of ten.

17, Express in the scale of seven the numbers which are
expressed in the scale of ten by 231 and 452 ; multiply the num-
bers together in the scale of seven, and reduce to the scale of ten.

18. Divide 17832126 by 4685 in the scale of nine.

19. Extract the square root of 33224 in the scale of six.

20. Extract the square root of 123454321 in the scale of six.

21. Extract the square root of 344544 in the scale of six, and
reduce the result to the scale of three.

22. Subtract 20404020 from 103050301 in the scale of eight,
and extract the square root of the result.

23, Extract the square root of 11000000100001 in the binary
scale,

24. Extract the square woot of 67556¢21 in the scale of
twelve,
117

25. Express 193 in a series of radix-fractions in the scale
of twelve. :

26. Find in what scale 95 is denoted by 137.

27. Find in what scale 2704 is denoted by 20304.

28. Find in what scale 1331 is denoted by 1000.

L PN
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29. Find in what scale 16000 is denoted by 1003000. -

30. A number is represented in the denary scale by 35§ and
in another scale by 5565, find the radix of the latter scale.

31. Find in what scale of notation sixteen hundred and sixty-
four ten-thousandths of unity is represented by -0404.

32. Shew that 12345654321 is divisible by 12321 in any
scale ; the radix being supposed greater than six.

33. Shew that 144 is a perfect square in any scale ; the radix
being supposed greater than four.

34. Shew that 1331 is a perfect cube in any scale ; the radix
being supposed greater than three,

35. Find which of the weights 1, 2, 4, 8,......2" pounds must
be selected to weigh 1719 pounds.

36. Find which of the weights 11b., 31bs,, 3*1bs.,...... must
be selected to- weigh 1027 lbs., not more than one of each kind
being used, but in either scale that is necessary.

37. Find which of the same weights must be selected to
weigh 716 Ibs. :

38. Find which of the same weights must be selected to
weigh 475 1bs.

39. TFind by operation in the scale of twelve what is the
height of a parallelepiped which contains 94 cubic feet 235 cubic
inches, and whose'base is 24 square feet 5 square inches.

40. Express 2 feet 10} inches linear measure, and 5 feet
79} inches square measure, in the scale of twelve as feet and
duodecimals of a foot; and the'latter quantity being the area
of a rectangle, one of whose sides is the former, find its other
side by dividing in the scale of twelve.

41. If p, P, P,y..... be the digits of a number beginning
with the units, prove that the number itself is divisible by eight
if p, + 2p, + 4p, is divisible by eight.
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. 42, Prove that the difference of two numbers oou;stmg of
the same figures is divisible by nine.,

43. TFind the greatest and least numbers with a given number
of digits in any proposed scale. -

44. Prove that if in any scale of notation the sum of two
numbers is a multiple of the radix, then (1) the digits in which
the squares of the nuimbers terminate are the same, and (2) the
sum of this digit and of the digit in which the product of the
numbers terminates is equal to the radix. )

45. A certain number when represented in the scale two has
each of its last three digits (count.mg from left to right) zero, and
the next digit different from zero; when represented in either of
the scales three, five, the last digit is zero, and the last but one
different from zero; and in -every other scale (twelve scales ex-
cepted) the last digit is different from zero. "‘What are these
twelve scales, and what is the number? . S

XXX. ARITHMETICAL PROGRESSION.
448. Quantities are said to be in Arithmetical Progression
when they increase or decreue by a common difference.
Thus the following series are in A.nthmetleal Progression
1,385 179 ... ‘
40, 36, 32, 28, 24, ......
a, a+b, a+2b a+3b, ...
a, a—b, a~2b a-3b, ......
In the first example the common difference is 9, in the
second —4, in the third b, in the fourth —b&.

449. Let a denote the first term of an Arithmetical Progres-
sion, b the common difference; then the second term is &+,
the third term is a+ 26, the fourth term is @ + 35, and so on.
Thus the #** term is @+ (n— 1) b. ,

T. A 17
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450. To find the sum of a given number of quantities in Arik-
metioal Progression, the first term and the common difference being
supposed known.

Let a denote the first term, b the common difference, n the

number of terms, ! the last term, s the sum of the terms
Then

s=a+(a+b)+(a+2b)+...... +1 )
And, by writing the series in the reverse order, we have als
s=l+(1l-0)+(1-2b)+...... +a

Therefore, by addition,
2=l +a)+(l+a)+...... to n terms
=n(+a);
therefore &= g (A T (1).
Also 1=a+(—=1)b cevrerrrerrrrreneiiacieeeennnnenn. @),
thus 8=5{20+ (0 =1)B}eeerrrrrrrrrecrrrrrrirene )

The equation (3) gives the value of # in terms of the quan-
tities which were supposed known. Equation (1) also gives a con-
venient expression for s, and furnishes the following rule: the sum
of any number of terms in Arithmetical Progression ts equal to
the product of the number of the terms into half the sum of the
Jirst and last terma,

461, In an Arithmetical Progression the sum of any two
terms equidistant from the beginning and the end s equal to e
sum of the first and last terms.

The truth of this has already been seen in the course of
the preceding demonstration; it may be shewn formally thus:
Let a be the first term, b the common difference, ¢ the last term;
then the r** term from the beginning is a+ (r—1)b and the r*

term from the end is /- (r—1)5, and the sum of these terms
is therefore ! +a.
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452, To insert a given number of arithmetical means 6etwem
two given terms. ‘

Let a and ¢ be the two given terms, n the number of terms to
be inserted. Then the meaning of the problem is, that we are to
Ind 7 + 2 terms in Arithmetical Progression, @ being the first
term, and ¢ the last term, Let b denote the common difference ;

then ¢=a+(n+1)3; therefore b=:%. This finds 3, and the
n required terms are ‘
a+b, a+2, a+3b.. ..a+nb

453. In Art. 450 we have five quantities occurring, namely,
a, b, I, n, s, and these are connected by the equations (1) and
(2), or (2)-and (3) there established. The student will find that
if any three of these five quantities are given, the other two can
be found ; this will furnish some useful exercises. 'We give one
as an exa.mple.

454, Qiven the sum of an Arithmetical Progression, the first
term, and the common difference ; required the number of terma,

Here s-——{ a+(n—1)b};
therefore 28 =n'b+ (2a—b) n.

By solving this quadratic in % we obtain
_b—2ax J{(2a—b)* + Sab}
2b
455. Tt will be seen that fwo values are found for » in the
preceding Article ; in some cases both values are applicable, as will
appear from the following example. Suppose a=11, b=-2,
8=27; we obtain n=3o0r 9. The arithmetical progression is
11,97531—1—3-—5&c,'

and it is obvious that the sum of the first three terms xs the same
as the sum of the first nine terms,

17—2
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456. Again, suppose =4, b=2, 8=18 ; we obtain #=3 or
—6. The sum of three terms beginning with 4 is 4+6 +8 or
18. 1If we put on terms before 4 we obtain the series

-2+0+2+4+6+8,

and the sum of these six terms is also 18. From this example we
may conjecture that when there is a ‘negative integral value for
the number of terms as well as & positive integral value, the
following statement will be true: begin from the last term of
the series which is furnished by the positive value, and count
backwards for as many terms a8 the negative value indicates,
then the result will be the given sum. The truth of t]ns conjec-
ture may be shewn in the following manner,

The quadratic equation in n obtained in Art. 454 is
2=0"+ (20 —b)faeeervrerinnnnnnnenn. oen(1).

Suppose a series in which the first term is b —a, the common
difference b, the number of terms m, and the sum & ; then

28 =% + (26— 26 —B) Mhervereeenan ).

The roots of (1) and (2) are of equal values but of opposite
signs (Art. 340); so that if the roots of (1) are denoted by n, and
—n,, those of (2) will be n, and —x,.- Hence n, terms of a series
which begins with 6—a and has the common difference 5, will
amount to the given sum s. The last term of the series which
begins with a and extends to n, terms is @ + (n,— 1)5; we have
therefore to shew that if we begin with this term and count
backwards for n, terms, we arrive at 6—a. This amounts to

shewing that
a+(n—-1)b=-(n,~1)b=b-a;

that is, that . a+(n-n)db=b-a.
2a b

Now n—nyg=— , (Art. 335);

therefore a+(n|—n,)bga-(2a-b)=b-a.
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457. Another point may be noticed in connexion with a
negative ntegral value of n,

Let —n, be a negative integral value of n which satisfies the ‘
equation

=§{2a+(n— l)b} ;
then . 8=—21{2a—nlb—6}.
Tberefore : —-8=g {2(a ) + (n,— 1) (- B)}.

This shews that if we count dackwards n, terms beginning
with @~ b, the sum so obtained will be —s.

For example, taking the case in Art. 456, by beginning at 2

and counting backwards for six terms we obtain .
2+0-2-4-6-8,
that is, - 18,

458, In some cases, however, only one of the values of n
found in Art. 454 is an integer. Suppose a=11, b=-3, 8=24;
we obtain n=23 or 53. The value 5} suggests to us that of the
two numbers 5 and 6; one will correspond to a sum greater than
24, and the other to & sum less than 24, In fact the sum of &
terms is 25, and the sum of 6 terms is 21.

We may notice the following point in connexion with a frac-
tional value of n.

S;lppose g'a fractional value of n which satisfies the equation
=g{2a+(n—1) b};

then | c=§-{2av+(27))b}=g{?;+%?—g}

e L SR
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This shews that s is equal to the sum of p terms ofan Arith-

metical Progression in which the first term isg % ;’q

. and
. . b
the common difference is ?.

Intheexamplegwenabove §—5§- ; 8o that »p=16 and

g=3. And
a 3,5 111,38 1
§_,.q %3 *3TET N gTF

thus 24 is the sum of 16 terms of an Arithmetical Progression in

which the first term is 4 and the common difference is — %.

459. The results in the following two simple examples are
worthy of notice.

To find the sum of n terms of the series 1, 2, 3, 4,...
Here the n™ term is n ; thus, by Art. 450, ’
=5m+1).
To find the sum of n terms of the series 1, 3, 5, 7, ...
Here a=1, b=2; thus, by Art. 450,
Ce=F{2+3(m-1)}=] x2m=n"

‘We add two similar questions which lead to important results,
although not very closely connected with the present subject.

