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Chapter VI.

FUNCTIONS OF A COMPLEX VARIABLE.

By Thomas S. Fiske,

Adjunct Professor of Mathematics in Columbia University.

Art. 1. Definition of Function.

If two or more quantities are such that no one of them,

when any values whatsoever are assigned to the others, suf-

fers any restriction in regard to the values which it can assume

the quantities are said to be " independent."

If one quantity is so related to another quantity or to

several independent quantities, that whenever particular values

are assigned to the latter, the former is required to take one or

another of a system of completely determined values, the for-

mer is said to be a " function " of the latter. The quantity or

quantities upon the values of which the value of the function

depends, are said to be the " independent variables " of the

function.

A function is " one-valued " when to every set of values as-

signed to the independent variables there corresponds but one

value of the function. It is said to be " ^-valued " when to

every set of values of the independent variables n values of the

function correspond.

The "Theory of Functions " has among its objects the

study of the properties of functions, their classification accord-

ing to their properties, the derivation of formulas which exhibit

the relations of functions to one another or to their independ-

ent variables, and the determination whether or not functions

exist satisfying assigned conditions.
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Art. 2. Representation of Complex Variable.

A variable quantity is capable, in general, of assuming both

real and imaginary values. In fact, unless it be otherwise

specified, every quantity w is to be regarded as having the

" complex " form u-\-v V— i, u and v being real. It is cus-

tomary to denote V — i by i, and to write the preceding quan-

tity thus : u -\- iv. If v is zero, w is real ; if u is zero, w is a

" pure imaginary."

A quantity z = x -\- iy is said to vary " continuously " when

between every pair of values which it takes, c
i
= a

1
-+- ib^ and

c
i
— a

i "f" '^ >
tne va l ue °f z varies in such a manner that x and

y pass through all real values intermediate to a
x
and <z

2 , b
x

and b„ respectively.

It is usual to give to a variable quantity z = x -\- iy a graphi-

cal representation by drawing in a plane a pair of rectangular

axes and constructing a point whose abscissa and ordinate are

respectively equal to x and y. To every value of z will corre-

spond a point ; and, conversely, to every point will correspond

a value of z. The terms " point " and value, then, may be inter-

changed without confusion. When z varies continuously the

graphical representation of its varia-

tion, or its " path," will be a continuous

line. This graphical representation is

of the highest importance. By means

of it some of the most complicated

propositions may be given an exceed-

ingly condensed and concrete expres-

sion.

By putting x = r cos 0, y = r sin 0, where r is a positive real

quantity, the point

z = r(cos 8 -\-i sin 8)

is referred to polar coordinates. The quantity r is called the

absolute value or " modulus " of z. It is often written \s\ . 8

is known as the " argument " of z.
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A function is sometimes considered for only such values of

each independent variable as are represented graphically by the

points of a certain continuous line. In the study of functions

of real variables, for example, the path of each variable is rep-

resented by a straight line, namely, the axis of real quantities,

or y = o.

Art. 3. Absolute Convergence.

The representation of functions by means of infinite series

is one of the most important branches of the theory of func-

tions. In many problems, in fact, it is only by means of series

that it is possible to determine functions satisfying the condi-

tions assigned and to obtain the required numerical results.

Frequent use will be made of the following theorem.

Theorem.—If the moduli of the terms of a series form a

convergent series, the given series is convergent.

Let the given series be W= w„ -\- w
1 -f- . . .-\-wn -\-. . .

in which w
B
= r„ (cos # -j- z'sin #„), w 1

= r, (cos 6, -\- z sin #,)...

By hypothesis the series R = r -)- r, -)- . . . -f- rn -f- . . .is

convergent. Its terms being all positive, the sum of its first m
terms constantly increases with m, but in such a manner as to

approach a limit. The same will be true necessarily of any

series formed by selecting terms from R. The sum of the first

m terms of the series H^is composed of two parts,

r cos B
t + r, cos 0, . . . + rm _, cos m . It

t(r, sin
O + r, sin 6

l + . . . + r„,_
s
sin #,„_,),

and each of these in turn may be divided into parts which have
all their terms of the same sign. Every one of the four parts

thus obtained approaches a limit as m is increased
; for the

terms of each part have the same sign, and cannot exceed, in

absolute value, the corresponding terms of R. Hence, as m is

increased, the sum of the first m terms of W approaches a

limit ; which was to be proved.

A series, the moduli of whose terms form a convergent

series, is said to be " absolutely convergent."
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Prob. i. Show that the series i + z + z
2 + • • • + 2" + • • • is

absolutely convergent, if | z
|
< i.

Art. 4. Elementary Functions.

In elementary mathematics the functions are usually con-

sidered for only real values of the independent variables. In

the case of the algebraic functions, however, there is no diffi-

culty in assuming that the independent variables are complex.

The theory of elimination shows that every algebraic equation

can be freed from radicals. Every algebraic function, there-

fore, is denned by an equation which may be put in a form

wherein the second member is zero and the first member is

rational and entire in the function and its independent variables.

Besides the algebraic functions, the functions most often

occurring in elementary mathematics are the trigonometric and

exponential functions and the functions inverse to them. The

definitions, by which these functions are generally first intro-

duced, have no significance in the case where the inde-

pendent variables are complex. However, the following

familiar series,

z
2

z' ' z
l

^ = eXP £:=I+2+-- + -
j
+ -,+. . . ,

*•
,
zl

z°
,

smz = z-j
]
+-

l f
+ ...

which have been established for the case where the variables

are real, furnish most convenient general definitions for exp z,

cos z, and sin z, these series being absolutely convergent for

every finite value of z. Defining the logarithmic function by

the equation

^log z — exp (l g £) = s>

it follows that

a' = e'^s" — exp(^ log a).
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The following equations also are to be regarded as equations

of definition

:

sin z
tan 5* —
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variables by quantities of moduli less than some determinate

positive quantity <S, the value of the function is altered by a

quantity of modulus less than any previously chosen arbitrarily

small positive quantity e.

A function of one independent variable is said to be con-

tinuous in a given region of the plane upon which its indepen-

dent variable is represented, if it is contiuuous at every point

in that region.

From the principles of limits, it follows that if two functions

are continuous at a given point, their sum, difference, and prod-

uct are continuous at that point. As an immediate conse-

quence, every rational entire function of z is continuous at

every finite point ; for every such function can be constructed

from z and constant quantities by a finite number of additions,

subtractions, and multiplications.

Let a function of a single independent variable be contin-

uous at c, and let it take at that point the value t, different

from zero. Suppose also that at any other point c -f- Ac the

function takes the value t -f- At. Then

I I At

t-\- At t t(t+ At)

If it be assumed that
[

At
|
< |

/ |, the modulus of the preceding

difference cannot exceed

\At\

and will, therefore, be less than e if

eUV
\At\<

i+e\t\

Hence if a function is continuous and different from zero

at a point c, its reciprocal is also continuous at c. It follows

at once that if two functions are both continuous at c, their

ratio is continuous at c, unless the denominator reduces to zero
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at that point. But every rational function of z may be expressed

as the ratio of two entire functions. It is therefore continuous

for all values of z except those for which its denominator

vanishes.

Consider the function expz,

ez+te — ez — gi^gi* — I) = AAZ -\ j- +...).

Hence if \Az\<i,

\r±»-e\ ^\e°\(\Az\ + ^- + . • .)^klj
Az\

Az\'

but the limit of the second member is zero when \Az\ ap-

proaches zero. Hence exp z is continuous for all finite values

of z.

Prob. 5. Show that cos 2 and sin z are continuous for all finite

values of z.

Prob. 6. Show that tan z is continuous in any circle described

about the origin as a center with a radius less than \n.

Art. 6. Graphical Representation of Functions.

It was shown in Art. 2 that a plane suffices for the complete

graphical representation of the values of an independent vari-

able. In the same way it is convenient to use a second plane

to represent graphically the values of any one-valued function.

For example, if w =f(z) be such a function, to each point

x -f- iy of the independent variable will correspond a point

u -f- iv of the function. This point u -)- iv is called the " image
"

of the point x -j- iy. If w is a continuous function of z, then

every continuous curve in the .sr-plane will have an image in

the w-plane, and this image will be also a continuous curve.

Consider the expression u -\- iv = x* + y* -\- 2ixy. Here
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u = x* -\- y
1 and v — ixy. Since to every value of z corre-

spond determinate values of x and y,

and consequently determinate values

of u and v, this expression falls un-

der the general definition of a func-

tion of z. It is evidently continuous.

Every straight line x = t parallel to

the axis of y is converted by means

of it into a parabola v* = %?(u — f).

Prob. 7. Find the family of curves

into which the straight lines parallel to

the axis of y are converted by means of

the function u + iv = x' — y
1 + 2ixy.

of this family intersect.

Show that no two curves

Art. 7. Derivatives.

Let w = f{z) be a given function of z. If h is an " infini-

tesimal," that is, a variable having zero as its limit, and if the

expression

f[z + h)-f{z)

has a finite determinate limit, remaining the same under all

possible suppositions as to the way in which /z approaches zero,

this limit is said to be the " derivative " of the function f[z) at

the point z. In this case w = f(z) is said to be " monogenic "

at z. The derivative is written f'{z) or -3—. A function is said

to be monogenic in a region of the plane of the independent

variable if it is monogenic at every point of that region.

Consider now the circumstances under which a function

w = u -\- iv may have a derivative at the point z = x -j- iy.

If z be given a real increment, x is changed into x -\- Ax, while

y is unaltered, so that Az = Ax ; and

Aw
Az

Au Av
~ Ax Ax'
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If, on the other hand, z is given a purely imaginary incre-

ment, Az — iAy, and

Aw Au . Av
Az '

~ iAy Ay
'

If the second members of these equations approach deter-

minate limits as Ax and Ay approach zero, and if these limits

are equal,

dx
+i

d*~
l

dy dy

Hence, equating real and imaginary parts,

du _dv dv _ "Qu

d~x~dy' dx~~dy'

which are necessary conditions for the existence of a derivative.

It can be shown that these conditions are also sufficient.

For let the increment of the independent variable be entirely

arbitrary, no supposition being made as to the relative magni-

tudes of its real and imaginary parts. Then the differential of

the function, that is, that part of the increment of the function

which remains after subtracting the terms of order higher than

the first, is

du + idv = (p + i^)dx + (p.+ i^)dy.
\dx ^ dxl ' \dy ^ dy I

J

Hence l^u .3zA /9_w .dv\ dy_

du -f- idv \d* dx) W dy' dx
dx-\-idy ,

.dy

which, by virtue of the conditions written above, is equal to

either member of the equation

dx "r"
-dx

"
*dy

+
dy

dy

dx
1

same thing, of the direction of approach to the point z. The

The value thus obtained is independent of -?-, or, what is the
dx
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existence of a derivative of the function w depends, therefore,

i ,l •
<. r ^- i j • ^ dtc dv du cjv

only on the existence of partial derivatives — , — , — , —3 v
dx' dx' dy dy

satisfying the specified equations of conditions.

The same equations of condition express the fact that

w = u -\- iv, supposed to be an analytical expression involving

x and y, involves z as a whole, that is, may be constructed from

z by some series of operations, not introducing x or y except

in the combination x -\- iy. In other words, they indicate that

x andjy may both be eliminated from w = <p(x, y) by means of

the equation z = x -\- iy. This property might have been used

to define monogenic function, but such a definition would have

had the disadvantage of assuming a priori that the function

was capable of analytical expression in terms of the independ-

ent variable.

A monogenic function is necessarily continuous
; that is,

the existence of a derivative involves continuity. For, if

limit J-±——
^

^-^ =/ (z),

it follows that

where rf approaches zero with h. Hence /(#) is the limit of

f(z-\- k) when h approaches zero, or f{z) is continuous at the

point z.