460. To find the sum of the squares of the first n nalural
numbers.

Let s denote the required sum ; then
8=1942"43"+...... +n,

and we shall prove that ‘=n_(niﬁ(2nil_).
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‘We have
n'—(n-1"=3n"-3n+1,

(=1 -(n-2)'=3(n-1)'-3(n-1)+1,
n-2~(n-3)=3(n-2)"-3(n-2)+1,

------------------------------------------

3¥-2'=3.3"-3.3+1,
2°-1°=3.2'-8.2+1,
I'-0°=3,1"-3.1+1,
Hence, by addition,
w=3{1"+2"+...... +n'}=3{l1+2%......+n}+n,

that is, . u’=3c—§n(1;—+1)+n.

Therefore 3s=n?+ 3”";+ D_ n _nn+ 1)2(2"”' 1) ,

o m(n+1)(2n+1)
and 8= 2.3——0

461. To find the sum of the cubes of the first n natural
numbers.
Let s denote the reqmred sum ; then

8=1"+2"+3"+...... +7°,
and we shall prove that 8= {ﬂ"—;—l)}’
‘We have '
n'—(n-1)=4n"—-6n"+4n-1,
(n-1)-(n-2)'=4(n-1)"-6(n-1) "+4(n-1)-1,
(n—2)‘—(n—3)‘=4(n—2)'—6(%—2)’+4(n-2)—1;

...................................................

3 -2=4,3"-6.3"+4.3-1,
2-1'=4.2'-6.2'+4.2-1,
1~ 0'=4.1°~6.1"+4.1-1,
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Hence, by addition,
n=4{1"+2°+ .. ..+ 0} -6 {1"+ 2"+ ...+ 2}

that is, h—n(n+l)(2n+l)+2n(n+l) n
Therefore 4s=n+2n' +nf,

and 8= {” (f‘; l)} .

Hence, by Art. 459, we have the following result : #he sum of
the cubes of the first n natural numbers is .equal to the square of
the sum of the numbers.

EXAMPLES OF ARITHMETICAL PROGRESSION.

1, Sum to 20 terms 2, 6, 10, 14, ...
' 15 7 13

7] "4"’ '§’ Iv---
3, Sumtozuermsl,‘-'%,

13 11
» 30 ?,...

2. Sum to 32 terms 4

-9 ...

b

4. Sum to 20 terms 5
5. SumtolOtermsl«&,l&,5, ;
6. Sum to 12 terms 1, 13, 24,...

7. Sum to 21 terms g 2 13 .

3
12
33
9. Sum to 30 terms 116, 108, 100, ...
10. Sum to n terms 9, 11, 13, 15, ...

5- 2
’6 3,

8. Sumto50terms 1.

11. Sumfonterms 1
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« 12. Find an A.P. such that the sum of the first five terms

is onefourth the sum of the following five anrms, the first term

being unity,

_ 13. The first term of a series being 2, and the fifth term
being 7, find how many terms must be taken that the sum may

be 63.

-----

ofntermsmthe ratio of m* to n', andtheﬁmttermbeumty,
find the n'* term.

16. The sum of a certain number of terms of the series
21+19+17 +...... is 120 : find the last term and the number of
terms, R

17. 'What is the common difference when the first term is 1,
the last 50, and .the sum 204-%

18, Insert 6 arithmetical means between 1 and 29.

19. If 2n+1 terms of the series 1, 3, 5, 7, 9, ...... be taken,
then the sum of the alternate terms 1, 5, 9, ...... will be to the
sum of the remaining terms 3, 7, 11, ...... asn+1ton

20. Find the sum of the first » numbers of the form. 4» +1,

21. ‘Find how manyterms of 143+5+7+...... amount to
1234321,

22 Find how ma.nytermsofl6+24+32+40-'- ...... amount
to 1840,

23. On the ground 'are placed » stones; the distance be-
tween the first and second is one yard, between the second and
third three yards, between the third and fourth five yards, and
so on. How far willsa person have to travel who shall bring
them, one by one, to a basket placed at the first stone ?

. 24, The 14th, 134th, and last terms of an A.P. are 66,
666, and 6666 mspectxvely find the first term and the number
of terms,
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25. Find a series of arithmetical means between 1 and 21,
such that their sum has to the sum of the two greatest of them
the raiio of 11 to 4.

26. The sum of the terms of an A.p. is 284, the first term
is — 12, the common difference is §. Find the number of terms,

27. Find how many terms of the series 3, 4 5, vees.. must be
taken to make 25,

28. Find how many terms of the series 5, 4, 3, ...... must be
taken to make 14,

29. Shew that a certain number of terms of an A.P. may
be found of which the algebraical sum is equal to zero, provided
twice the first term be divisible by the common difference, and
the series ascending or descending according as the first term is
negative or positive,

30, If the m* term of an A.P. be n# and the n* term m, of
how many terms will the sum be 4 (m +n) (m +n—~1), and what
will be the last of them %

3l. If =172 a=24, b=-4, find n.

32, If s=pn+gn' whatever be the value of n, find the
m'® term.

33. If 8, represent the sum of n of the natural numbers
beginning with a, prove that S,,,,, = 35,.

34. Prove that the squares of o«'—2x-1, a:'+1 and
o' +2z—1 are in A.P,

35. The common difference of an A.P. is equal to the differ-
ence of the squares of the first and last terms divided by twice the
' sum of all the terms diminished by the first and last term.

36. The sum of m terms of an A.P. is n, and the sum of
n terms with the same first term and the same common difference
is m. Shew that the sum of m+n terms is —(m +n) and the

sum of m —n terms is (m — n) (l + % .
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37. Find the number of anthmetlca.l means between 1 a.nd 19
when the second mean is to the last as 1 to 6.

38. How many ‘terms of the natural numbers commencing
with 4 give a sum of 5350 %

., 39. In a series consisting of an odd number of terms, the sum
of the odd terms (the first, third, &c.) is 44, and the sum of the
- even terms (the second, fourth, &c.) is 33, Find the middle term
and the number of terms. i

1" 1
sva’ axd

|...

40, If a', 3, ', be in A.p, then

in A.P,

, are

¢ c+a

+

41, Sum to n terms the series whose #** term is 2r— 1.
42. Sumtonterms 1 -3 4+5-T+..... .
43. Sum ton terms 1 -2+ 3—4 +......

‘44, Given the p* term P, and the ¢* term @ of a series
in A. P, express the sum of n terms in terms of P, @, p, ¢, n.

45. The p™ ¢®, and +** terms of an A.P. are z, ¥, 2, re-
spectively ; prove that if x, y, 2 be positive integers, there is an
A.P. whose «'*, y*, 2 terms are p, g, r, respectively; and that the
product of the common differences of the progressions is unity.

46. The interior a.ngles.of a rectilinear figure are in' A.P.;
the least angle is 120° and the common difference 5°. Required
the number of sides. - :

47, Find the sum ton terms of 1.2+2.3+3.4+4.5+...

48, If the second term of an A.P. be a mean proportional
between the first and the fourth, shew that the sixth term will
be a mean proportional between the fourth and thé ninth,

49, If ¢ (n) be the sum of n terms of an A.P., find ¢ () in
termsofnandtheﬁrsttwowrms.

* Also shew that ¢ (n -+ 3) — 3¢ (n + 2) + 3 (n+ 1) — ¢ (n) =0,
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50. Sum to n terms the series whose m* term =5._’.;_',

51. Divide unity into four parts in A.». of which the sum of
the cubes shall be Tl(—’

52. A servant agrees for certain wages the first month, on
the understanding that they are to be raised a shilling every
subsequent month until they reach £3 a month, At the end of °
the first of the months for which he receives £3, he finds that his
wages during his time of service have averaged 48 shillings a
month. How long has he served ¢

53. A sets out from a place and travels 5 miles an hour.
B sets out 4} hours after 4, and travels in the same direction
3 miles the first hour, 3} miles the second hour, 4 miles the third
hour, and so on. Find in how many hours B will overtake A,

54. A number of persons were engaged to do a piece of work,
which would have occupied them m hours if they had commenced
at the same time; but instead of doing so they commenced at
equal intervals, and. then continued to work till the whole was
finished : the payment being proportional to the work done by
each, the first comer received  times as much as the last. Find
the time occupied.

. 55. ‘A number of three digits is equa.l to 26 times the sum
of its digits ; the digits are in arithmetical progression ; if 396 be
added to the number the digits are reversed : find the number.

.. 56. Shew that the sum of any 2n + 1 consecutive integers is
divisible by 2n + 1.

XXXI. GEOMETRICAL PROGRESSION.,

. 462, Quantities are said to be in Geometrical Progression
when each is equal to the product of the preceding and some
‘constant factor. The constant factor is called the common ratio
of the series, or more shortly, the ratio. Thus the following series
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are in Geometrical Progression :
1, 2, 4, 8 16,...

111 1
39’ 27 BT

4
a, ar, ar’, ar’, ar',......

1

In the first example the common ratio is 2, in the second §, in
the third 7.

463. Let a denote the first term of a Geometrical Progression,
r the common ratio, then the second term is ar, the third term
is ar*, the fourth term is ar’, and so on. Thus the n* term
is ar",

464. To find the sum of a given number of gquantities in
Geometrical Progression, the first term and the common ratio being
supposed known.

Let a denote the first term, r the common ratio, » the number
of terms, s the sum of the terms. Then

s=a+ar+ar+ar’+...... +ar*;

therefore or=  ar+ar’+ar’+...... +ar" ™ +ar’,

Hence, by subtraction,
sr—s=ar"—a;

therefore =20 1),
If I denote the last term, we have

' Dm @™ eeeveeeveeensenasaen, @),

hence P - S @)

Equation (1) gives the value of ¢ in terms of the quantities
which are supposed known. Equation (3) is sometimes a con-
venient form.