The following pages relate almost exclusively to functions

which are monogenic except for special isolated values of z.

Functions which are discontinuous for every value of the inde-

pendent variable, and functions which are continuous but admit

no derivatives, have been little studied except in the case of

real variables.*

* In this connection see G. Darboux, Sur les fonctions discontinues, An-

nates de l'£cole Normale, Series 2, Vol. 4 (1875), pp. 51-112. For a systematic

treatment of functions of a real variable, see the German translation of Dini's

treatise by Lflroth and Schepp, Leipzig, 1892.
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Art. 8. Conformal Representation.

Let z start from the point z„ and trace two different paths

forming a given angle at the point z„, and let s
1
and z

3 be arbi-

trary points on the first and second paths respectively. Then

z, — z„ = r^cos ft
-\- i sin ft) = r^*9*,

where r
1
denotes the length of the straight line joining z and

js
x , and t

denotes the inclination of this line to the axis of

reals.
,
In the same way, for the point z, , there is an equation

z, — z
i
= r

t
(cos ft, -j- i sin ft) = r

t
e'

9
*.

If now w is a one-valued monogenic function of z, in the

region of the .s-plane considered, to the points z , z
x , z2

corre-

spond points w
t
,w

l
,w

l ; and for these points can be formed

the equations

w. w = p/" 1

, Wi -wa
= p/\

From the supposition that w is monogenic, it follows at

once that, when z
t
and z

%
are assumed to approach z„

limit
w'- w

° = limit f?iZL^.
z, — z„

If the members o." this equation are not equal to zero, it may
be put in the form

limit ^13 = limit £l^
w. z* — K
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or

limit ^V !'*"« = limit VVl - <,')
.

P* r
t

Hence

limit (0,- a)
= limit (0,- 0,) ;

and the images in the w-plane of the two paths traced by z

form at w
a
an angle equal to that at z

a
in the .s-plane. Accord-

ingly, if z be supposed to trace any configuration whatever

in a portion of the .s-plane in which —— is determinate and not
dz

equal to zero, every angle in the image traced by w will be

equal to the corresponding angle in the ^-plane. If, for exam-

ple, such a portion of the .s-plane be divided into infinitesimal

triangles, the corresponding portion of the .s-plane will be

divided in the same manner, and the corresponding triangles

will be mutually equiangular. Such a copy upon a plane, or

upon any surface, of a configuration in another surface is called

a " conformal representation."

The modulus of the derivative
\dw

\di
— limit

Aw
is the

Az
" magnification." Its value, which, in general, changes from

point to point, may be obtained from the relations

\dyl Vdyi

The theory of conformal representation has interesting ap-

plications to map drawing.*

* For the literature of the subject, see Forsyth, Theory oi Functions,

p. 500, and Holzmuller, Einftihring in die Theorie der isogonalen Verwandschaf-

ten und der conformen Abbildungen, verbunden mit Anwendungen auf mathe-

niatische Physik.

dw
dz
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Art. „. Examples of Conformal Representation.

Case I.—Let w =. z-\-c. This function is formed from the

independent variable by the addition of a constant. Putting

for w, z, and c, respectively, u -\- iv, x-\-iy and a -+- ib, one ob-

tains

u = x-\- a, v =y -\- b.

Any configuration in the ^-plane appears, therefore, in the

w-plane unaltered in magnitude, and is situated with respect to

the axes as if it had been moved parallel to the axis of reals

through the distance a and parallel to the axis of imaginaries

through the distance b. The following diagrams represent the

transformation of a network of squares by means of the rela-

tion m = z -\- c.

Case II. — Let w = cz. Writing w = pe^, z

c = r^i, the following equations result

:

p = r,r, <p = 0, + &.

reie, and

The origin transforms into the origin, all distances measured
from the origin are multiplied by a constant quantity, and
all straight lines passing through the origin are turned through
a constant angle. See the following diagrams.
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Case III.—Let w = ez. Writing z = x -\- iy, the function

becomes

w = e*?* — ex{cos y -f- i sin y).

Every straight line x = t, parallel to the axis of y is trans-

formed into a circle p = eH described about the origin as a

center, the axis of y becoming the unit circle. Points to the

right of the axis of y fall without the unit circle, while points

to the left of this axis fall within. Every straight line y = t^

parallel to the axis of x becomes a straight line v/u — tan t^

passing through the origin. The accompanying diagrams*

exhibit in a simple manner the periodicity expressed by the

equation
exp (z -f- 2nni) — exp (z),

where n is any positive or negative integer.

To every point in the zo-plane, excluding the origin, corre-

spond an infinite number of points in the .s-plane. These

points are all situated on a straight line parallel to the axis of

* The figures of this and the following example are taken from Holzmuller's

treatise.
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y, and divide it into segments, each of length 2n. If z' be one

of these points, the general value of the inverse function is

log w — z' + 2nin,

where n is any positive or negative integer.

If any straight line beginning at the origin be drawn in the

w-plane, there will correspond in the 2-plane an infinite number

27t-

37T

II

of straight lines parallel to the axis of x, dividing that plane

into strips of equal width. To any curve in the w-plane

which does not meet the line just drawn, will correspond in

the ^-plane an infinite number of curves, of which there will be

one in each strip.

Case IV.—Let w — cos z. Writing w = u -\- iv, z = x + iy,

and employing as equations of definition cos {iy) — cosh y,

sin {iy) — isinhy, the given function takes the form

Hence

u -)- tv = cos# coshjv — i sin x sinhj/.

u = cos x cosh_y, v = — sin x sinhjj/.
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Any straight line, x = tv parallel to the axis of y, is trans-

formed into one branch of a hyperbola,

u

cos" t.

I,
sin t

x

having its foci at the points -j- i and — i. Any straight line,

y — t
t ,

parallel to the axis of x, is transformed into an ellipse,

it"' i?

+ -
cosh' t. sinh

2

1,

= I,

having its foci at the same points, any segment of the straight

line equal in length to 2nr corresponding to the entire curve

taken once. By means of these confocal conies, the w-plane

is divided into curvilinear rectangles, the conformal represen-

tation breaking down only at the foci, where the condition
du

that -=— should be different from zero is not fulfilled. The
dz

periodicity of the function, expressed by the equation

COS (.3 -(- 27l) = cosz,

15 16 10 13 15 16

N H
16 15 n 13 12 11 10 16

is exhibited graphically

in the accompanying

diagrams.

It is interesting to

note in this example,

as also in the preceding

one, that the conformal

representation intro-

duces well-known sys-

tems of curvilinear

coordinates, the cartesian coordinates, x, y of a point in the
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^-plane serving to determine its image in the ze/-plane as an

intersection of orthogonal curves.

Case V.—Let w = z
3

. Writing w = u -\- iv, z = x -\- iy,

the relations

x — ixy ixy -y

follow at once. If one of the variables x, y be eliminated from

these two equations by means of the equation Ix -j- my -f- n = o,

representing a straight line in the ^-plane, equations are ob-

tained representing a unicursal cubic in the zf-plane.

By putting w = p(cos <p -f- i sin cp), z = r(cos -\- i sin 6),

the relations p = r\ <p = 3#, are obtained. Hence the

circle

r" — 2ar cos -\- a" = c*

gives the curve

pi — 2api cos — -f- «
a = c

a

,

which enwraps three times the point corresponding to the

center. The accompanying figure represents this transfor-

mation, the straight line feg giving the curve feg.

To each point in the w-plane, excluding the origin, at which

-=— = o and the contormal representation is not maintained,
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there correspond three points in the 2-plane, having for their

<p (p -\- 27t <p + 47T
arguments -, respectively. Any straight line

3 3 3

drawn from the origin in the w-plane will have, therefore, three

images in the ^-plane, viz., three straight lines diverging from

the origin, and dividing the plane into three equal regions.

Any continuous curve in the w-plane not meeting the line just

drawn will be represented in the .s-plane by three curves, of

which one will be situated within each of these regions. In the

figure here given are exhibited the three conformal represen-

tations of a square formed in the w-plane by lines u = #,, u =
tlt v = t lt v = t

% ,
parallel to the axes.

If the relation between w and z be reversed, and z be

taken as a function of w, z will be a three-valued function, its

values giving rise to three branches which will remain distinct

and continuous except when w becomes equal to zero.

Prob. 8. If w = z -\ , show that circles in the z-plane having
z

a common center at the origin transform into confocal ellipses.

Prob. 9. If w = show that the axis of reals in the z-plane
z-j- 1

transforms into the circle \w\ — 1, and the upper half of the z-plane

into the interior of this circle.
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Art. 10. Conformal Representation of a Sphere.

Let OPO' be a sphere having its diameter 00' equal in

length to unity. Con-

struct tangent planes at

at O and 0'. Draw in

the tangent plane at

O rectangular axes Ox
and Oy ; and in the

other plane draw as

axes O'u, parallel to Ox
and measured in the

same direction, and O'v

parallel to Oy but meas-

ured in a contrary di-

rection. Join anj- point

z in the plane xOy to

0' by a straight line, and let O'z meet the sphere in P. Draw
OP and produce it to meet the plane uO'v in w.

From the similar triangles O'Oz and 00'

w

Oz

OO'

00'

that is,

or Oz . O'w = 00'

w
\
= rp = I.

To an observer standing on the sphere at O' rotation about

00' from O'u toward O'v is positive, while to an observer

standing on the sphere at O such a rotation is negative.

Hence

£xOz = — z.uO'w, or — — 0.

The following equation results :

wz = pre'^+ B
) = i.

The w- and ^-planes are therefore conformal representa-

tions of one another. Any configuration in one plane can be

formed from its image in the other by an inversion with respect
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to the origin as a center, combined with a reflection in the axis of

reals. Such a transformation was termed by Cayley a " quasi-

inversion." By it points at a great distance from the origin

in one plane are brought near together in the immediate neigh-

borhood of the origin in the other plane.

Since the line O'Pz makes the same angle with the plane

tangent to the sphere at P as with the plane xOy, any spherical

angle having its vertex at P is projected into an equal angle at

z. The sphere is thus seen to be related conformally to the

plane xOy, and it must be also so related to the plane uO'v.

The representation of the sphere upon a tangent plane in

the manner described above is termed a " stereographic pro-

jection." When to this representation is applied a logarithmic

transformation, that is, one inverse to the transformation

described in Case III of the preceding article, the so-called

" Mercator's projection" is obtained.

Art. 11. Conjugate Functions.

The real and imaginary parts of a monogenic function,

w = u -\- iv, have been shown to satisfy the partial differential

equations
du _ 9z> Qv _ _ Qu

dx ~ dy d* ~ dy

At any point, therefore, where u and v admit second partial

derivatives, one obtains

3*'
i- a7 ' 9^97 ;

that is, the functions u and v are solutions of Laplace's equa-

tion for two dimensions. Any two real solutions p and q of

this equation, such that p -f- iq is a monogenic function of

x -f- iy, are called " conjugate functions." * Thus the examples

of Art. 9 furnish the following pairs of conjugate functions:

* Maxwell, Electricity and Magnetism, 1873, vo '- r
> P- 227-
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x -|- a, y -\- b ; r
t
r cos (0, -f- 0), r,r sin (0, -f 0) ; <?* cos_y, e* sinj/

;

cos x cosh j/, — sin x sinh / ; ;tr
3 — ixy

1

, ^xy* — y". The second

pair is expressed in polar coordinates, but may be transformed

to cartesian coordinates by means of the relations

r = Vx'4-y, cos = —.
X

sin — ^

If one of two conjugate functions be given, the other is

thereby determined except for an additive constant. Let u,

for example, be given. Then

dv = —dx -j dv
dx dy

37 3*
and therefore the value of v is

/ 3^ -dx
^

The equations u = clt v = c
2 , obtained by assigning con-

stant values to two conjugate functions, represent in the

w-plane straight lines parallel to the coordinate axes. It

follows that the curves which these equations define in the

.s-plane intersect at right angles. Consequently, by varying

the quantities c, and c„ two orthogonal systems of curves are

obtained ; and <;, and <r
2
may be taken as orthogonal curvilinear

coordinates for the determination of position in the ^-plane.