270 GEOMETRICAL PROGRESSION.

466. 'We may write the value of ¢ thus,
a(l-7)
T T1or ‘

Now suppose # less than unity; then the larger n is the

smaller will * be, and by taking n large enough #* can be made
as small as we please. If then n be taken so large that ¢* may
be neglected in comparison with unity, the value of & reduces to
1—_‘—};. ‘We may enunciate the result thus: by faking n large
enough, the sum of n terms of the Geometrical Progression can be
made to differ as little as we pleacefromi-z—r. This statement is
sometimes abbreviated into ‘the following : the sum of an infinils
umnberqfhwwoftho@eoﬂwwcalProgradonis-l—i—’;;butit
must be remembered that it is to be considered as nothing more
than an abbreviation of the preceding statement.
" The preceding remarks suppose that » is less than unity. In
fature, both in the text and in the examples, when we speak of
an tnfinite Geometrical Progression we shall always sappose that ¢
is less than unity.

‘We may apply the preceding remarks to an example, Con-
sider the series 1, &, 1, 4, ...... ; here a=1, r=4; thus the
sum of # terms is ii—%(l ‘5-)’ that s, - zir. Now by
taking n large enough, 2*~* can be made as large as we please, and
therefore -2}—,, as small as we please. Hence we may say that

by taking n large enough, the sum of n terms of the series can be
made to differ from 2 by as small a quantity as we please. 'This is
abbreviated into the following: the sum of an infinite number of
terms qf this series is 2.

466. In a geometrical progression continued to infinily each
term bears a constant ratio to the sum of all which jfollow t; the
common ratio being supposed less than unity.
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Let the series be a+ar +ar®+ar®+...; then the n* term
is "™ ; the sum of all the terms which follow this

e
The ratio of the #'® term to the sum of all which follow it is
ar®
ar~' = 1=

that is :‘, _This is constant whatever n» may be,

If we wish to determine 7 so that this ratio maj have a given -

1+

467. Recurring decimals are cases of what are called infi-
nite Geometrical Progressions. Thus, for example, 2343434 ....
denotes 2 34 34 34 ' Here the terms after —2-

ottt tigt e 10
constitute a Geometrical Progression, of which the first term is

fg,, and the common ratio is

value p we put 1—;—'-19; therefore r=—-1—;.

110 + Hence we may say that the
sumofanmﬁmtenumberoftermsofthssenesis% {1——1-16,},

. 34 2 34
that B 590° Therefore the value of the decimal is 10 * 990"

‘We will now investigate a general rule for such examples,

468. To find the value of & recurring decimal,

Let P denote the figures which do mnot recur, and suppose
them p in number; let @ denote the figures which do recur,
and suppose them ¢ in number, Let 8 denote the value of the
recurring decimal ; then

10°*15 = PQ'QQQ......;
by subtraction, . (10°**-10°)s.=PQ- P,

[
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Now 10°*7~-10?=(10'-1)10?; and 10"—1 when expressed
by figures in the usual way will consist of ¢ nines. Hence wa
deduce the usual rule for finding the value of a recurring decimal :
subtract the integral number consisting of the non-recurring figures
from the integral number consisting of the non-recurring and
recurring figures, and divide by a number consisting of as many
nines as there are recurring figures followed by as many cyphers
as there are non-recurring figures.

469. 7o <nsert a given number of Geometrical means between
two given terms.

Let a and ¢ be the two given terms, n the number of terms to
be inserted. Then: the meaning of the problem is that we are to

find n + 2 terms in Geometrical Progression, @ being the first term
and ¢ the last.. Let  denote the common ratio; then ¢ =ar"*;

thus # = ()™, This finds #, and the required terms are ar, ar”,
a . .

470. In Art. 464 we have five quantities occurring, namely,
a, 1, I, n, 8; and -these are connected by the equations (1) and (2),
or (2) and (3), there given. We might therefore propose to find
any two of these five quantities when the other three are given ;
it will however be seen that some of the cases of this problem
are too difficult to be solved. The following four cases present no
difficulty : (1) given a, r, n; (2) given @, , I; (3) given 7, =, I;
(4) given r, m, s,

471. Buppose, however, that a, s, n are given, and therefore
r and [ are to be found. Then r would have to be found from
the equation

s(r-1)=a(r-1);

we may divide both sides by r—~ 1, and then we shall have an
equation of the (n — 1)* degree in the unknown quantity r, which
therefore cannot be solved by any method yet given, if n be
greater than 3. Similar remarks will hold in the case where 7, s, n
are given, and therefore @ and r are to be found.



472. TFour cases of the problem remain, namely, those four in
which » is one of the quantities to be found. Suppose @, r, ¢
given, and therefore 8 and n are to be found. Here n would have
to be found from the equation ! = ar*~’, where the unknown quan-
tity » occurs as an exponent; nothing has been said hitherto as to

GEOMETRICAL PROGRESSION.

the solution of such an equation.

473, To find the sum of 1 term of the following serics;

a {a+b}r, {a+2b)r, {a+30}s",......

Let s denote the sum; then ,
s=a+{a+blr+{a+20}r'+......+{a+(n—-1)b}r",

r8 =

ar+{a+ B} +,.....+{a+ (n—2)b}r™"

+{a+(n—1)b}r"

By subtraction

therefore

10

s3.

s(l-r)=a+br+b'+......+b" ' —{a+(n—-1)b}
=) (ot o-D,
‘=a—{a+(n-—1)b}‘r" + br (1 —1~")

=0+

1-» (1-7)} °
EXAMPLES OF GEOMETRICAL PROGRESSION.
. 8 8 40
Sumtomxterms3+§+—§+ ......

Sum to ten terms 2—-2%42°—-244 ..., .

Sum to n térms 3+2+§+.....‘.

18
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1 1 1 1
7. Sumtomﬁmtzy2+4+8+16
8. Sumtoinﬁnity3+2+§+ ......
9. Snmtom.ﬁmty4+2+g§
1 1
10. Sumtomﬁmty1+4’+1—6+ ......
1 1 1
11. Sum to infinity 5 - 5%+30 300+
1 11
12, Sumtomﬁmtyl §+z §+ ..... .
2 8
13. Sumfomﬁmty2 grgp e
1 1 1

14.. Snmtoinﬁnity 5—'2—5'+m— ......

15. Sumtomﬁmty; : ; 116+' ceee

J2+1 1 1
v 2-1tazgztat

17. Sum to infinity 2+§, 52,+5§,+ ......

16. Sum to infinity

18, Sum to n terms »+2r' +3r* +4r* + ......

. 2 3 4
19. Sumtontermsl+2+2,+2,+ ......

20. Sum ton terms 1+

oooooo

3,
3tz
91. Sum to n terms 1 — g 5_

22. Find the sum of any number of terms in g.P. whose fin
and third terms are given,
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'23. If the common ratio of a @.P. is ~ 3, find the common
ratio of the series obtained by taking every fourth term of the
original series.

7 24. The sum of £700 was divided among four persons, whose
shares were in @.P.; and the difference between the greatest and
least was to the difference between the means as 37 to 12, Find
their respective shares.

/25, Sum to n terms the series whose m® term is (— 1)"a*~

/26. If P be the sum of the series 1 + 1+ +1+......ad inf,
and”@ be the sum of the series 1+ 49+ 4+, .....ad inf,
prove that P¢(Q -1 =@"(P-1). .

27. 8hew that ,/(‘444......) =-666......

28. A person who saved every year half as much again as he
saved the previous year had in seven years saved £102. 19s. How
much did he save the first year

29. In a a.p. shew that the product of any two terms equi-
distant from & given term is always the same,

30. In a g.»r. shew that if each term be subtracted from the
succeeding, the successive differences are also in a.P.

31. The square of the arithmetical mean of two quantities is
equal to the arithmetical mean of the arithmetical and geometrical
means of the squares of the same two quantities.

32. Find a q.p. continued to infinity, in which each term is
ten times the sum of all the terms which follow it.

33. If S, represent the sum of n terms of a given a.p., find
the sum of 8, + 8, + 8, +...... +8.
34, If n geometrical means be found between two quantities

a and ¢, their product will be (ac)™.

35. Let s denote the sum of n terms of the series @, ar,
ar,...; let & denote the sum of n terms of the series @, ar™!,
ar~% ...; and let { denote the last term of the first series; then
will as=1s. )

18—2
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36. Ifa b,¢c,dbeina.r,
(@ + 8"+ c") (0" + & + d°) = (ab + be + cd)".
37. If a,b,¢,dbeina.p,
(a=d)y=(-c)'+(c—a)+(d-d)"

<38, The sum of the first three terms of a G.». =21, and the
sum of the first four terms =45 : find the series.

CO1\® 1\* s 1\*
39, Sum tonterms ("f,_-) +<r'—;,) +( —’7,) 4o
40. Sum to n terms 5+ 55+555+ ......

41, Prove that the two quantities between which 4 is the
arithmetical and @ the geometrical mean, are given by the formuls

A /{{4+6)(4-6)}

42, There are four numbers, the first three of which .are in
G.P., and the last three in A.P. ; the sum of the first and last is 14,
and the sum of the second and third is 12: find the numbers.

43. Three numbers whose sum is 15 are in A.p. ; if 1, 4, and
19 be added to them respectively the results are in @.p. Deter
mine the numbers.

44. If a, b, c be in A.P. shew that
g(a+b+c)'= *G+c)+b'(c+a)+c'(a+d);
if they be in G.P. shew that
1 1 1
a’b’c’(;,+5,+?)=a'+b'+c'.
45. Find the sum of the infinite series

ar+(a+ab)r'+(a+ab+ad”)r® +...
ra.ndbrbeingeachlessthanunity.
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XXXIIL. HARMONICAL PROGRESSION.
474. Three quantities a, b, ¢, are said to be in Harmonical
Progression whena : ¢ :a—b:b—c.
Any number of quantities are said to be in Harmonical
Progression when every three consecutive qua.ntxtnes are in Har-
monical Progression.

475. The reciprocals of quantities in Harmonical Progression
are in Arithmetical Progression.
Let a, b, ¢ be in Harmonical Progression ; then
a:c:a=b:b—c
therefore a(b—c)=c(a-05)
Divide by abe, thus '

1111
c b b a
This proves the proposition.

476. The definition in Art. 474 is sometimes expressed in
words thus : thres quantities are in harmonical progression when
the first 18 to the third as the difference of the first and second i3 to
the difference of the second and third. But it must be remembered
then that the differences are to be formed in the same order : that
is by subtracting the second from the first, and the third from the
second ; or by subtracting the first from the second, and the second
from the third, It would not be correct to subtract the first from
the second, and the third from the second. The definition by the
aid of symbols has the advantage in brevity and exactness over
the definition in words,

Sometimes the property demonstrated in Art. 475 is taken as
the definition of harmonical progression, which is stated thus:
quantities are said to be in harmonical ogrcamnwhmtlmr
reciprocals are in arithmetical progression. ZAL d.h B vw;b
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The term Aarmonical is derived from a fact with regard to
musical sounds. ILet there be a series of strings of the same

substance, the lengths of which are proportional to 1, %, %, ;‘1,
1

5’ and %; and suppose these strings stretched tight with equsl
force. Then if any two of the strings are sounded together the
effect is found to be harmonious to the ear.

There is no formula for the sum of any number of quantities
in Harmonical Progression ; the property established in the pre-
ceding Article will however enable us to solve some questions

" relating to Harmonical Progression.

477, To insert a given number of harmonical means between
two given terms.

Let @ and ¢ be the two given terms, n the number of terms to
be inserted. Then the meaning of the problem is that we are to
find %+ 2 terms in Harmonical Progression, a being the first term
and ¢ the last. Hence the problem is reducible to the following:
to tnsert n arithmetical means between ; and }: Let b denote

- the common difference ; then

1 1
: =;+(n+1)b,

a-c¢
therefore =m.
The Arithmetical Progression is
1 1 1 1 1
2’ ;+b, 5+2b, ...... ‘-i+nb, o’
othat is,
1 ¢n+l)+a-c c(n+1)+2(a—c)
e’ ac(n+l) ° ac(n +1) T

cn+1l)+n(a—c) !
ac(n+1) ¢
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Therefore the Harmonical Progression is
ac(n+1) ac (n+1)
cn+)+a—c’ c(n+I)+2(@-c)
ac(n+1)
c(n+l)+n(a—c)’

478. Let a and ¢ be any two quantities; let 4 be their
arithmetical mean, G their geometrical mean, H their harmonical
mean, Then .

A-a=c—A4; therefore A=3(a+c).
a: @ :: G :c; therefore @ =,/(ac).
a:c:a—H:H—c; therefore H = 2:2

It follows that G*=AH ; therefore 4: ¢ :: G: H. Thus @
hesmmagmtndebetweenia.ndﬂ and 4 is greater than H, for

(a9
4-H= i(“”)‘m 2(a-:c)

that is, 4 — H is a positive quantity.
479. 'We may observe that the three quantities a, b, ¢, are in
Arithmetical, Geometrioa.’l, or Harmonical Progression, according

a-b a
" a’ or—z,or_— respectively.

a-b
b—¢c

In the second case b(a—b) = a (b—c) ; therefore }* = ac.
The third case is obvious by definition.

For in the first case — =1, thereforeb:%(a-!—c).

EXAMPLES OF HARMONICAL PROGRESSION.

‘1. Continue the series 3 +g + g for two terms.

%2, Insert 18 harmonical means between 1 and 210.
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3. Find the n* term of an H.P., of which «, §, are respectively
the first and second terms,

4. Find the (p+¢)* term of an H.P., of which P is the p™
term, and @ the ¢* term.
5. Find what quantity must be subtracted from each of three
given quantities that the three results may be in m. P,
*6. Three quantities are in H.P.; if half the middle term be
subtracted from each, shew that the three remainders are in G. P.

7. Shew that " is greater than, equal to, orlemtha.nac,
according as a, b, ¢, are in A, P., G. P., Or H. P.

~ 8. The arithmetical mean of two numbers is 3, a.nd the har-
monical mean is §: ﬁnd the numbers.

‘29, The geometncal mean of two numbers is also the geo-
metrical mean between the arithmetical mean of the two numbers
and their harmonical mean, The arithmetical mean minus the
harmonical mean is equal to the square of the difference of the
two numbers divided by twice their sum.

©10. If 2 is the harmonical mean between & and b,

1.t .1.1

z-a z-b a' b
* 11. There are three numbers in H. P., such that the greatest
is the product of the other two, and if one be added to each the

greatest becomes the sum of the other two. Find the numbers.
2

*12. The sum of two contiguous terms in m.P. is %, and

their product s ;. Find tho serios. |
13. If between two numbers there be inserted two arith-

metical means 4, and 4,, and two harmonical means H,, H,;
and between 4, and 4, there be inserted an harmonical mean, and
between H, and H, an arithmetical mean ; then the geometrical
.mean between these is equal to the geometncal mean between the
original quantities.
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14. The arithmetical mean of two quantities 2 and y is 4 ;
the geometrical mean is G'; the harmonical mean is H, If
A-G=aand A- H=1}, find # and y in terms of ¢ and .

15. If @b cbein A.P; a, B, yin B.P.; aa, B, cyin a.P.;
then will

a y a. c

-+l =— -,

7 a [} a

16. If a, b, c are in H.P., shew that

1 ,1.,4 .1

a-b db—c c—a o

. a b ]

17. Ifa,b,caremn.r.,shewthatb—“, 3 313

1
=

also in H. P,

18. If » arithmetical and the same number of harmonical
means be inserted between two quantities & and b, and a series of
n terms be found by dividing each arithmetical by the correspond-
ing harmonical mean, the sum of the series
- {1+n+2 (a-b)

+1 6ab

19. Any whole number of the form 3a'-—3', where a is
greater than b, may be divided into three others in m. p., of Which
the sum of the squares shall be 3a*+ 4%,

20. The first of a series of #» quantities in H. P. is unity, and
the sum of the products of every (s — 1) terms is to the product of
all the terms as 2n is to 1: find the progression.,

XXXTL MATHEMATICAL INDUCTION.

480. We shall in the subsequent parts of this book have
occasion to use a method of proof which is called mathematical
induction or demonstrative induction, and we shall now exemplify
the method,

481. Suppose the following assertion made : the sum of n
terms of the series 1, 3, 5, 7, ...... is n*. This assertion we can
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ses to be true in some cases; for example, the sum of two terms is
1+ 3 or 4, that is, 2*; the sum of three terms is 1+ 3 +5 or §,
that is, 3'; we wish however to prove the theorem universally.
Suppose the theorem were known to be true for a certain
value of n; that is, suppose for this value of » that
1+3+6+...... +(2n-1)=n";

add 27 + 1 to both sides; then
14345+ +(2n-1)+ (2n+1)=0"+2n+1=(n+1).

Thus, if the sum of » terms of the series =", the sum of
n+1 terms will =(n+1)". In other words, if the theorem is
true when we take a certain number of terms, whatever that
number may be, it is true when we increase that number by one.
But we see by trial that the theorem ¢s true when 3 terms are
taken, it is therefore true when 4 terms are taken, it is therefore
true when 5 terms are taken, and 8o on. Hence the theorem
must be universally true.

482, 'We will now take another example; we propose to
establish the truth of the following formula :

1 +2'+ 3" +...... +n’=”(”+ IL( X 1)'.

Wo can easily sscertain by trial fhat this formula holds in
simple cases, for example, when n =1, or 2, or 8; we wish, how-
ever, to establish it universally,

Suppose the ‘theorem were known to be true for a certain
value of n; add (n+1)" to both sides; then

n(n+1) (2n+1)
. 6.

I"+2'+3'+ .. 40"+ (n+ 1) = +(n+1)

" But nn+1)@n+1) 12}.(2'“‘ 1) +(n+1)=(n+1) {"——(2:+ 1) +n+ 1}

_n+1l

=" ontetna6)
=’_‘_;_1 (n+2) (2n+ 3)4!‘&"%1_), where m=mn +1.
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Thus we obtain the same formula for the sum of n+1 terms
of the series 1% 2° 3°...... a8 was supposed to hold for n terms.
In other words, if the formula holds when we take a certain
number of terms, whatever that number may be, it holds when we
increase that number by one. But the formula does hold when
3 terms are taken, therefore it holds when 4 terms are taken,
therefore it holds when 5 terms are taken, and so on., Hence the
formula must hold universally.

483. The two theorems which we have proved by the method
of induction may be established otherwise. The first theorem is
an example of an Arithmetical Progression, and the second has
been investigated in Art. 460. There are many other theorems
which are capable of easy proof by the method of induction ; for
example, that in Art. 461.

The theorems asserted in Art. 69, respecting the dnnmblhty of
a" & g" by x « a, may be proved by induction. For

#—a"_ . a(@ ' -a"") "")

z—a z—a
hence «" —a" is divisible by & — a when 2*'—qa""" is 0. Now we
see that z—a is divisible by «-—a, therefore &' — a* is divisible
by «—a, therefore again o® —a® is divisible by z—a, and so on;
hence 2*—a"* is always divisible by 2 —a when = is a positive in-
teger. Similarly the other cases may be established. As another
example the student may consider the theorems in Art. 225.

484. The method of mathematical induction may be thus
described : We prove that if a theorem is true in one case, what-
ever that case may be, it is true in another case which we may
call the next case; we prove by trial that the theorem ¢s true in a
certain case ; hence it is true in the next case, and hence in the
next to that, and so on; hence it must be true in every case a.fber .
that with which we began.

485. It is possible that this method of proof may be less:
satisfactory to the student than a more direct proceeding; it may
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appear to him that he is rather compelled to believe propositions
so proved than shewn why they hold. But as in some cases this
is the only method of proof which can be used, the gtudent must
accustom himself to it, and should not pass over it when it occurs
until he is satisfied of its validity.

486. 'We may remark that the student of natural philosophy
will find the word induction used in a different sense in that sub-
ject; the word is there applied to the assumption or conjecture
that some law holds generally which is found to be true in certain
cases that have been examined. There, however, we cannot be
sure that the law holds for any cases except those which we have
examined, and can never arrive at the conclusion that it is a
necessary truth. In fact, induction, as used in natural philosophy,
is never absolutely demonstrative, often far from it ; whereas the
method of mathematical induction is as rigid as any other process
in mathematics,

MISCELLANEOUS EXAMPLES.