Prob. io. Show that if / and q are conjugate functions of u and
v, where u and v are conjugate functions of x a.ndy,f> and q will be
conjugate functions of x and y.

Prob. ii. Show that if u and v are conjugate functions of x and

y, x andjy are conjugate functions of u and v.

Art. 12. Application to Fluid Motion.

Consider an incompressible fluid, in which it is assumed

that every element can move only parallel to the .sr-plane, and

has a velocity of which the components parallel to the coordi-
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nate axes are functions of x and y alone. The whole motion

of the fluid is known as soon as the motion in the .s-plane is

ascertained. When any curve in the £-plane is given, by the

"flux across the curve"* will be meant the volume of fluid

which in unit time crosses the right cylindrical surface having

the curve as base and included between the .s-plane and a par-

allel plane at a unit distance.

The flux across any two curves joining the points z and z

is the same, provided the curves enclose a region covered with

the moving fluid. For, corresponding to the enclosed region,

there must be neither a gain nor a loss of matter. Let z be

fixed, and z be variable. Let ip denote the flux across any curve

s z, reckoned from left to right for an observer stationed at z a

and looking along the curve toward z. If /, m be the direction

cosines of the normal (drawn to the right) at any point of the

curve, and p, q be the components parallel to the axes of the

velocity of any moving element, the value of ip will be

ip = I (lp-\- mq)ds,

where the path of integration is the curve joining z and z.

The function ip is a one-valued function of z in any region

within which every two curves joining z to z enclose a region

covered with the moving fluid.

If z moves in such a manner that the value of ip does not

vary, it will trace a curve such that no fluid crosses it, i.e., a

" stream-line." The curves ip = const, are all stream-lines, and

ip is called the " stream-function." If p and q are continuous,

and if z be given infinitesimal increments parallel to x and y
respectively, one obtains

dip dip&=-* Ty~ p -

If now the motion of the fluid be characterized, as is the

* Lamb's Hydrodynamics (1895), p. 69.
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/ =

case in the so-called " irrotational" motion,* by the existence

of a velocity-potential cj>, so that

90 _90
dx'

q ~dy'

the following equations result

:

d* ~ dy ' dx~ dy'

Hence <p -f- if is a monogenic function of x -f- iy- The curves

<p — const., which are orthogonal to the stream-lines, are

called the " equipotential curves."

Consider, as an example, the motion corresponding to the

function f w = z
s

- The equipotential curves are given by the

l

equations

u = x*— 3^rj/
2

=const.,

the stream-lines by

the equations

v = ^x'y —y*— const.

In the following fig-

ure the stream-lines

are the heavy lines,

while the equipo-

tential curves are

dotted.

The fluid moves

I in toward the origin,

which is called a " cross-point," from three directions, and

flows out again in three other directions. At the cross-point

the fluid is at a standstill, since at that point the velocity, for

which the general expression is

V* dx.

* In irrotational motion each element is subject to translation and pure

strain, but not to rotation.

t F. Klein : Riemann's Theory of Algebraic Functions ; translated by-

Frances Hardcastle (1893), p. 3.
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is equal to zero. The stream-lines in the figure represent the

motion of the fluid in each of six different angles, as if the fluid

were confined between walls perpendicular to the .s-plane.

It is of importance to note that if the function considered

be multiplied by i, the equipotential curves and stream-lines

are interchanged, since the function <t>-\-iip then becomes
—

*l> + i<P-

An example of particular interest is

. 2 — aw = — fx log
z-\- a

Let z — a = r
t
ei9 i, z -\- a = r^e'

6
*; then

u = - n\og
r
-±, v = — M{0 t

- e,).

The curves u = const., v = const, form two orthogonal sys-

tems of circles, either of which may be regarded as the stream-

lines, the other constituting the equipotential curves.

The velocities are everywhere, except at the points ± a,

finite and determinate. If the circles rjr
t
= const, be taken

as the stream-lines, each of the points ± a is a " vortex-point."

If the circles 6, — 0, = const, be taken as the stream-lines, one
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of the points ± a is a " source," the other a " sink." In the-

latter case, besides the hydrodynamical interpretation, a very-

simple electrical illustration is afforded by attaching the poles

of a battery to a conducting plate of indefinite extent at two

fixed points of the plate.

As another example may be taken the relation w — cos z.

As has been shown, the curves x — const, form a system of

confocal hyperbolas, while the curves jj/ = const, form an

orthogonal system of ellipses. Either system may be regarded,

as stream-lines. In one case the motion of the fluid would be-

such as would occur if a thin wall were constructed along the

axis of reals, except between the foci, and the fluid should be

impelled through the aperture thus formed. In the other case

the fluid would circulate around a barrier placed on the axis of

reals and included between the foci.

Besides their application to fluid-motion, conjugate func-

tions have important applications in the theory of electricity

and magnetism * and in elasticity.

f

Art. 13. Critical Points.

Let w be any rational function of 2. It can be written in

the form

where f(z) and <f> (s) are entire and without common factors..

This function is finite and admits an infinite number of suc-

cessive derivatives for every finite value of z, except the roots

of the equation (s) = o. Let a be such a root. Then the

reciprocal of the given function is finite and admits an infinite

nnmber of successive derivatives at the point a. Such a point

*
J. J. Thomson, Recent Researches in Electricity and Magnetism (1893),

p. 208.

f Love, Theory of Elasticity (1892), vol. 1, p. 331.
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is called a "pole." Any rational function having a pole at a

can be put by the method of partial fractions in the form

w = -A_ + . . . +
A -

+^(g),
s — a ' {z — ay '

T x '

where A lt . . ., A k are constants, A e being different from zero,

and ip(z) is finite at the point a. The integer k is said to be

the " order " of the pole, and the function is said to have for

its value at a infinity of the £th order. In accordance with

the definition of a derivative, w does not admit a derivative at

a. From the character of the derivative in the immediate

neighborhood of a, however, the derivative is sometimes said

to become infinite at a.

The trigonometric function cotz has a pole of the first

order at every point z — run, m being zero or any integer posi-

tive or negative.

The function w = log (z — a) has for every finite value of

z, except z = a, an infinite number of values. If z — a is writ-

ten in the form Rei%
,

w = log R -f- i{® -)- 2tmi),

where log R is real, and m is zero or any positive or negative

integer. If z describes a straight line, beginning at a, © will

remain fixed, but R will vary. The images in the ^r-plane will

therefore be straight lines parallel to the axis of reals, dividing

the plane into horizontal strips of width 2n. If now the .sr-plane

is supposed to be divided along the straight line just drawn,

and z varies along any continuous path, subject only to the

restriction that it cannot cross this line of division, there will

be a continuous curve as the image of the path of z in each

strip of the w-plane. Each of these images is said to corre-

spond to a " branch " of the function, or, expressed otherwise,

the function is said to have a branch situated in each strip.

The line of division in the .s-plane, which serves to separate

the branches from one another is called a " cut."
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At the point z = a no definite value is attached to the

function. As z approaches that point the modulus of the real

part of the function increases without limit, while the imagi-

nary part is entirely indeterminate.

Let z be an arbitrary point, distinct from a, and let

log R„ -f- 2(9 -\- 2mni

be any one of the corresponding values of the function. Sup-

pose that z starts from z and describes a closed path around

the point a, the values of the function being taken so as to

give a continuous variation. Upon returning to the point z

the value of the function will be

log R * + i&o + 2
(
m + l

)
ni

>

or log i? -j- t© -\-2{m — i)ni,

according as the curve is described in a positive or negative

direction. By repeating the curve a sufficient number of times

it is evidently possible to pass from any value of the function

at z to any other. When a point is such that a ^r-path en-

closing it may lead in this manner from one value of a function

to another value, it is called a " branch-point." In the case

of the function here considered, the point z = a is called

a "logarithmic branch-point," or a point of "logarithmic

discontinuity."

f(z)
The function w = log -j\, where f(z) and <p(z) are entire,

has a point of logarithmic discontinuity at every point where

either f{z) or cp{z) is equal to zero. For, writing

/0) = A(z - ay,(z - «,y. . .

.

(p{z) = B(z - £,)*.(* - *,)?. . . .

the value of w may be written

w = log -5 + 2pm log (z - am)
- ~2q

n log (z - bn).
1J ft «
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1

Take now the function w = e~*. It has a single finite value

for every value of z except z = o. If z is supposed to ap-

proach zero, the limit of the value of the function is indeter-

minate.

For let p -\- iq be perfectly arbitrary, and write

*>+'* = c + id.

If now a -f- ib is the reciprocal of / -|- iq, so that

— f h - ~~ 1a
~fT7' /+?'

the preceding equation may be written

i

ea+ ib — c _j_ j£

But whatever the value of the integer m, q -\- 2mit may be

substituted for q without altering the value of c -\- id, and hence

both a and b may be made less than any assignable quantity.

The given function e^ therefore takes the value c -\- id at points

a -\- ib indefinitely near to the origin. A point such that, when

z approaches it, a function elsewhere one-valued tends toward

an indeterminate limiting value is called an " essential sin-

gularity."

i

Prob. 12. Show that for the function ez
~ a z — a is an essential

singularity.
i_

Prob. 13. The function e z% considered as a function of a real

variable is continuous for every finite value of z, and the same is

true of each of its successive derivatives. Show that when it is

regarded as a function of a complex variable, z = o is an essential

singularity.

In order to illustrate still another class of special points

take the function

w = V{z — «,)(£ — «„)... (z — a„).
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This function has at every finite point, except <*,,«,,..., a„,

two distinct values differing in sign. At these points, however,

it takes but a single value, zero. From each of the points

a
x

, a, ,...,«„ let a straight line of indefinite extent be drawn in

such a manner that no one of them intersects any other, and

suppose the £-plane to be divided, or cut, along each of these

lines. Along any continuous path in the .s-plane thus divided

the values of the function form two distinct branches.

For, writing

z — a
1
= r^i, z — a, = r

t
e'\ . . . , z — an = rne'\

the function takes the form

No closed path in the divided plane will enclose any of the

points alt a1t . . . , an , and the quantities 0, , ft,, . . .
, ft,, after

continuous variation along such a path, must resume at the

initial point their original values. No such path, therefore, can

lead from one value of the function at any point to a new

value of the function at the

same point. If, however, the

cuts are disregarded and z

traces in a positive direction,

a closed curve including an odd

number of the points a lt a,,

. . . , a„, and not intersecting

itself, then an odd number of

the quantities ft, ft,, ...
, ft, are each increased by 27r; and

the value of the function is altered by a factor ^(S*+i)<»*
i

and

so changed in sign. In the same way any closed path de-

scribed about one of these points, and enwrapping it an odd

number of times, leads from one value of the function to

the other. On the other hand, a simple closed path enclosing

an even number of these points, or a closed path which en-

closes but one of the points, enwrapping it an even number of

times, leads back to the initial value of the function. It fol-
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lows that each of the points a
x , « 2 , . . . , a„ is a branch-point.

Any point in the £-plane, closed paths about which lead from

one to another of a set of different values of a function, the

number of values in the set being finite, is called an "algebraic

branch-point."

As a further illustration, consider the function

w = z* -\- [z — a)i,

which is a root of the equation of the sixth degree,

w° — $ziv* — 2(2 — a)w%

-J- 3^w
2 — 6z(z — a)iv -\- (z—a)'—z*=o.