1. Transform 221:342 from the scale with radix ten to the
scale with radix five.

2. If the radix of a scale be 4m + 2 the square of any num-
ber whose last digitis 2m + 1 or 2m + 2 will terminate with that
digit.

3. A digit is written down once, twice, thrice, ...... up to n
times respectively, so as to form » numbers consisting of one, two,
three, ...... n, places of figures respectively. If ¢ be the first and
b the last of the numbers, and # the radix of the scale, the sum of
rb —na

the numbers is
r-1

4, If m, n be any two numbers, g their geometrical mean,
a,, h, the arithmetical and harmonical means between m and g, and
a,, h, the arithmetical and harmonical means between g and =,

prove that a b, =g" =ajh,.




EXAMPLES. XXXIIIL 285°

5. If between b and a there be inserted n arithmetical means,
and between a and b.there be inserted » harmonical means, the
sum of the series composed of the products of the corresponding
terms of the two series is (n +2) ab.

6. If » harmonical means are inserted between the two posi-
tive quantities @ and b, shew that the difference between the first
and the last bears to the difference between a and b a less ratio
than that of n—1ton+1.

7. A sets out from a certain place and travels one mile the
first day, two miles the second day, three the third, four the fourth,
and so on. B sets out five days after 4 and travels the same road
at the rate of 12 miles a day. How far will 4 travel before he is
overtaken by B}

8. From 256 gallons of wine a certain number are drawn and
replaced with water ; this is done a second, a third, and a fourth
time, and 81 gallons of wine are then left. How much was drawn
out each time %

9. 4 and B have made a bet, the amount of the stakes being
£90, and the sum staked by each being inversely proportional to
all the money he has. If 4 wins he will then have five times
what B has left; if B wins he will then have double what 4 has
left. "What sum of money had each ?

10. If (a+b+c)(a+bd+d)= (c+d+a)(c+d+6), prove that
each of these quantities is equal to

(a-¢c)(a=d)(b-0) (3-d)
: (@+b—c-d)
11. If the roots of ax’+ 25z + ¢ =0 be possible and different,
those of (a +¢) (ax + 2bz + ¢) = 2 (ac— ") (=" + 1) will be impossi-
ble ; and wvice versd.

12. Ifa+b+e=0, #+y+2z+w=0, then the two equations

W/ (a2) + o/ (By) + J(c2) = 0, /(b=) - ,J(ay)+,/(cw) 0, are deducible

the one from the other.
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XXXIV, PERMUTATIONS AND COMBINATIONS

487. The different orders in which any things can be ar-
ranged are called their permutations.

Thus the permutations of the letters a, b, ¢, taken two ata
time are ab, ba, ac, ca, be, cb.

488. The combinations of things are the different collections
that can be formed out of them, without regarding the order in
which the things are placed.

Thus the combinations of the letters a, b, ¢, taken two ata
time are ab, ac, bc; ab and ba though dJﬂ'erentpermzdaMu
forming the same combination.

489. 'We may observe that a difference of language occurs in
books on this subject ; what we have called permutations are called
variations or arrangements by some writers, and they restrict the
word permutations to the case in which afl the things are used
at onces; thus they speak of the variations or arrangements of four
letters taken two at a time, or three at a time, but of the permuis-
tions of them taken all together, =

490. Toﬁndthcmnnborquermutauomqfnthmgstalmr
at a time.

Suppose there to be n letters a, b, ¢, d,...... ; we shall first
find the number of permutations of them taken fwo at a time.
Put a before each of the other letters; we thus obtain n-1
permutations in which @ stands first. Next put b before each of
the other letters ; we thus obtain #—1 permutations in which
b stands first. Slmllarly there are n»—1 permutations in which
¢ stands first ; and 80 on. Thus, on the whole, there are n (n—1)
permutations of n letters taken two at a time.

‘We shall now find the number of permutations of the n letters
taken three at a time. It has just been shewn that out of n letters
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we can form n (n— 1) permutations each of two letters; hence out
of the n—1 letters b, ¢, d, ...... we can form (n—1)(n~2) per-
mutations each of two letters ; put a before each of these and we
have (n—1)(n—2) permutations each of three letters in which
a stands first, Similarly there are (n—1)(n—2) permutations
each of three letters in which b stands first. Similarly there are
as many in which ¢ stands first; and so on. Thus on the whole
there are n (n—1)(n—2) permutations of n letters taken three at
a time,

From these cases it might be conjectured that the number of
permutations of x letters taken r at a time is

nn-1)(n-2)...... (n—7r+1),

and we shall prove that this is the case. For suppose it true that
the number of permutations of n letters taken »—1 at a time is

n(n-1).... fn—-(r-1)+1},

we shall shew that a similar formula will give the number of per-
mutations of the letters taken r at a time. For out of the n—1
letters b, ¢, d, ...... we can form

(n—-l)(n-2) ...... {n-1-(r-1)+1}
permutations each of r—1 letters; put a before each of these,
and we obtain as many permutations each of r letters in which a
stands first. Similarly we have as many in which b stands first,

as many in which ¢ stands first, and so on. Thus on the whole

there are
n(n—-1)(n-2)...... (n—r+1)

permutations of n letters taken r at a time.

If then the formula holds when the letters are taken r—1 at
a time, it will hold when they are taken r at a time; but it has
been proved to hold when they are taken three at a time, therefore
it holds when they are taken four at a time, therefore it holds
when they are taken ﬁve at & time, and so on; thus it holds
universally.
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* 491. Hence the number of permutations of n things taken
all together is n(n—1)(n—2)...... 1.
For the sake of brevity n(n-1)(n~2)...... 1 is often denoted
by |n; thus |n denotes the product of the natural numbers from
1 to n inclusive. The symbol |n may be read, factorial n.

492. The formula for the number of permutations of n things
taken r at a time may also be obtained in another manner.

Let P denote the number of permutations of n letters taken
r—1 at a time, To form the permutations of n letters takenr
at a time we may proceed thus: take any one of the P permuts-
tions, and place at the end of it any one of the s — r 4+ 1 letters
which it does mot involve. Thus the whole number of the per-
mutations of the n letters taken r at a time will be (n—r+1) 2.

Now the number of the permutations of n letters taken one st
a time is n ; therefore the number taken two at & time is n(n-1);
therefore the number taken three at a time is n(n 1) (n-2);
and so on.

493. Any combination of r things will produce |r permuts-
tions, For, by Article 491, the s things which form the given
combination can be arranged in |r different ways,

494. To find the number of combinations of n things taken
rat o time. '

The number of combinations of » things taken # at a time is

n(n-1)(n-2)...... (n-r+1)

- For the number of permutations of n things taken r at 8
time is n(n—-1)(n-2)...... (n—r+1), by Art. 490; and exh
combination produces |r permutations, by Art. 493; hence the
number of combinations must be

nin-1)n-2)......(n—r+1)
G .
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If we multiply both numerator and denominator of this ex-

i
[rln=r"

495. The number of combinations of n things taken r af a
time 18 the same as the number of them taken n—r at a time.

The number of combinations of n things taken n—r at a
time is

pression by [n — r it becomes

nin—-1)(n-2)...... {n—(n-r)+1}

[n—r ?
nn-1)(n-2)....(r+1)
ln—r )

Multiply both numerator and denominator by |~ and we ob-

»

tain Fn=r’ which; by Art. 494, is the number of combinations

that is,

of n things taken 7 at a time.

The proposition which we have thus demonstrated will be
evident too if we observe that for every combination of « things
which we take out of n things, we leave one combination of n—r
things. Hence every combination of » things corresponds to a
combination of n—7 things which contains the remaining things.
Such combinations are called complementary.

496. To find for what value of r the number of combinations
of n things taken r at a time is greatest.
Let (n), denote ‘the number of combinations of n things taken
r at a time,
(n),_, the number of combinations of n things taken » —1
at a time,

n—-r+1
r

then ’ (n).= (®)eoss

The factor '-n———:—"'—l- may be written ’-f-;:—l -1, which shews

that it decreases as » increases. By giving to r in succession the
T. A 19
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values 1, 2, 3,....., the number of combinations is continually
inoreased 8o long as "1 1 is greater than unity.

First suppose n even and = 2m, then 2'”:1—1 is greater

than 1 until 7 =m inclusive, end when r=m+ 1 it is less than 1.
Hence the greatest number of combinations is obtained when the

things are taken m at a time, that is, gatatime.

Next suppose n» odd and =2m+ 1, then -2—"#—1 is
equal to unity when r=m+1. Hence the greatest number of
combinations is obtained when they are taken m at a time or
m+1 at a time, the result being the same in these two cases,
n-1 . n+l

3 at a time, or 3

497. To find the number of permutations of n things taken all
together which are not all different.

Let there be n letters ; and suppose p of them to be a, g of
them to be 3, = of them to be ¢, and the rest to be unlike; the
number of permutations of them taken all together will be

=
| BlE

For let N represent the -required number of permutations.
If in any one of the permutations the p letters a were changed
into p new letters different from any of the rest, then without
altering the situation of any of the remaining letters, we could
from the single permutation produce |p different permutations;
and so if the p letters a were changed into p different letters, the
whole number of permutations would be ¥ x|p. Similarly, if the
¢ letters b were also changed into g new letters different from any
of the rest, the whole number of permutations we could now ob-
tain would be N x|p x|g ; and if the r letters ¢ were also changed,
the whole number would be Nx|px|gx|r. But this number
must be equal to the number of permutations of n dissimilar things

that is, when they are taken at a time,
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taken all together, that is, to (n.

Thus . Nx|px|gx|r=|n;
| L
therefore N—ll’llt.

And similarly any other case may be treated.

498. There is another mode in which the result of the pre-
ceding Article may be obtained which will be instructive for the
student. We will explain it for simplicity by the aid of a par-
ticular example ; but the reasoning is perfectly general in cha-
racter, Suppose we have 10 letters ; suppose 2 of them to be a,
3 of them to be b, and 5 of them to be ¢ : required the number of
permutations of the 10 letters taken all together,

We may consider that we have 10 places which are to be
occupied by the 10 letters, Choose any 2 of the places and put a

meach;thlscanbedonemllogways. Choose any 3 of the
remaining 8 places, and put b in each; this can be dome in

8
I;gways. Then put ¢ in each of the remaining 5 places;

. . 5.4.3.2.1
this can be done in 1 way ; and 1=m, Now the

product of the results thus obtained will obviously give the total

number of permutations: this number therefore is ——— L |_. B’

499, If there be n things not all different, and we require
the number of permutations or of combinations of them taken r at
a time, the operation will be more complex ; we will exemplify
the method in the following case :

There are n things of which p are alike and the rest unlike ;
required the number of combinations of them taken r at a time.

‘We shall suppose = less than » —p, and put n—p=g. Con-
sider first the number of combinations that can be formed without

19—2
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using any of the p like things ; this is the number of combinations
. - . g

of ¢ things taken s at a time, that IS,F. Next take one of

the p things and r—1 of the ¢ things; the number of ways in

which combinations can thus be formed is the same as the num-
ber of combinations of ¢ things taken r—1 at a time, that is

le . Next take #wo of the p things and combine them

. 3 . 1 i ————-—-‘1
with #—2 of the g things ; this can be done in [r=2[g-r+2

ways. Proceed thus, and add the number of combinations s
obtained together, which will give the whole number of combi-
nations. ‘

If however » is not less than g we should consider first the
case in which r — g things are taken from the p like things, and
g things are taken from the ¢ unlike things; this can be donein
only one way. Next take r—q+ 1 things from the p things, and
g¢—1 from the ¢ things ; this can be done in ¢ ways. And =o on.

If the number of permufations be required, we have only to
observe that each combination of s things in which s are alike and

the rest unlike, will produce %permutations (Arxt. 497), and thus

the whole number of permutations may be found.

500." By the following method the formula for the number of
combinations of n things taken r at & time may be found without
assuming the formula for the number of permutations.

Let (n), denote the number of combinations of n things taken
r at & time. Suppose n letters a, b, ¢, d, ...... ; among the com-
binations of these r at a time, the number of those which contain
the letter a is obviously equal to the number of combinations of
the remaining n — 1 letters »—1 at a time, that is, to (n —1),_:
The number of combinations which contain the letter b is also
(n—1),_,, and so for each of the letters. But if we form, first all
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the combinations which contain @, then all the combinations
which contain b, and so on, each particular combination will ap-
pear r times; for if r =3, for example, the combination abe will
occur among those containing a, among those containing 4, and
among those containing ¢. Hence

(=2 (m-1),..

In this formula change n and r first into n~1 and r—=1
respectively, then into n -2 and r— 2 respectively, and so on;
thus . .

n—-1
,._1("'-2)r-v

n- 1),_; =

for (n—-r+1),=n-r+1.

501, To find the whole number of permulations of n things
when each may occur once, twice, thrice, ...... up to r times.

Let there be n letters a, 3, o, ...... First take them one at a
time ; this gives the number n. Next take them two at a time;
here & may stand before a, or before any one of the remaining
letters ; similarly & may stand before b, or before any one of
the remaining letters ; and so on ; thus there are n* different per-
mutations of the letters taken two at a time. Similarly by put-
ting successively a, b, ¢, ...... before each of the permutations of
the letters taken two at a time, we obtain #* permutations of the
letters taken three at a time. Thus the whole number of permu-
tations when the letters are taken = at a time will be n".
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502, Since the number of combinations of n things taken ¢
at a time must be some integer, the expression

must be an integer. Hence we see that the product of any
r successive integers must be divisible by |7 'We shall give a
more direct proof of this proposition in the Chapter on the theory
of numbers.

EXAMPLES OF PERMUTATIONS AND COMBINATIONS.

1. How many different permutations may be made of the
letters in the word Caraccas taken all together §

2. How many of the letters in the word Heliopolis ?

3. How many of the letters in the word Ecclesiastical ?

4. How many of the letters in the word Mississippr ?

5. If the number of permutations of n things taken 4 toge-

ther is equal to twelve times the number of permutations of
n things taken 2 together ; find n. -

6. In how many ways can 2 sixes, 3 fives, and 5 twos be
thrown with 10 dice ? '

7. If there are twenty pears at three a penny, how many
different selections can be made in buying six-pennyworth? In
how many of these will a particular pear occur $

8. From a company of soldiers mustering 96, a picket of 10
is to be selected ; determine in how many ways it can be done,
(1) 80 as always to include & particular man, (2) so as always
to exclude the same man.

9. How many parties of 12 men each can be formed from
a company of 60 men ?

10. If the number of combinations of n things r—+ toge
ther be equal to the number of combinations of n things r+¢'
together, find n.
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11. In how many ways can a party of six take their places
* at a round table }

12. In how many different ways may n persons form a ring?

13. How many different numbers can be formed with the
digits 1, 2, 3, 4, 5, 6, 7, 8, 9; each of these digits occurring once
and only once in each number? How many with the digits 1, 2, 3,
4, 5,6,17,8,9, 0, on the same supposition %

14. Out of 12 conservatives and 16 reformers how many
different committees could be formed each consisting of 3 con-
servatives and 4 reformers

15. If there be z things to be given to n persons, shew that
7" will represent the whole number of different ways in which
they may be given.

16. Suppose the number of combinations of # things taken r
together to be equal to the number taken r+1 together, and
that each of these equal numbers is to the number of com-
binations of » things taken r— ltogetheras5lsto4 find the
values of n and 7.

17. Given m things of one kind, and = things of a second
kind, find the number of permutations that can be formed con-
taining r of the first and s of the second.

18. Find how many different rectangular parallelepipeds there

. are satisfying the conditions that each edge shall be equal to some
one of n given straight lines all of different lengths; and that no
face of a parallelepiped shall be a square.

19. The ratio of the number of combinations of 4n things
taken 2n together, to that of 2n things taken » together is

1.3.5...... (4n -1)
{1.3.5...... (2n-1)}*"
20. Out of 17 consonants and 5 vowels, how many words can
be formed, each containing two consonants and one vowel
21. " Out of 10 consonants and 4 vowels, how many words can
be formed each containing 3 consonants and 2 vowels }
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22. Find the number of words which can be formed out of
7 letters taken all together, each word being such that 3 given
letters are never separated. S #..14 .

23. With 10 flags representing the 10 numerals how many
signals can be made, each representing a number and consisting of
not more than 4 flags ?

24. How many words of two consonants and one vowel can
be formed from 6 consonants and 3 vowels, the vowel being the
middle letter of each word $

25. How many words of 6 letters may be formed with 3 vowels
and 3 consonants, the vowels always having the even places?

26. A boat’s crew consists of 8 men, 3 of whom can only row
on one side and 2 only on the other. Find the number of ways
in which the crew can be arranged.

27. A telegraph has m arms, and each arm is capable of n
distinct positions : find the total number of signals which can be
made with the telegraph, supposing that all the arms are to be
used to form a signal.

28. A pack of cards consists of 52 cards marked differently:
in how many different ways can the cards be arranged in four sets,
each set containing 13 cards ?

29. How many triangles can be formed by joining the angular
points of a decagon, that is, each triangle having three of the
angular points of the decagon for ifs angular points ¢

30. There are n points in a plane, no three of which are in
the same straight line with the exception of p, which are all in
the same straight line: find the number of straight lines which
result from joining them.

31. Find the number of #riangles which can be formed by
joining the points in the preceding Example. '

32, There are n points in space, of which p are in one plane,
and there is no other plane which contains more than three of
them: how many planes are there, each of which contains three
of the points ? ‘
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33. If » points in a plane be joined in all possible ways by
indefinite straight lines, and if no two of the straight lines be
coincident or parallel, and no three pass through the same point
(with the exception of the 7 original points), then the number of
points of intersection, exclusive of the n points, will be

n(n—1)(n—-2)(n-3)
) .

34. There are fifteen boat-clubs ; two of the clubs have each
three boats on the river, five others have two, and the remaining
eight have one: find an expression for the number of ways in
which a list can be formed of the order of the 24 boats, observing
that the second boat of a club cannot be above the first,

35. A shelf contains 20 books, of which 4 are single volumes,
and the others form sets of 8, b, and 3 volumes respectively : find
in how many ways the books may be arranged on the shelf, the
volumes of each set being in their due order.

36. Find the number of the permutations of the letters in the
word examination taken 4 at a time.

37. TFind the number of the combinations of the letters in the
word proportion taken 6 at a time.

38. There are n—1 sets containing 2a, 3a,...... na. things
respectively : shew that the number of combinations which can
be formed by taking a out of the first, 2a out of the second, and

na
so on for each combination, is —.
{la}

39. Find the sum of all the numbers which can be formeci
with all the digits 1, 2, 3, 4, 5, in the scale of 10.

40. The sum of all numbers that are expressed by the same
digits is divigible by the sum of the digits.
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XXXV. BINOMIAL THEOREM. POSITIVE INTEGRAL
EXPONENT.

503. We have already seen that (z+a)'=x"+ 2za + a*, and
that (z+a)*=2o"+ 32"a+3za"+a’; the object of the present
Chapter is to find an expression equal to (z+ a)* where n is any
positive integer. :

504. By ordinary multiplication we obtain

(x+a)(z+a,)=2"+(a,+a,)z+aa,
(x +a) (& +a,) (x+a)=2"+(a, +a, +a)a"
+(a,a, + a0, +aa )z +aaa,

(:c +a) (2 + ag) (2 + ay) (2 + a) =2 + (@, + Gy + Gy + ) 2°

+ (0y + a1y + 310, + a3y + G40, + B33 ) 2

+ (W + 00 + B0, + Cylla®,) 2 + Gy Gaye
Now in these results we see that the following laws hold :

I The number of terms on the right-hand side is one more
than the number of the binomial factors which are multiplied
together.

II. The exponent of « in the first term is the same ‘as the
number of binomial factors, and in the succeeding terms each
exponent is less than that of the preceding term by unity.