The function has at every point, except s = o and z = a,

six distinct values. Six branches are thereby formed which

can be completely separated from one another by making cuts

from the points z = O and z = a to infinity. Putting 00 for the

cube root of unity, these six branches can be written

w, = z -f (z — a) 1
, w,= — z + (z — a)',

w
3
= z' + oo (z — a)

1
, w, =± — z -\-w{z — a)'

,

w
t
= z

yi
-\- oo'(z — <z)'

/3
, w„ = — z

lp
4- ao^z — a)

1/s

.

The branches w
1
and w„ w

3
and w

t , w6
and w

t
are interchanged

by a small closed circuit described about z = O, while a small

circuit described about z — a permutes cyclically the branches

wn w„ ai„ and also the branches wit wt , wv

All of the special points examined above, poles, points of

logarithmic discontinuity, essential singularities, and branch-

points, are called critical points. In fact, a function, or a

branch of a function, is said to have a " critical point " at each

point where it fails to have a continuous derivative,* or about

which as a center it is impossible to describe a circle of deter-

minate radius within which the function, or branch, is one-

valued.

Any point not a critical point is called an " ordinary point."

* Continuity and. therefore, finiteness of the function are "implied in the

•existence of a derivative.
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An ordinary point at which a function reduces to zero is called

a " zero " of the function.

If in a certain region of the .s-plane there are no critical

points for a given function, the function is said to be "syneo

tic" or " holomorphic " in that region. If in a certain region-

the only critical points are poles, the function is said to be

" meromorphic " in that region. Under similar conditions a

branch of a function is also described as holomorphic or

meromorphic.

Prob. 14. When w and z are connected by the relation w — g =.

(z — A)' show that if z describes a circle about h as a center, w
describes a circle about g as a center, an angle in the .z-plane hav-

ing its vertex at h is transformed into an angle in the w-plane t

times as great and having its vertex at g, and that z = h is a branch-

point of w except when t is an integer.

Art. 14. Point at Infinity.

In determining the limiting value of a function when the

modulus of the independent variable z is increased indefinitely,

it is usual to introduce a new independent variable z' by the

relation z = 1/2', and consider the function at the point z' = o.

This is equivalent to passing from the ^-plane to another plane,

the ^'-plane, related to the former by the geometrical construc-

tion described in Art. 10. It is often very convenient, however,

to go further and to substitute for the s-plane the surface of the

sphere of unit diameter touching the £-plane at the origin. No
difficulty is thus introduced since, as explained in the article

just cited, any configuration in the .s-plane obtains a conformal

representation upon the sphere; and the advantage is gained

that the entire surface upon which the variation of the inde-

pendent variable is studied is of finite extent. The point of

the sphere diametrically opposite to its point of contact with

the 2-plane coincides with the point written above as z' = O.

It is called the point at infinity, 2 = 00 , since a point on the

sphere approaches it at the same time that its image in the

^-plane recedes indefinitely from the origin.
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The point at infinity maybe either an ordinary or a critical

point. For the function e*, for example, it is an ordinary

point, since e* = e*' . For a rational entire function of the wth

degree it is a pole of order n. Consider it for the function

V(z — a^){z — «
2) . . . (z — #„), discussed in the preceding article.

Let a circle of great radius be described in the ^-plane inclosing

all the branch-points a
x

, a, . . . , a H . Its conformal representa-

tion on the sphere will be a small closed curve surrounding the

point £=oo. This point must, therefore, be regarded as a

branch-point or not, according as the function changes value or

not when the curve surrounding it is described, that is accord-

ing as n, the number of finite branch-points, is odd or even.

When the point at infinity is taken into account, then, the

total number of branch-points of this function is always even.

The character of the point z = oo for this function can be de-

termined directly, by changing z into \/z' and considering the

point z' = o.

4>{z)
Prob. IS- Show that z = oo is an ordinary point for -rr~,, where

$(z)

<p(z) and rp{z) are rational and entire if the degree of <p(z) does

not exceed that of ip(z).

Art. 15. Integral of a Function.

Let w =f{z) be a continuous function of a complex vari-

able z, and suppose z to describe a continuous path L from

the point z
a
to the point Z. Let a series of points z,, z„ . . . ,zn

be taken on L, and let /„, /,,..., t„ be points arbitrarily chosen

on the arcs z zlt z
x
z„ . .

.
, snZ respectively. Form the sum

S = (z
%

- z )f{t a ) + (*, - ^/(O + . . . + {Z - zn)j\tK).

If now the number of points z
t

, . .

.

, zn be increased indefi-

nitely in such a manner that the length* of each of the arcs

* It is assumed in regard to every path of integration that the idea of length

may be associated with the portion of it included between any two of its points,

or, what is the same thing, that the path is rectifiable. This condition is evi-

dently satisfied if the current coordinates x and y can be expressed in terms of
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z z , zjs , , . . , zHZ approaches zero as a limit, the sum S ap-

proaches a finite limit which is inde-

pendent of the choice of the points z
lt

z„ ..., z„ and t , t
lt ..., tn .

For take any other sum

S' = (z/-za)M') +
(*,'-oao+...

formed in a similar manner. Suppose

— for the sake of greater definiteness

that the points z
t ,

. . . and -s/, . . . follow one another on the

line L in the order

and form a third sum

S"=(z-Zo
y(T )+(z/-Z

i
y(T

1
)+(z2

'-Z
l')f(T1)

+ (*.-0/"(r,)+ -"f

in which b >th series of points occur. It may be shown that as

the number of points in each of the series #,,... and z', ... is

increased, the differences 5" — 5 and 5" — S' both approach

zero, from which it follows that the difference S — S' has a

limit equal to zero. For example, the difference S" — S has

the value

(*, - z )[f(r ) -/(A)] + (*,' - *tiA*d -/W]
+ (V-^')[/W-/(0] + -..

If M denotes the upper extreme of the quantities

|/(O-/(0l- \A*J-M)\, W,)-M)l- •

the modulus of S" — S will be less than

dx dy
. , . i

any parameter t so that —— and — are continuous. For then the integral
dt dt

I \i'dx1 -\- dy 1 is finite. See, in this connection, Jordan, Cours d'Analyse, 2d

Edition, Vol. I., p. too.



Art. 15.] integral of a function. 259

But \z
l
— s

\

is equal to the chord of the arc z^lt and must
therefore be less than or equal to this arc, and a similar result

holds for each of the quantities
1
3/—z

1 \ , \
z,'—z/

1
, . . . Hence

I

S" - S\ "<M/,

where / denotes the length of the path of integration. When
the number of points of division on the line L is increased, the

differences

A*.) - /('„)> A*>) - A*,), /W -Ml • • •

decrease indefinitely, ior f(z) is continuous. M acccordingly

decreases indefinitely and the difference S" — S approaches

zero.

The limit, the existence of which has just been demon-
strated, is called the integral of f{z) along the path L. It is

written I f(z)ds. The definition here given is similar to that

given for the integral of a function of a real variable. It is

unnecessary to specify the path of integration when the inde-

pendent variable is restricted to real values, since in that case

it must be the portion of the axis of reals included between

the limits of integration.

The following well-known principles, applicable to the case

of a real independent variable, may be readily extended to the

general case :

1. The modulus of the integral cannot exceed the length of

the path of integration multiplied by the upper extreme of the

modulus of the function along that path.

2. The independent variable may be altered by any equa-

tion of transformation, but L', the path of integration in the

transformed integral, must be such that it is described by the

new variable while z describes L.

3. If F(z) is any one-valued function having everywhere

f{z) for its derivative, the equation

IJ(z)dz = F{Z)-F{z;)

must be true.
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To prove the third principle, write F(Z) — F(z
a) in the

form

F(Z)-F(zH)+F(z„)-F(zx . 1
)-\-. . . +F(z,)-F(z

1
)+F(z

1
)-F(z,).

Since the derivative of F(z) isf(z),

F(zm+1 )
- F{zm) — [/(*„) + n„,](zm+1 - Zm),

where rjm has zero for its limit when zm+l is made to approach

zm . Hence

F(Z) - F(z )
— limit 2f(zm)(zm+l - z,n) + limit 2f/m(zm+1 - zm) ;

or, since the second term of the right-hand member is equal

to zero,

F(Z)-F(z ) = jy(z)dz.

If no function F{s) fulfilling the preceding conditions is

known, the value of the integral requires further investi-

gation.

'dz
~?

point z = — I to the point z = I, the path of integration being

the upper half of the circumference of a unit circle described

about the origin as a center. Writing z = exp (iff), z wilL

describe the required path while 6 varies from JTto o.

The equations —, = e' 2ie
, dz = ieiedd,

z

dz— = ur*dff = i cos B dff + sin B dd = id (sin B) — d (cos ff),

follow at once. Hence for the path specified

+ndz X X

J —2 = t I d (sin ff)— id (cos ff) = — 2.

The application of the direct and more familiar method
gives the same result

:

/dz
—i taken from the

r— — -~l r i

J z
2 ~ L z J a=1 L

—
z

/:: i
! i = — 2.
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For a path along the axis of reals between the limits of

integration this result is unintelligible. The discontinuity of

dz
the differential, — , at the point z = o, prevents the considera-

tion of such a path ; and that the result should be negative

when the differential is at every point of the path positive

has no significance. The introduction of the complex variable

furnishes a perfectly satisfactory explanation of the result.

dz
Prob. 16. Show that the integral of — along any semi-circum-

ference described about the origin as a center is equal to ni.

Art. 16. Reduction of Complex Integrals to Real.

The integral

fLAz)dz
may be written in the form

I {u -)- iv){dx -f- idy),

or, separating the real and imaginary terms,

/ (iidx — vdy) -\- i {vdx -f- udy).

Hence the calculation of the integral may be reduced to

the calculation of two real curvilinear integrals.

The equations
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Denoting them by P(x, y) and Q(x, y) respectively, the inte-

gral may be written

[P(X, Y) - P(x ,y )] + iiQ{X, Y) - Q(x ,y )],

(x ,ya) and (X, Y) being the initial and terminal points re-

spectively of the path of integration.

Art. 17. Cauchy's Theorem.

Cauchy's Theorem furnishes the necessary and sufficient

conditions that a one-valued function f(z), having a continuous

derivative/'^), should yield a one-valued integral, that is, an

integral the value of which, when the lower limit is fixed, de-

pends simply on the upper limit, and not on the path of

integration. It will be more convenient, before considering

Cauchy's Theorem, to demonstrate the following lemma:

Lemma.—Let^4 be a portion of the ^-plane, having a bound-

ary S which consists of a closed curve not intersecting itself,

or of several closed curves not intersecting themselves or one

another. Denote by X the inclination to the axis of x of the

exterior normal at any point of the boundary,* that is, the

normal drawn to the right as the boundary is described in a

positive direction. If at every point of the region A, including

its boundary S, a function W ai the real variables x and y is

one-valued and continuous and has continuous partial deriva-

tives , — , the relations
dx dy

Wdy=JJ^dxdy, (i)

I Wdx = - I j
d—dxdy (2)

exist, the integrals in the first members being taken along the

* It \i assumed that the boundary has a determinate tangent at every point.

If the boundary of a given region is not of this sort, the theorem holds for any

interior curve of which this assumption is true.
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boundary in the positive direction, and those in the second

members being taken over the enclosed area.

If any straight line parallel to the axis of x be traced in

the direction of increasing values of x, at each point where
it passes into the area A,

cos A is negative, and there-

fore in the first member of

(i) dy= cos\ds is negative.

At each point where this

straight line passes out of

the area A, cos A, and there-

fore dy, in the first member
of equation (i), is positive.

Hence in the first member
of equation (i) the differ-

entials Wdy corresponding

to a given value of y, and taken in the order of increasing

values of x, have signs which, compared with those of the

corresponding values of W, first differ, then agree, and so

on alternately. In order now to compare the integral in the

first member of equation (i) with the integral in the second

member, it is necessary to take dy as essentially positive.

The sum of the differentials in the first member, correspond-

ing to a fixed value of y, must therefore be written in the

form

dy{ -fvi+Wt -wt
+w

t
- ...),

where W
l

, W,,... are the corresponding values of W taken in

the order of increasing values of x. But performing now in

the second member of equation (i) an integration with respect

to x, the same result is obtained, so that the two members of

equation (i) become identical, and the equation is verified.

To obtain equation (2) the same method is used. It is

necessary in this case to observe that if a line parallel to the

axis of y is traced in the direction of increasing values of y, at

each point where it enters A, dx in the integral of the first
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member must be taken as positive; and at each point where

this line passes out of A, dx in that integral must be taken as

negative.

By means of the preceding lemma, Cauchy's Theorem is

easily proved. This theorem may be stated as follows

:

Theorem.— If, on the boundary of and within a given region

A, a one-valued function w — f{z) is monogenic, and its deriv-

ative f'{z) is continuous,* the integral I f{z)dz taken along

the boundary S is equal to zero.

For writing the integral in the form

/ wdz — I {udx — vdy) -f- i I udy -\- vdx),

the preceding lemma gives

{udx - vdy) =-JJJ^^dxdy,

L{udy -\- vdx) = I I — — —-\dxdy;
dx dy

but since at every point of A

csu ,dv _ 3« Qv _
dy~r~dx~°' dx~dy

= C '

the given integral reduces to zero.

Art. 18. Application of Cauchy's Theorem.

From Cauchy's Theorem it follows that, if two different

paths Z, and L, lead from the point z
a
to the point Z, and if

along these paths and in the region inclosed between them a

given function f{z) has no critical points, the integrals of the

function taken along these two paths are equal. For two such

paths taken together, one described directly, the other re-

versed, constitute a closed curve, and the integral taken along

*Otherwise expressed, the one-valued function j\z) has no critical
1

points on

the boundary of or within A, ox f(z) is holomorphic in A.
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it is equal to zero. But, since reversing the direction of the

path of integration is equivalent to changing the sign of the

integral, the equation

JjW* - fjw, = o

is obtained.

The result just established may be stated in the following

theorem

:

Theorem I.—If a function is holomorphic in any simply

connected region bounded by a continuous closed curve, the

integral of the function, from a fixed lower limit in that region

to any point contained therein, is independent of the path of

integration, and is a one-valued function of its upper limit.

A region whose boundary is composed of disconnected

curves is not necessarily characterized by the property stated

in the theorem. Take, for example, the function

w — V(z — a
t){2

— a
t)...(z — an),

and suppose that o < |
<z,

|
< \a,

|
< . . . < |

a„ |. With the ori-

gin as a center, construct a system of concentric circles C„

Cv . . ., C„, C, passing through «,, C, through av and so on.

Denote by Sa
the region inclosed within the first circle Clt by

•S, that inclosed between C, and Ca , and so on, the portion

of the plane exterior to the last circle C„ being denoted by Sn .

At an initial point z„ interior to one of these regions, assign to

w one of the two values possible, and consider the branch of

w resulting from a continuous variation. Then however z may
vary within any such region, this branch of w will be a mono-

genic function, and its derivative will be continuous. Having

regard to the branch-points alt at , . . ., a„, it is evident that in

the regions S , 5„, . . . it will be one-valued, and in the regions

5,, S3
. .... it will be two-valued. Thus in the former regions

S , S„ . . ., the branch fulfils all the conditions required by the

theorem above. The theorem is applicable, however, only to

S
a
, for in any other region two paths may be drawn joining

the same two points, and such that the branch is not one-valued

throughout the enclosed portion of the £-plane.
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Theorem II.—If f(z) is holomorphic in any simply connected

region S bounded by a continuous closed curve, the integral.

jf{z)dz, taken from a fixed lower limit z in that region to any

point Z contained therein, is a holomorphic function of its

upper limit.

Let L be any path from z to Z. When the upper limit is

at the point Z+ dZ, L followed by a straight line from Z to^

Z+dZ can be taken as the path of integration. Hence

fiZ+iZ />Z ftZ+dZ

£ fi*y* - jz Az)dz = jz f{z)dz

=f(Z)jz dz+jz [A*)-AZ)~\d*-

The first term is equal to f{Z)dZ. The modulus of second'

term is equal to or less than M\ dZ\, where M is the upper ex-

treme of \/{z) — f{Z) |
along the line joining Z to Z + aZ.

But since f(z) is continuous, the limit of M when Z-\-dZ

approaches Z is zero. Hence

J^
iZ

f(z)dz -fz *A*y* = U{Z) + rj\dZ,

where rj approaches zero with dZ. The integral therefore has

f{Z)lor& derivative, and is holomorphic in 5.

In the case of a region bounded by several disconnected:

closed curves, of which one is exterior to all the others,,

Cauchy's Theorem may be stated in the following form

:

Theorem III.—Let a function f\z) be holomorphic in a

region A bounded by a closed curve C and one or more closed

curves Clt Q, . . . interior to C. The integral of f[z) taken'

along C will be equal to the sum of its

integrals taken in the same direction

along the curves C,, 6"
, . . .

For the integral of f(z) taken in a.

positive direction completely around the

boundary of A is equal to zero. But

tne curves (7,, C„ . . . are then described in the direction oppo-
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site to that in which C is described. Hence if all the curves

are described in the same direction, the result may be written

J'c
f(z)dz =Jc f{z)dz +fc A*)dz + ...

If there is but one interior curve, so that the region A is

included between two curves C and Clt the integral taken along

every closed curve containing C, but interior to C has the

same value, viz., the common value corresponding to the paths

C and C
x
.

Art. 19. Theorems on Curvilinear Integrals.

Theorem I.—If f(z) be continuous in a given region except

at the point a, the integral I f(z)dz, taken around a small circle

c, having its center at a, will approach zero as a limit simulta-

neously with the radius r of the circle c, provided only

lim (z — d)J\z) = O when z = a.

For let the upper extreme of the modulus of (z — d)f(z) on

the circle c be denoted by M. Then at every point of c,

v _ M _M
mod f(z) —

1

— —

,

and consequently

c -M r
modJc

f(z)dz ~

—

J ds -^2nM.

/dz
-. r-, taken around any
(z — ap

closed curve C containing the point a, is equal to zero, except

when n — i. When n = I, this integral is equal to 2ni.

For the value of the integral will be the same if any

circle described about a as a center be taken as the path of

integration. Let then s — a = re'e , where r is a constant and

B varies from o to zn. The integral becomes

~« - 1 j
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which reduces to zero except when n = I. If n — I, its value

is 2ni, whence

/ dz = 2711.

Theorem III.—If f{z) is a function holomorphic in a given

region S, C a closed curve the interior of which is wholly

within S, and a a point situated within C, then

f £&-ds = 27tif{a).Jc z— a J

For describing about a as a center a small circle c of radius

r, the equation

PJVUp = fJ^Ldz
v° z — a <J C s—a

is obtained. But at every point of c,

where, by choosing r sufficiently small, the modulus of rj may

be made less than any fixed positive quantity. Hence

vcz—a v
c z — a ucZ — a

but by the preceding theorems the first term of the right-hand

member is equal to 2nif{a), and the second term is equal to

zero.

If the equation of the theorem just established be differ-

entiated with respect to a, the following important formulas,

expressing the successive derivatives of a holomorphic function

at a given point, are obtained

:

fcj~d)^ = 2^'^

I . 2 . . . n f-J^^dz = 27zif«\a).
{z-a)
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The integrals in the first members of these equations are all

finite and determinate for every position of a within the curve

C. Therefore any function holomcrphic in a given region ad-

mits an infinite number of successive derivatives at every

interior point. Each of these derivatives being monogenic:

must be continuous. Hence the following:

Theorem IV.

—

\i f{z) is holomorphic within a given region,

there exists an infinite number of successive derivatives of

f{z), which are all holomorphic within the same region.

Denote by r the shortest distance from the point a to the-

curve C. Then at every point of this curve \z — a\ > r. Let

M be the upper extreme of the modulus/^) on C, and / the

length of C. Then

n fi2\ _ r M
modJc {g -a)* +t d* <JcV^

= Ml
< r»+i{z-ay

, rl , . , = i . 2 . . . n Ml
and consequently mod fw (a) .< . M+I .

In particular, if C is a circle having a for its center,

, ,,«, , x = i . 2 . . . n . M
mod /« (a) < .

Art. 20. Taylor's Series.

Theorem.—Let/(^) be holomorphic in a region S, and let

C be any circle situated in the interior of S.

If a be the center and a -\- /any other point f N^
interior to C,

/(a+ I) =A«) + tf(a) + -f^f"(') +

+TTTXW+-
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From the preceding article, denoting a variable point on C
byC,

2ni I Q — a — t

rAZ¥z t r t
n+1

t — a

t" t" +1 ~]

+ • •
+(c^F+(c-«)"(c-«-/)J2mJ t — a

f(a) + if'(a) + -f^f'ia) + . . .+TTT^/"^) + *>

27iiJc (Z-aY +\Z~a-t) *"

By taking n sufficiently great the modulus of R may be

made less than any given positive quantity. Let M be the

upper extreme of the modulus of f(z) on the circle C, p the

modulus of t, and r the modulus of C — « or radius of C. Then

<
27rJc r" +1(r—p) < r — p\r

which, since p < r, has zero for its limit when n = oo

.

Writing now z for a-\-t, Taylor's Series becomes

f(z)=f(a)+(z-a)f'(a)+^^f"{a)+. . .+
(-£^f£/M(

fl)+. .

.

The series is convergent and the equality is maintained for

every point z included within a circle described about a as a

center with a radius less than the distance from a to the nearest

critical point oi f{z).

When a is equal to zero, Taylor's Series takes the form

f{z) = /(o) + zf{o) + ~f"{o) -f- . . . + Y7~^i
f[nKo) + •

' • '

expressing/^) in terms of powers of z. This form is known
as Maclaurin's Series.
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Art. 21. Laurent's Series.
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Theorem.—Let S, a porticn of the ^-plane bounded by two
concentric circles C

x
and £,, be situated in the interior of the

region E, in which a given function f{z) is holomorphic. If a
be the common center of the two circles, and a + t a point

interior to S, /(a -\- t) can be expressed in a

convergent double series of the form

m = oo

W/ = — CO

With a -\- t as a center construct a circle

<: sufficiently small to be contained within

the region 5. If then C, be the greater of

the two given circles, it follows from Article 18 that

AZ)dZ AQdZ
2m "

Ci Z — a — t 2ni ud Z — a — t

But from Article 19,

_L f MYZ
O-rri <Jc

whence

+
2nl Jc Z

AZ¥Z
a — t

2m' C — a
••/(« + 0.

yv ~ ' 27iiJc^Z - a — t 2niJc> Z — a-t'

The two integrals of the right-hand member may be written

_ r2_ /-/(cygr /

(C-*)-J

1

(c-«)'
1 *»+»

where

# -A t*+'f(zyz

R,
27tiJc*f,+i (Z-a-ty

But |tf| < |£ — «| at every point of C,, and |*|> |C — «| at

every point of C„ so that ^?, and i?
2
both have zero for a limit



272 FUNCTIONS OF A COMPLEX VARIABLE. [CHAP. VI.

when n = oo . The value oif(a -j- t) can therefore be expressed

in the form

A_
t

A., A^
^ t ^ f ^ f ^•" -

Since in the region S the function f{z)/(z — a) m+1 is holomor-

phic for both positive and negative values of m, A m may be

written

2mJ (C — a) +

where C is any circle concentric with C, and C
t
and included

between them.