III. The coefficient of the first term is unity; the coeflicient
of the second term is the sum of the second terms of the binomial
factors ; the coefficient of the third term is'the sum of the pro-
ducts of the second terms of the binomial factors taken two at
a time; the coefficient of the fourth term is the sum of the pro-
ducts of the seoond terms of the binomial factors taken three at
a time; and 8o on; the last term is the product of all the seoond
terms of the bmomm.l factors.

‘We shall now prove that these laws always hold whatever
be the number of binomial factors. Suppose the laws to hold
when n —1 factors are multiplied together; that is, suppose

(z+a) (z+a)...(z+a,_ ) =2""+p &+ p "+ pa" ' +.cct Puyy
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where p, = the sum of the terms 4, a,, ...... a,_,,
P, =the sum of the products of these terms taken two at
a time,
p,=the sum of the products of these terms taken three
at a time,

------------------------- e0csescscetcssrrcocoscnvne

P._1= the product of all these terms,

Multiply both sides of this identity by another factor z+a, ;
thus

(+a) (x+ay) ......(x+a,) =2+ (p,+ a,) 2" + (p, + pya,) 2*~*
+(py+p@) &2+ ...l + DO
Now p+a,=a,+ @+ ...... + a2, +a,
= the sum of all the terms a), a,, ...... a,;
P, + P00 =p,+a.(a1+a,+ ...... +a,,)
‘= the sum of the products taken two at a time of
all the terms a,, a,, ...... a,;
Prt Pt Pr+ O (B + G+ i+ )
=the sum of the products taken three at a time
. of all the terms a,, a,, ...... a,.

..........................................

Pa-i@, = the product of all the terms a,, ay, ...... G

Hence if the laws hold when n—1 factors are multiplied
together, they hold when % factors are multiplied together; but
they have been proved to hold when 4 factors are multiplied
together, therefore they hold when & factors are multiplied toge-
ther, and s0 on; thus they hold universally.

‘We shall write the result for the multiplication of n factors
thus for abbreviation,

(+a)(z+ay)...(+a)=2"+q2" ' +ga" " +¢7" "+ oo + qu.

The number of terms in ¢ is obviously n; the number of
terms in g, is the same a8 the number of combinations of the
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n things a, a,, ...... a,, taken two at a time, that 1s, ”(ln;”;

the number of terms in g, is the same as the number of combina-
tions of the n things a,, ay, ...... a, takenthreeata.time, that is
a(r-n-3), ; and so on. Now suppose @, 4, @, ...... a,

1.2.3
each =a; thus g, becomes na, and g, becomes (1 -1) a', and so

on ; and we obtain

. n(n-1) , n('n 1)(n-2) ,
(.'c+a) =W'+W‘+——17—-a&’-' —1—2—3— E.-"f'

n(n 1)

-l

...... a~*%" + na™'x +a"
This formula is called the Binomial Theorem ; the series on
- the right-hand side is called the expansion of (z+ a)", and when
we put this series in the place of (x + a)* we are said to expand
(@+a)". The theorem was discovered by Newton.

505. For example, take (z +a)*; here n=5,
n(n-1)n-2) 5.

nfn—1) 5.4 4.3
2 -12-% — 1.3 ~132.3-10
n(n-—l)(n—2)(n—3)_5.4.3.2_5.
1.2.3.4 “1.9.3.4"

thus (= + a)* =2* + bz'a + 102" + 10x"a" + bza’ + a'.

Again, suppose we require the expansion of (c*+y2)’; we
have only to write ¢* for # and yz for & in the preceding identity;
thus

(6" + 39 = (0 + 5 (¢) g+ 10(& () + 106 (v
+ 5¢* (y2)* +(y2)°
=¢" + 5c’yz + 10c®y™2* + 10c*y"2 + 5c'y'a* + %"

Similarly,

(& +397)" = (@) + 5.(¢)* 29"+ 10 (&9 (29" + 10 (6 (29"
56 (2 + (O)°
=¢' + 10c"y" + 40c°y* + 80c*y® + 80cy® + 32y




/
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506. The Binomial Theorem is so very important that the
student should pay close attention to the demonstration of it.
Three laws are observed to hold when we multiply together a
small number of binomial factors; and it is shewn strictly by
induction that these laws will hold whatever be the number of
binomial factors multiplied together.

The inductive demonstration depends mainly on the following
principle : suppose that we have formed all the combinations of
n~1 letters taken r at a time, and that a new letter is introduced ;
the combinations of the x letters taken » at a time consist of the
combinations of the n—1 letters r at a time, together with the
combinations obtained by combining the new letter with all the
combinations of the old letters »—1 at a time. This principle is
applied in succession to the cases r=1, r=2, r=3,...... up to
r=n-1

But even without the inductive process the universal truth of
the laws will be obvious on due consideration. Suppose we have
to multiply together » binomial factors 2 +a, z+a,, ...... yx+a;
when the multiplication is effected every term in the result is a
product formed by taking one-letter out of each binomial factor.
Thus if we require the term which involves 2"~* we must multiply
together the second letter in any two binomial factors and the first
letter in the remaining » —2 binomial factors ; hence the coefficient
of 2*~* must consist of the sum of the products of every two of the
letters a,, a@,, ... @, ; and the number of these products will be the
same as the number of combinations of n things taken two at
a time, Similarly we may determine the coefficient of any other
power of x, as =*™* for example.

\The Binomial Theorem may also be demonstrated in the fol-
lowing manner : We can verify by trial that the Theorem holds
for small values of n as 2, 3, 4 ; assume then that

-1 -1)(n—-2) , .-
(a:+a)'=z“+naz"“+1({‘j—)a’x‘"+"—(1‘T.2)%—-)a'x' "+

-

multiply both sides by # +a ; thus
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(x-l-a)““ =gt +W+ﬁ (n— l)a’a:'" n(n—1)(n-2) Pt P

1.2 1.2.8
+aaf'+na'x"‘+”(;‘_21)a' ...
Hence, by putting togetiler like terms, we have p
3 'n+1 n -
(x+a)“—d‘“+(n+1)az'+<1 2) @’z

("+1)".(""1) 8, n—8 .
+_l.2.3 '’ +...)

that is, we obtain for (z + a)**' a series of the same form as that
for (x +a)", having n +1 in the place of n. This shews that if the
Binomial Theorem is true for any exponent it is also true when
that exponent is increased by unity, But the Theorem is true
when the exponent is 4 ; therefore it is true when the exponent
is 5; therefore it is true when the exponent is 6; and so on.
Thus the Theorem is true for any positive integral exponent,

507. In the expansion of (z+ a)" suppose z=1; thus

. (n D) g nr=1(n-2) ,
(1+a)=1+na+ 1.2 1.2.3 +aveenn 0"

since this is true whatever a may be, we may write x for a ; thus

. n(n-1) nin-1)(n-2)
(l-2)"=14+nz+ 13 =+ 19.3 24 e+

The coefficient of the second term in the expansion of (1 +z)'
is n ; the coefficient of the third term is n( ) ; -and generally

the coefficient of the (r+1)* term, bemg the number of com-
binations of n things taken r at a time is, by Art. 494, equal to.

n(n=1)(n- 2i£ """ (r=r+l) ; by multiplying both numerator
. : L
and denominator by |n — r this becomes E——"""" .

508. In the expansion of (1 + x)" the coefficient of the r™® term
Jrom the beginning is equal to the coefficient of the r* term from
the end.
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The coefficient of the 7* term from the beginning is
n(n-1)(n-2)...... (m—r+2)

-1 ’
by multiplying both numerator and denominator by [ —#+1 this
In _ .
becomes [T =r+1"

The #** term from the end is the (n—r+2)® from the begn
ning, and its coefficient is
nn—1)...... {n—(n— r+2)+2} n(n—l) ...... r.

[p=r+1 |n —r+1
d this also ————t‘ ”
o Tr=1p=r+1-
509. It appears from the preceding Article that the coeffi-

n

cient of the r* term may be written thus, [F=Ia=rsl’ If we

apply this to the last term for which 7= +1, this expression
lﬁf The symbol |0 has had no meaning hitherto

assigned to it; if we agree to consider it equivalent to 1, then
the general expression will hold true for the last term.

takes the form

510. To find the greatest coefficient in the expanmsion of
(1+=x)~

This has been investigated in the Chapter on Permutations and
Combinations, (Art. 496) ; it is there shewn that when # is even,

the greatest coefficient is. found by putting g for r in the expression

n .
IIII’:_""; when n is odd the greatest coefficient is found by put-
n+l

ting "T_l or —5— for r in the expression, the result being the

same in the two cases.



304 BINOMIAL THEOREM. POSITIVE INTEGRAL EXPONENT.
" bll.  To find the greatest term in the expansion of (x +8)"
n(n—l)...(n—r+2)'x__,+,a,_l;

The #** term of the expansion is prany
the (r + 1)® term may be obtained by multiplying the 7 term by
’:”1 2 thatls,by(——l)g. This multiplier diminishes
a8 7 increases, and "+1 l)—isgreaterthn.nlonlysolongas
nrl—lmgreatertha.n that is, onlysolongas-:—lxx
greatertha.n s i;ha.i:m,onlysolonga.srmleasi'.lmn;:ﬂ
—-+1
a

If ——1 be an integer, then, denotmg this integer by p, the

= + 1
»* term of the expansion is equal to the (p +1)® term, and
these terms are greater than any other term; but if ;ﬂ
a +1
be not an integer, then the greatest term is the (g+ 1)®, where

qmthemtegra.lpartofn+l

i |
a

512. . In the theorem for expanding’ (z+a)", a8 @ may have
any value, we may suppose it negative if we please ; thus put —¢
for @ and we have

(—c)"=2"—nex"" + "—(]Tiz—ll Tt —
+n(- c)"“w +(-o)

‘We may observe that the expansion of a binomial can always
be reduced to the case in which one of the two qua.ntmes is
unity, For

(a:+a"=ac"(1 +;) =a"(1+y), ifg:%.
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We may then expand (1 +y)* and multiply each term by «", and
thus obtain the expansion of (z + a)".