The series thus obtained is convergent at every point a A-t

contained within the region S. It is important to notice, how-

ever, that when the positive and negative powers of t are con-

sidered separately, the two resulting series have different

regions of convergence. The series containing the positive

powers of t converges over the whole interior of the circle C, ;

while the series of negative powers of t converges at every

point exterior to the circle Cv The region 5 can be regarded,

therefore, as resulting from an overlapping of two other

regions in which different parts of Laurent's Series converge.

Writing z for a -f- t, Laurent's Series takes the form

f{z) = A
a + A,{z - a) + A& - df + . . .

+ A_
X (z- a)- l + A_2 (z _*)-+...

Consider as a special numerical example the fraction

J = L_ i
|

i

{Z - I) {Z — 2) (Z— 3) 2(3-1) Z — 2"1"
2{Z -3)

If |^| < i, all three terms of the second member, when
developed in powers of z, give only positive powers. If

1 <
I

-sr
I
< 2, the first term of the second member gives a series'

of negative descending powers, but the others give the same
series as before. If 2 <\z\< 3, the first and second terms

both give negative powers. If \z\ > 3, all three terms give
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negative powers, and the development of the given fraction

can contain no positive powers. Thus a system of concentric

annular regions is obtained in each of which the given frac-

tion is expressed by a convergent power-series. Laurent's

Series gives analogous results for every function which is holo-

morphic except at isolated points of the .a-plane.

Art. 22. Fourier's Series.

Let w = f(z) be holomorphic in a region S , and let it be

periodic, having a period equal to go, so that f(z -\- noo) = f{z),

where n is any positive or negative integer. Denote by Sn the

region obtained from S
a
by the addition of noo to z ; and sup-

pose that the regions . . . , S.„, . . . , 5., , S, , S, , . . . , S„ , . . .

meet or overlap in such a manner as to form a continuous strip

5, in which, of course, the function w will be holomorphic.

Draw two parallel straight lines, inclined to the axis of reals at

an angle equal to the argument of go, and contained within the

strip 5. The band T included between these parallels will be

wholly interior to S.
2-niz

By means of the transformation z' = e ™ the band T in

the ^-plane becomes in the ^'-plane a ring T' bounded by two

concentric circles described about the origin as a center, z and

z -\- noo falling at the same point z'. Since w is holomorphic

in a region including T, and

dw dw dz go 217-iz dw
dz' dz dz' 2ni " dz'

w regarded as a function of z' will be holomorphic in T'.

Hence, by Laurent's Theorem,

w = ~2 A mz"»,

the quantity a in the general formula of the preceding article

being in this case equal to zero. Substituting for z' its value,

the preceding equation becomes
,«=» 2mni*

w = 2 A me " ,
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where

i rwdz' i nz+"' _ 2g""''

Am =^dJc^ = vJ
s

e " Wdz -

In the latter integral the path is rectilinear. Denoting its

independent variable by C for the purpose of avoiding confu-

sion, the value of w becomes

l

»»=» />f-h" """•»'
,. ,,,

»« = - co »

= -J mx + l^r coS^ (,-c)/(ck

^+tu 2JHTT*

= - / /(QdQ + -^ cos / cos M)dZ

2 *"°°
. 2mnz /><+•» 2mnC

J«=l

Art. 23. Uniform Convergence.

Let the series W= w -f- w, -f- w2 +• • • + »»+ . • . , each

term of which is a function of z, be convergent at every point

of a given region 5. Denote by Wn the sum of the first n

terms of W. If it is possible, whatever the value of the posi-

tive quantity e, to determine an integer v, such that whenever

n > v

\W- Wn \<e

at every point of S, the series Wis. said to be uniformly con-

vergent in the region S.

Uniformly convergent series can in many respects be treated

in exactly the same manner as sums containing a finite number

of terms.

Theorem I.—A uniformly convergent series, the terms of

which are continuous functions of z, is itself a continuous

function of z.

For at any point z, W may be written in the form
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W = Wn -\-R; and at a neighboring point z', W = Wn' + R'.

Hence

W- W = Wn - Wn
'-+R - R',

and \W-W\%\Wn -Wn'\ + \R\ + \R'\.

But by choosing n sufficiently great, \R\ and |^'| may both

e
be made less than any given positive quantity — . Having

chosen n thus, Wv becomes the sum of a finite number of

continuous functions. It is then continuous, and, by making

\z' — z\ less than a suitable quantity 8, \
W — Wv '\ may be

e
made less than — . But, under these suppositions,

|
W- W'\<e.

Wis, therefore, continuous at the point z.

Theorem II.—If all the terms of a uniformly convergent

series

W = w„ + w
l
-\- . . . + wn -\- . . .

are continuous, the integral of the series, for any path L situ-

ated in the region of uniform convergence, is the sum of the

integrals of its terms :

/ Wdz — I w^dz + / w
x
dz + •••+/ wndz -\- . . .

For, writing W= Wn -f- R, it is possible to choose n so that,

however small e may be, |7?| < e at every point of L. If n be

so chosen,

f Wdz =J^Wndz+fL Rdz.
But, by Article 15, denoting by / the length of the path L,

mod / Rdz < el,

which, when n = 00 , has zero for its limit. Hence

fWds = Mm f'wjz.
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Theorem III.— If the series W— w + w
x
-\- . . . + w„-\- . . .

is convergent, and the series

w , _ dw«
, ^i _|_ ,

dw«
_|_

dz ^ dz' ^ ' " ^ dz"^ " '

is uniformly convergent in a region S, and if further the terms

of W are continuous in S, W will be the derivative of W.

£

For, integrating W from a to z along a path Z contained

in S,

W'dz — w
a
{z) — w (a) + . . . -f ot„(V) — wn(a) +

= W» - W(a).

But the derivative of the first member is W, which must

also be the derivative of the second member, and therefore

of W.

An immediate consequence of the preceding theorems is

the following :

Theorem IV.—If the terms of the convergent series

W^=w,-\-w,-\-...-\-w„-\-.,.

are holomorphic in a given region S, contained in the region

of convergence, and if the series

W =—" -L. ^i 4- _!_
dw« _L

dz ~r dz "^ " ' '
"*"

~dz~
"^ ' *

*

is uniformly convergent, W w'\\\ be holomorphic in the region

S, and will have W for its derivative.

To illustrate by an example that uniformity of convergence

is essential to the preceding theorems, take the series

w= -L_ + i. flizii)
.

At the point z = i each term is continuous, and the series

is convergent, having the value 1/2. The series is, however,

discontinuous at z = 1. For, writing it in the form

^= _^ + (_J L_) + (__L_ _ _i_ \ +



ART. 23.] UNIFORM CONVERGENCE. 277

the sum of the first n terms is

i

W.
i 4- zn

But W is the limit of W„ when ?i = oo , and is therefore

unity at every point z for which \z\ < I, and zero at every

point for which \z\~> I.

If now this series be considered for the points within and

upon a circle described about the origin as a center with an

assigned radius less than unity, the remainder after n terms,

z
n

or I — Wn = can, by a suitable choice of n, be made
I + z

less in absolute value than any given quantity. In such a

region, then, the series converges uniformly, and, by Theorem

I, can have no point of discontinuity. A similar result holds

for the region exterior to any circle described about the origin

as a center with an assigned radius greater than unity.

By means of Theorem II given above it can be shown that

Laurent's Series is unique. For, assuming the notation used

in the determination of the series, the series is uniformly con-

vergent in the region included between any two given circles

concentric with C, and Q , both being interior to C
l
and ex-

terior to C
t

.

Suppose, now, that two such series are possible :

m = oo Hi = co

/(a + t) = 2 Ajm = 2 A m'r.
m = — oo

Divide by f + x
, and integrate along any circle described about

aasa center and included in the region of uniform converg.

ence. The integral it"1 ' K ~ xdt for such a path is zero, except

when m — n\ the integral / t
_1

dt = 2in.

Hence for such a path,

rga +W = 2inA = 2inA ,.
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from which it follows that A n = A„', and the two series are

identical.

Art. 24. One-valued Functions with Critical Points.

Theorem I.—A function holomorphic in a region 5 and

not equal to a constant, can take the same value only at iso-

lated points of 5.

For in the neighborhood of any point a interior to 5, by

Taylor's theorem,

f(z) -/0) = (* - «)/'(«) + {

-^f /"(a) + ...

Unless f{z) is constant over the entire circle of convergence of

this series, the derivatives f'(a), f"{a)> • cannot all be

equal to zero. Let f-"\a) be the first which is not equal to

zero. Then

fiz)- /(a) = (z-a)"[ ^){d)
1

f"+1
\a)

(s-a)+ . .

."

JK
'

J v ' K
' \_\ . 2 . . . n ' i . 2 . . . (n -f- \y '

'

If \z— a\ be given a finite value sufficiently small, the

modulus of the first term of the series within the brackets will

exceed the sum of the moduli of all the other terms, and the

same result will hold for every still smaller value of \z—a\.

For values of z, then, distant from a by less than a certain

finite amount, f(z) — f{d) is different from zero.

If, on the other hand, the function is constant over the en-

tire circle, described about a as a center, within which Taylor's

series converges, it will be possible, by giving in succession

new positions to the point a, to show that the value of the

function is constant over the whole region S.

Theorem II.—Two functions which are both holomorphic

in a given region 5 and are equal to each other for a system of

points which are not isolated from one another, are equal to

each other at every point of 5.

For let f(z) and (p(z) be two such functions. By the pre-

ceding theorem, the difference/^) — <p(z) must be equal to

zero at every point of 5.
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Theorem III.—A function which is holomorphic in every

part of the £-plane, even at infinity, is constant.

For, a being any given point, whatever the value of z,

A*) = A") + v* - *>/"(«) + • • • + ,%'

,

a

\/"V) +
But by Article 20, r being the radius of any arbitrary circle

having its center at a, and M being the upper extreme of the

modulus of f(z) on the circumference of this circle,

, ,w , x = I . 2 . . . nM
mod f\a) < .

But M is always finite, and r may be made indefinitely great.

Hence /'"'(«) = o for all values of n, and

/0)=/(4
Theorem IV.—If a function /(.s), holomorphic in a region 5,

is equal to zero at the point a situated within 5, the function

can be expressed in the form

/0) = (* - a)'"<p(z),

where m is a positive integer, and (p[z) is holomorphic in 5 and
different from zero at a.

For in the neighborhood of the point a, by Taylor's Theorem,

f{z)=f{a) + {z-a)f{a)+...

Let_/ (,B) (a) be the first of the successive derivatives at a which

is not equal to zero. Then

f(z) = (*-«)« T W
-] 1

.

(a

\ iz-a) + . . .w ' L 1 -2 . . . m 1 . 2 . . . (m-\- iy '
'

which is the required form. The point « is a zero oi f{z), and

7» is its order.

Theorem V.— If the point a is a critical point of a given

function/^), but is interior to a region S, in which the recip-

rocal of f{z) is holomorphic, the function can be expressed in

the form

where w is a positive integer, and #(.s) is holomorphic in the

neighborhood of a.
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For by the preceding theorem

_JL = (* _ ay^z),

where cp{z) is holomorphic and not equal to zero at z = a.

Hence

f(e\ = __! L_ = *(*)
y W

(* - «)'" "

0(^) (z - «)"'"

Further, since in a region of finite extent including the

point a
X{z) = A

n 4- At* - a) + . ...

« being an ordinary point for ip(z).

The point « is a pole of f(z) and ;« is its order.

Theorem VI.—A function, not constant in value, and hav-

ing no finite critical points except poles, must take values

arbitrarily near to every assignable value.

For suppose that f{z) is such a function, but that it takes

no value for which the modulus of f{z) — A is less than a given

positive quantity e. Then the function

i

/(*) - A
will be holomorphic in every part of the .s-plane, which, by

Theorem III, is impossible unless f(z) is a constant.

Theorem VII.—-A function f(z), having no critical point

except a pole at infinity, is a rational entire function of z.

For the only critical point of f ( -) is a pole at the origin.

Hence

/©=#+-+1m-«*
where (p(z) is holomorphic over the entire plane, including the

point at infinity. (p(z) is consequently equal to a constant A„.

The given function therefore can be written in the form

f(z) = A mc'« + .. , + Af+A..
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Theorem VIII.—A function f{z) whose only critical points

are poles is a rational function of z.

The poles must be at determinate distances from one an-

other ; otherwise the reciprocal of f(z) would be equal to zero

for points not isolated from one another. The number of poles

cannot increase indefinitely as \z\ is increased ; for then the

reciprocal of /[-) would be an infinite number of zeros indefi-

nitely near to the origin. The total number of poles is there-

fore finite. Let a, b, . . . denote them. In the neighborhood

of a the function can be expressed in the form

(z — d)m '
' z — a

a being an ordinary point for <p(z). In the neighborhood of b,

<p{z) can be expressed in the form

(z — b)
n n ' ' '

' z — b

a and b being both ordinary points for ip(z). Proceeding in

this way the given function will be expressed as the sum of a

finite number of rational fractions and a term which can have

no critical point except a pole at infinity. This term is a

rational entire function.

Theorem IX.—If the function f{z) has no zeros and no

critical points for finite values of z, it can be expressed in the

form f(z) — e^"^, where g(z) is holomorphic in every finite re-

gion of the ^-plane.

f(z)
For —— can have no critical points except at infinity, since

A")
in every finite region of the .s-plane f(z) and f'(z) are holomor-

phic and f(z) is different from zero. Hence, choosing an arbi-

trary lower limit z , the integral

I
is holomorphic in every finite region. The function f{z) con-

sequently must take the form
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A*) =/0>"w = ^'\

where g(z) — h{z) -f log f(z ).

Theorem X.—If two functions f{z) and <p{z) have no criti-

cal points in the finite portion of the ^-plane except poles, and

if these poles are identical in position and in order for the two

functions, and their zeros are also identical in position and

order, there must exist a relation of the form

f(z) = 4>{z)^\

where g{z) is holomorphic in every finite region of the 2-plane.

For the ratio of the two functions has no zeros and no

critical points in the finite portion of the .s-plane.

Art. 25. Residues.

If a one-valued function has an isolated critical point a, it

is expressible by Laurent's series in the region comprised be-

tween any two concentric circles described about a with radii

less than the distance from a to the nearest critical point.

Hence in the neighborhood of a

f(z) = A,-\-A
1
(z-a)+ A,(z-ay + ...

+ £,(*- *)-' + £,(* -«)-+ ...

The coefficient of (z — a)-' in this expansion is called the

"residue" oi f(z) at the point a.

If any closed curve C including the point a be drawn in the

region of convergence of this series, and f{s) be integrated

along C in a positive direction, the result will be

/((fz)dz = 2ntB
1
.

' c

The following may be regarded as an extension of Cauchy's

theorem

:

Theorem I.—If in a region 5 the only critical points of the

one-valued function f{z) are the interior points a, a', . . , the
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integral / f(z)dz taken around its boundary C in a positive

direction is equal to

fc f{x)dz = 2ni(B+ B' + ...),

where B, B' , . . . are the residues of f(z) at the critical points.

For the integral taken along C is equal to the sum of the

integrals whose paths are mutually exterior small circles de-

scribed about the points a, «',...

The following theorems are immediate consequences of the

preceding :

Theorem II.—If in a region having a given boundary C the

only critical points of the one-valued function f(z) are poles

interior to C, an equation

flMds = 2in{M- N)
JcA*)

exists, M denoting the number of zeros and N the number of

poles within C, each such point being taken a number of times

equal to its order.

For in the neighborhood of the point a

f(z) = (* - a)
m
4>(z)

where <p{z) is finite and different from zero at a, and m is a

positive integer if a is a zero, a negative integer if a is a pole.

Hence
/'(*) _. m cp'jz)

f(z) z — ' (p(z)

'

The integrand, therefore, has a pole at every zero and pole of

f(z), and its residue is the order, taken positively for a zero,

and negatively for a pole.

Theorem III.—Every algebraic equation of degree n has n

roots.

For let f(z) represent the first member of the equation

s* 4. a
x
zn

- x + ... + «„ = o. Since f(z) has no poles in the
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finite part of the ^-plane, the number of roots contained within

any closed curve C will be given by the integral

2711J c Az
)

But taking for C a circle described about the origin as a

center with a very great radius, this integral is

J_ p- + (,-,) fl/- + ... & = _1 /**(! + *)
27iiJc z" + a^"- 1 + . . . 2ntJc z

where e has zero for a limit when \z\ = so. Hence the limit

of the preceding integral, as \z\ is increased, is n.

Prob. 17. Show that if z = 00 is an ordinary point of/(.z), that

is, if f(z) is expressible for very great value of z by a series contain-

ing only negative powers of z, the integral oif{z) around an infinitely

great circle is equal to 2iti into the coefficient of — . This coeffi-

cient is called the residue for z — 00

.

Prob. 18. Show that the sum of all the residues of f{z), of the

preceding problem, including the residue at infinity, is equal to

zero.

0(2)
Prob. 10. If -j~ is a rational function of which the numerator

rp(z)

is of degree lower by 2 than the denominator, and if the zeros

a
1 , a, , . . . , a„ of the denominator are of the first order, show that

-g, <PM _ _

Art. 26. Integral of a One-valued Function.

It was shown in Article 18 that, if a function /(V) is holo-

morphic in a given region 5, its integral taken from a fixed

lower limit contained in 5 to a variable upper limit S is a one-

valued function of z within 5. If F(z) is a function which

takes a determinate value F(z
a)

at z = z
a
and is one-valued

while z remains within S, having at every point f{z) for its

derivative, the integral of f{z) from z
n

to z is equal to

F(s) — F(z
a).

If F^z) is another function fulfilling these con-
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editions, so that the integral of f{z) can be written also in the

form F
x
{z) — F^z^), the functions F(z) and F^z) differ only by

a constant term ; for

FM) = F(z) + [/;(*,) - F{z )].

Suppose now that /(z) is still one-valued in S, but that it

has isolated critical points a
t ,
at , . . . interior to 5. Any two

paths from z
a
to z, which inclose between them a region con-

taining none of the points «,, a
2 , . .., will give integrals identi-

cal in value. Let the two paths Z,, L include between them

a single critical point aK ; and consider the integrals along

these two paths. The integral along Z, will be equal to the

integral along the composite path L,L~*L, where the exponent

— I indicates that the corresponding path is reversed ; for the

integral along L~ lL is equal to zero. But L^L~ S

is a closed

curve, or" loop," including the critical point aK , and, assuming

that it is described in a positive direction about aK , the inte-

gral along it is equal to 2niBK , where BK is the residue of f{z)

at aK . Hence

f/(z)dz = 2niBK -\- f/[z)dz.

If now the two paths Z,, Z from z to z include between

them several critical points aK , aK , a^, . . ., draw intermediate

paths Z
2 , . . ., Z,„, so that the region between any two consec-

utive paths contains only one critical point. The integral

along Z, will be equal to the integral along the composite path

L^L^'L, . . . Lm ~'LmL~
1L, since the integrals corresponding to

L~'L
t , . . ., Z,„"'Z„,, L-'L are all equal to zero. But L

X
L~\

L^L
3
'\ . . ., LmL'

1 are all closed paths or loops, each including

a single critical point, so that, assuming that each is described

in a positive direction and that Bx , B^, B^, . . . denote the resi-

dues of f{z) at the critical points,

fL /(z)dz = 27ti{BK + BK + B, + . . .) +fL f(z)dz.

It has been assumed in the preceding that neither of the

paths Z1( Z intersects itself. In the case where a path, for
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example L1S intersects itself in several points c
x , c

% , . . ,, it is

possible to consider Z, as made up of a path Z/ not intersect-

ing itself, together with a series of loops attached to Z/ at

the points clt c„ . . . Each of these loops encloses a single

critical point aK and, if described in a positive direction, adds

to the integral a term 2niBK Each such loop described in a

negative direction adds a term of the form — iniBK . It is evi-

dent that the form of each loop and the point at which it is

attached to Z/ may be altered arbitrarily without altering the

value of the integral, provided no critical point be introduced

into or removed from the loop. In fact all the loops may be

regarded as attached to Z/ at z
a

.

It can be proved by similar reasoning that the most gen-

eral path that can be drawn from z
a
to z will be equivalent, so

far as the value of the integral is concerned, to any given path

Z preceded by a series of loops, each of which includes a sin-

gle critical point and is described in either a positive or nega-

tive direction. The value of the integral is therefore of the

form

fL f[z)dz + 27rz(iWjJ5
] -f- m,B, + ...),

where m lt m% , . . . are any integers positive or negative.

f" dz
As an example consider the integral Js

. The only

critical point is z = a. Any path whatsoever from z to z is

equivalent to a determinate path, for example, a rectilinear

path, preceded by a loop containing a and described a certain

number of times in a positive or negative direction. If w de-

note the integral for a selected path, the general value of the

integral will be w -f- 2U7ci. If now a straight line be drawn

joining z
a
to a, and if along its prolongation from a to infinity

the 2-plane be cut or divided, the integral in the .s-plane thus

divided is one-valued. But, with the variation of z thus re-

stricted, any branch of the function log (z — a) is one-valued.

Select that branch, for example, which reduces to zero when
z = a-\- i. It takes a determinate value for z = z., and its
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derivative for every value of z is . Hence, denoting it
-3* — Ct

by Log - a),

.1 = Log (z — a) — Log (z. — a) = Log .

For a path not restricted in any way, the value of the inte-

gral is

dz z — a . z — a= Log ± 2nm = log

(p(z)
Prob. 20. If -TT-i is a rational function of z of which the numer-

tp(z)

ator is of degree lower by 2 than the denominator, and if the zeros

a„ aa , . . ., ax of the denominator be of the first order, show that

Pz dz _ ^ (p(av) z — av

«/,„ z — a \ ip'(av )
S

z„ — a.ip'iav )
& z

a
- a;

n

where 2</>{av)/ij)'(av) = o. (See Prob. 18, Art. 25.)

Art. 27. Weierstrass's Theorem.

Any rational entire function of z, having its zeros at the

points alt a„ . . . , am , can be put in the form

A(z- «,)"(* - O* 3 ...(«- «>,
where yi is a constant and «,, n„ . . ., nm are positive integers.

More generally, any function which has no critical point in the

finite portion of the £-plane and has the points a
x , . . ., am as

its zeros, is of the form

<*«(* - «,)«. ...(z- amfm ,

whereas') is holomorphic in every finite region.

The extension of this result to the case where a function

without finite critical points has an infinite number of zeros is

due to Weierstrass. It is effected by means of the following

theorem :

Theorem.—Given an infinite number of isolated points a
x ,
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ait . . ., a,„ . . ., a function can be constructed holomorphic ex-

cept at infinity and equal to zero at each of the given points

only.*

For the given points can be taken so that

l«,i<KI<- • -l«J<- • •>

\aH \
increasing indefinitely with n. Consider the infinite product

WW^) = ? I
1 -£)'"-

where PK(z) denotes the rational entire function

Any factor may be written in the form

But since

(
z \- r dz z z" r z"dz

log V~^J-~J« an - z
~ ~ ^ ~'

"
~ ^C ~J° an

n{an -z)
r

the path of integration being arbitrary except that it avoids

the points a lt a„ . . ., the product may be expressed as

z*dz
IJe^'K in which if>„(z) = —J

In any given finite region of the ^-plane it will be possible

to assume that
|
z\ = p < «,„ , since \an \

increases indefinitely

with n. Divide the product into two parts,

n(i—\ep^\ m^'\
1 V ««/ m

The second part is equal to

m .

e

* The following proof is taken from Jordan, Cours d'Analyse, 2d edition,-

Vol. II.
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Consider the series 2ipn{z) and 2ip„'(z), each term of the sec-
m m

ond being the derivative of the corresponding term of the first.