* 513, To find the sum of the coefficients of the terms in the
expansion of (1 + )"

The theorem
Aray=14ne s 20-Dors L pngia
istruev“forall values of ; put =1 ; thus
P=14+n +”(1n.21) ...... +n+ 1

That is, the sum of the coefficients = 2%

514. Tké sum of the coefficients of the odd terms in the expan-
sion of (1 +x)° 48 equal to the sum of the coefficients of the even

terms.

Put 2 =-1 in the expansion of (1 +)*; thus
'n(n 1) an-1)(n- 2)

- T 2.5 T .

=sum of the odd coefficients — sum of the even coeflicients.
Since then the sums are equal, by the preceding Article each

must _—— ; that is, 2",

O=1l-n+

515. The resulb in Art. 513 gives a theorem relating to
Combinations. For suppose there are m things; then we can
take them singly in » ways, we can take them two at a timo

n_(ln—-T‘l) ways, we can take them three at a time in
2e-D#=2) Surs, nd s0 on. Hence by Art. 513 the totel
number of ways of taking n things is 2*~1, This theorem was
obtained by the ea.rly writers on Algebra before the Bingmial
Theorem was known ; the proof is a simple example of mathe-
matical induction yvluch is deserving of motice, We haye to
T. A, 20
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shew that if unity be added to the total number of ways of
taking n things, the result is 2*. Suppose we have four letters
a, b, ¢, d; form all the possible selections and prefix unity to
them, Thus we have

1,

a b d

ab, ac, ad, be, bd, od,
abe, abd, acd, bed,
abed.

Here the total number of symbols is 16, that is, 2°. Now
take an additional letter e; the corresponding set of symbols will
consist of those already given, and those which can be formed
from them by affixing ¢ to each of them. The number will there-
fore be doubled; that is, it will be 2°. The mode of reasoning is
general, and shews that if the theorem is true for = things, it is
true for n + 1 things,

EXAMPLES OF THE BINOMIAL THEOREM.

‘Write down the 3™ term of (a +b)".
Write down the 49* term of (a—. z

" ‘Write down the 5% term of (a*— 8")"",
Write down the 2001* term of (ai + &%), ~
‘Write down all the terms of (5 —4z)".
Write down the 5% term of (3t — 4y%)".
Write down the 6% term of (2a?— b%)*.

R I N S

! .
8. Write down all the terms of (5 —%) .

9. Write down the middle term of (a + «)'
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- 10. 'Write down the two middle terms of (& + z)".
11. Expand {a+./(@*~1)}°+{a—./(a"—1)}° in powers of a.
12. Write down the coefficient of y in the expansion of |

.. G’)‘
{y*+-17.
(5

13. If A be the sum of the odd terms and B the sum of the

even terms in the expansion of (z + a)", prove that
- B'=(2’-a").

14. Prove. that the difference between the -coefficients of
#*! and &" in the expansion of (1 +)**' is equal to the differ-
ence between the ooeﬂic1ents of *! and "' in the expansion of
1+,

15. Shew that the middle term in the expansion of (1 + &)™

' 1.3.5...(2n—1) ‘
= L’_" 2rx”,

16. Find the binomial expansion .of which four oonsecutxve
terms are 2916, 4860, 4320, 2160.

17. Prove that if the term o oecurs in the expamsion of

e . _ I
(a:+5) the coefficient .of ‘the"te!'m BEICERTICED),

18, 'Write down the coefficient of #*** in the expansion of

1 e+l
Sk

19. Find the +* term from the beginning, the #** term from
' n
the end, and the middlé term of ( - é) .

20, If 4, ¢,1, £, ..... represent the terms of the expansion
of (a + x)", shew that

(to—t|+t‘- -nvoct)"“ (t;‘t."‘ t.- ‘000-‘.).= (a"i‘w').o

20-2



308 BINOMIAL .THEOREM. ANY EXPONENT.

'XXXVI. BINOMIAL THEOREM. ANY EXPONENT.

516. We have seen that when 7 s a positive integer

it PN
I.

‘We now proceed to shew that this relation holds when n has
any value positive or negative, integral or fractional, that is, we
ghall prove the Binomial Theorem for any. exponent. 'We.shall
make some observations on the proof after gwmg it in the usual
f01m

(A +zfr=1+nz+ ———=

517. SBuppose m and n are positive infegers; then we have
l)a:' m(m—1)(m— 2)x'

(1+a:)"=1+m+ l B & e (1)
(L+a)y=14nas 200 21)x’ " ”‘3‘”‘2 R
But (1+2)" x (1 +2)"=(1+2)™**; ‘

hence the product of the series which form the right-hand mem-
bers of (1) a.nd (2) must = (1 + x)™**; that is,

(m+n) (m+n-— l)z'

l+(m+n)a:+

1.2 .
(m+7¢)(m+n N(m+n-9) ,
. 3 PV S
={l+mw+m(1m21):c' m(m lg(m 2) 2+ eeeene }
;{1+m;+ (1 A”x’ ”(""B(”‘%)¢?+...._..}........r...(ay

Equation (3) has been proved on the supposition that m and »
are positive integers; but the product of the two series which occur
on the right-hand side of (3) must be of the same form whatever
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‘m and n may be; we therefore infer that (3) must be true what-
ever m and n may be. 'We shall now use a notation that will
enable us to express (3) briefly, Let f(m) denote the series

m(‘m ]) m(m-—lL%(f”-‘g)x’.;. ......

whatever m may be; then f(n) will denote what the series
becomes when # is put for m; and f(m + n) will denote what the
series becomes when m +x is put for m. - And when m .is any
positive integer f(m)= (1 +«)"; also f(0)=1. Thus (3) may be

C l+mp+—

written :
S(m+n)=F(m)x f(n) ccc.iteeenniiinnnns (4)
Similurly, f(m +n+p)=f(m+n)xf(p)
=/ (m) xS (w) ./ (2). ‘
Proceeding in this way we may shew that
S +nt gt ) =f (m) x f0) < S(@) X S X o O

Now let m=n=p=q=......=;, where s and r are positive

integers, and suppose the number of terms to be r; then (5)

becomes
ro-{f Q)
therefore var=£()-
But since s is & positive integer £ (s) = (1 + ), and therefore

OF = +a);

()

therefore - (1+m)3=f(5)=1+5x+ i

This proves the Binomial Theorem when the exponent is any
positive quantity,
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Again, in (4) put — »n for m; thus
S(=n) xf(n)=f(0)=1;
therefore }.(l—n>= f(- n).
But if n be any positive quantit':y, S(n)=(1 + 2)*; hence
( 4+ n "'f( ”) >
that is, (1+z--=1+(_,.),,+("_")_1£72L_"1),,-+ ..... .

This proves the Binomial Theorem when the exponent is any
negative quantity.

518. The proof of the Binomial Theorem for any exponent
contained in the preceding Article was first given by Euler;
although difficult and not altogether satisfactory, it is a valuable
exercise for the student. 'We shall now offer some remarks
upon it.

The first point we have to notice is the mode of proving
that f(m + n) = f(m) x f(n). - The student should for an exercise
write down three or four terms of the series for f(m), and also
of the series for f(n), and multiply them together; if the pro-
duct be arranged according to powers of =, it will be found that
80 far as it has been completely formed, it will agree with the
series for f(m+n). But from knowing what f(m) and f(n)
represent when m and n are positive integers, we infer without
the trouble of actual multiplication, that the law which is expressed
by f(m +n)=f(m) x f(n) must hold. The mode of establishing
‘this law in the simple case in which m and n are positive integers
is a valuable and important algebraical artifice.

But the way in which we infer that f(m +n)=/F(m) x f(n),
whatever m and n may be, is still more important. The principle
is merely this: the form of any algebmca.l product is the same
whether the factors represent whole numbers or fractions, positive
or negative numbers; thus, for example,

(@+d)(a+c)=a’+(+c)a+be
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is true whatever a, b, and ¢ may be. Hence' we infer that
S (m) x f(n) will have the same form in all cases, whether m
and 7 be positive integers or not, ,

The student may also notice the proof of this regult which is
given in the Theory of Equations, Chapter xx1v.

519. The most difficult point however to be considered is the
meaning of the sign = in the assertion

n(n—1)
1.2

(1 +2)p=1+nz+ P ).

Suppose, for example, that n = — 1, then the above becomes
(l+2)'=l-z+a’—a’+ s «(2).

Now we know that the sum of r terms of the seried
l-z+a'—2"+....18 1-(a)"

l+a
less than unity, by taking enough terms of the series, we.can
obtain a result differing as little as we please from i 1 ~» ond thus

we can in this case understand the assertion in (2). But when
x is numerieally greater than unity, there is no such numerical

approxlmatnon to the value of Tv= 1 obta.med by taking a large

number of terms of the series 1— m+x'-—z+ ..... .

‘We shall see in the Chapter on the Convergence of Series, that
when 2 is numerically legs than unity, we can form a definite
conception of the series on the right of (1) whatever n may be.
In this case there is no difficulty in the assertion

f(m+n)=f(m) x f(n);
each of the three series which it involves is arithmetically intelli-
gible. But when « is numerically greater than unity, we eannot
give an arithmetical meaning to the series or to the assertion; all
we ought to say is, that if we form the product of the ﬁrst r
terms of f(m) and the first r terms of f(x), the first r terms of the
result will agree with the first » terms of /(m + n); but this will

; hence when z is numencally
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not justify us in writing f(m +n) =f(m) x f(n). The case in
which « is numerically equal to unity would require special in-
vestigation which would be out of place here. See Art 777.

On the whole then we may conclude that the Binomial Theo-
rem for the expansion of (1 + «)* gives a result which is arithme-
tically intelligible and true when « is numerically less than unity;
in what sense the result is true when z is numerically "greater
than unity has not yet been explained in an elementary manner.
The subject of the expansion of expressions is however properly
a portion of the Differential Calculus, to which the student must
be referred for a fuller consideration of the difficulties.

520, 7o find the numerically greatest term in the expansion
of (1+a). ' .
‘We consider z a8 positive.
I. Suppose n a positive integer.
The (r+ 1)* term may be formed 