In the given region

I0.'(*)l =
\a,n\"{\am

\

— p)'an\an
— z)

oo

Each term of 2ipJ(z) is accordingly less in absolute value than
ill

the corresponding term of a convergent geometrical progres-

CO

sion independent of z. The series 2$«'{s), therefore, converges
ill

oo

uniformly. The series ^ip„{z) also converges, since

I tp„(z) I = mod f",h K'(s)ds = -
,

.,
P
"
1

,

r

where / denotes the length of the path of integration.

oo

By Theorem IV, of Article 23, the series 2ip„(z) represents

in the given region a holomorphic function. The exponential

e

also must be holomorphic. The other part of the product

in - 1

a.17J

containing only a finite number of factors is everywhere holo-

morphic, vanishing at all of the points a
x

, a„ . . ., which are

situated within the given finite region. But this region may
be extended arbitrarily. The product therefore fulfils the re-

quired conditions.

In the preceding demonstration it was tacitly assumed that

none of the given points «,, «.,, . . . was situated at the origin.

To introduce a zero at the origin it is necessary merely to mul-

tiply the result by a power of z.

The most general function without finite critical points
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having its only zeros at the given points a
x , at , . . ., a„ . . ., can

be expressed in the form

f{z) = ^n(i - —V»w .

where g{z) is holomorphic except at infinity; for the ratio of

any two functions satisfying the required conditions is neither

infinite nor zero at any finite point.

By means of Weierstrass's theorem it is possible to express

any function, F(z), whose only finite critical points are poles as

the ratio of two functions holomorphic except at infinity. For,

construct a function tp(z) having the poles of F(z) as its zeros.

The product F{z). ip{z) = <p(z) will have no finite critical point.

The given function can, therefore, be written

F{z) =m
which is the required form.

In applying Weierstrass's theorem to particular examples,

it will rarely be found necessary to include in the polynomials

Pn(z) so many terms as were employed in the demonstration

given above. It is quite sufficient, of course, to choose these

polynomials in any way which will make the product converge

for finite values of z to a holomorphic function. Factors of the

form
I - - )e™

where PJz) is chosen in such a manner, are called " primary

factors."

As an application of Weierstrass's Theorem take the reso-

lution of sin s into primary factors. The zeros of sin z are o
;

±7t, ±27T, . . ., ±«7r, .... Consider factors of the form

I -— e
nn 1

so that PJz) contains only one term — , and
nn

J nn[nn — z)
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The series 2ip„'(z) will converge uniformly in any region at

every point of which |^| = p < mn ; for, since

l£»V)l = nn{nn — z) <4 ' w-i
each term is less in absolute value than the corresponding

term of the series

-CO

A similar result holds for the series 2tpn'{z). The two
-m

series
^ _„

m - m

are also convergent; for |^„(^)| cannot exceed the upper ex-

treme of \ip„'(z)\ multiplied by /, the length of the path of

integration from the origin to the point z. These series

accordingly represent holomorphic functions in the region for

which |£ |

= p. Hence the expression required is

z

sinz = e^' ) n(i -\e" ir
.

-oo \ nnj

It will be shown in the course of the next article that

t&> = I

.

Prob. 21. If ffii, and a>, be two quantities not having a real ratio,

the doubly infinite series of which the general term is ; rr

is absolutely convergent if p > 2. Hence show that the product

<r(z) = zll{i

where 00 = moo^ noo
2 , defines a holomorphic function in any finite

region of the s-plane. This function is Weierstrass's sigma func-

tion, and is the basis of his system of elliptic functions.
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Art. 28. Mittag-Leffler's Theorem.

Any one-valued function f(z) with isolated critical points

a,,a,, . . . can be represented in the neighborhood of one of

these points by Laurent's series ; viz.

:

f{z) = A + A
x
{z - a„) + A,(z - any + . . .

+ B,{z - <T + Biz - <T + . . . .

i

Hence /j»» = <p{z) + G
\z — an

where <p(z) is holomorphic in a region containing the point anr

and G\-
J

is holomorphic over the whole plane excluding

the point «„. If an is a pole of/(.s), Gn {

J

contains a finite

number of terms ; otherwise it is an infinite series. If the

number of critical points is finite, and the function G,\ 1

\z — aj

is formed at each such point, by subtracting the sum of these

functions from f{z) a remainder will be obtained which has no

critical point in the finite part of the plane. This remainder

can be expressed as a series of ascending powers G(z) converg-

ing for every finite value of z. The function f(z) can there-

fore be written in the form

f{z) = G(z) + 2G„
i

\z — a„

analogous to the expression of a rational function by means of

partial fractions.

The extension of this result to the case where the number

of critical points is infinite is due to Mittag-Leffier. Let a,,

«
2 , . . . , a„, . . . be the critical points of the one-valued func-

tion/^), and suppose that

l«.l <kl <• -l«»l <• • •>

\an \
increasing without limit when n is increased indefinitely.

Let, further, G„[
J
be the series of negative powers of

\Z — (Xn i
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z—an contained in the expansion oif{z) according to Laurent's

Series in the neighborhood of a„.

The function G„i j, having no critical point except at

a„, may be developed by Maclaurin's series in the form

G»{jzr^) = A °

w + A^z + + A »")z + • • • •

and the series will converge uniformly within a circle described

about the origin as a center with any determinate radius

pn < |0«|- Within the same circle Maclaurin's series, applied

to G„'( ), the derivative with respect to z of G„l
\z — a„) \z — a„

converges uniformly. Hence, for any point within the circle

\Z\ = Pn,

G
{z-±i) =w + *> G

iz-^r) = *'<*>

+

*>

Fn(z) representing the first v -j- i terms of the development of

G„( ] by Maclaurin's theorem, Fn'{z) its derivative, and
\z — aJ

R, R' remainders which by a suitable choice of v may be made

less in absolute value than any given quantity.

Choose the positive quantities £,,£,,. . .,£,,.. .so that

the series E
}
-\- £, -\- . , . -\- £„ -\- . . . is convergent. Choose

also in connection with each of the points a
1

, alt . . ., an , . . .,

an integer v such that

mod \g x

[-L-^ _ Fiz)\ <£„ mod[^'(^) -*"/(*)] < ^ -

if k! <a< Kl;

mod
'

G{j^i)- F^\ <E-

'

mod
[
G
>'{ih)-™] <E

> '

'f I* I <Pi < \

a*\\ and, in general,

mod 0»fe=y -^] <£* •
mod

[
G
-(j^d-*'«]

<E»>

if kl <p» < Kl-
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Consider now the series

i

a,
F&) GJ ^) ~ -'«]

in any finite region of the plane, the points a
t

, aq , . . . , a„, . . .

being excluded. Since \aH \
increases indefinitely with n, it is

possible, in any finite region of the .s-plane, to assume that

\z\ <p„,< \am \. Separate from each of these two series its

first m — i terms. These terms will have in each case a

finite sum. The remaining terms of either series taken in order

will be less in absolute value than Em , E.m + I,
respectively,

\z\ being less than each of the quantities p,„, pOT+I ,

.

cordingly, each of the series

Ac

G„ - F.{*) GJ K{Z)
1 _

is absolutely convergent for every value of z except a, ,«,,...

,

a„ It is evident, further, that in any given finite region,

from which the points a„ a„ . . . , a„ , . . are excluded, the

two series converge uniformly. In such a region any term of

either series is holomorphic ; and, therefore, by Theorem IV

of Article 23, the first of these series defines a holomorphic

function.

The point a„ is an ordinary point for the difference

M r G,
On
~ F&) /W z — aJJ + FJ&,

since in its neighborhood this difference may be developed as

a convergent series containing only positive powers of z — an .

In the same way each of the points «,, «,,..., a„, . . . is an

ordinary point for the function

/0)-
1 _

^(s)].

This function, therefore, can have no critical point except at

infinity, and must be expressible as a series G(z) containing

only positive powers of z and converging uniformly in any

finite region of the ^-plane. Hence the function f(z) may be

put in the form
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co I

—

Az) = g{z) +^ |_

G
"(i~=~£) - F"{s)~]>

in which the character of each critical point is exhibited.

As an application of Mittag-Leffler's theorem consider cot z.

Its critical points are z =0, ± n, ± 2n, .... In the neigh-

borhood of z = O, cot 2 is holomorphic; and in the neigh-
z

borhood of z = nn, n being any positive or negative integer,

is holomorphic. The seriescot z —
nn

+ »

z— nn

in which m is an arbitrary positive integer, is not convergent

for finite values of z, even when \z\<m. The series

+» r

_z — nn nn.

+ » — z

tn{z — nn)
« n'nHl

nnl

is, however, absolutely convergent at every point for which

|.s| < m. For the modulus of any term is equal to

if
nn

and, therefore, less than the corresponding term in the series

w" 1

\z\-

mn

1

A similar result holds for the series

^ I"—
1— - -1^ L# + W7^ ^ttJ

It is easy to see now that the reasoning employed in the

demonstration of Mittag-LefHer's theorem may be applied to

show that the series
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7+ — +-1— nn ' tinJ'

where the summation does not include n = o, defines a func-

tion holomorphic in any finite region of the a-plane, the points

o, ± n, ± 27t, . . . being excluded. The difference

cot z
r i i

~

\_z — nn nn_

can have no critical point except at infinity. It must, there-

fore, be expressible as a series G[z) of positive powers of z,

having an infinite circle of convergence. Hence

cot * = £(*) + - +
;

I

nn nn

The next step is to determine G(z). It is to be observed

that, if G(z) is a constant, its value must be zero, since

cot (— z) = — cot z. If G(z) is not a constant, differentiation

of the preceding expression for cot z gives

i i ±1 i-— = G\z) - -, - ~

sm z ^ z

It follows, by changing « into z -\- n, that

G'{z +n)= G'(z).

Hence G'(z) is periodic, having a period equal to n ; and as the

point z traces a line parallel to the axis of reals, G'(z) passes

again and again through the same range of values. But G'(z),

being the derivative of G(z), is holomorphic for every finite

value of z. It can, therefore, become infinite, if at all, only

when the imaginary part of z is infinite. If z be written in

the form x -\- iy, the value of G\z) may be expressed as

G\z) =
(x + ifj-

+:
22>>'(cos x -\- i sin x

(x^iy—nnf \(cos 2jr-)-2sin 2x)—&<

When y = ± oo the first and last terms of the second

member vanish. In regard to the series it can be proved that,
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for any given region is which y is finite and different from

zero, an integer r can be found such that the sum of the moduli

of those terms for which |«| > y is less in absolute value than

any previously assigned quantity e. As \y\ is increased the

modulus of each of these terms is diminished. The modulus

of their sum, therefore, cannot exceed e when y =±00. But

whenj/=±oo the sum of any finite number of terms of the series

is zero. Hence the limit of the whole series is zero. G'{z),

therefore, never becomes infinite. Hence, by Theorem 111,

Article 24, it is constant, and is equal to zero. It follows that

G(s) is equal to zero.

The expression for cot z is accordingly

COt £=--[' qz ^- Lz — nn nit
— 00

The logarithmic derivative of the product expression for

sin z, given in the preceding article as an example of Weier-

strass's theorem, is

1
, 1I

+ °°

cot z=g'{z)+ - +
," -Z — nn nn _

Hence g{s) in that expression is a constant. Making z = o,

its value is seen to be unity.

Prob. 22. From the expression for cot z deduce the equation

+ «

COSeC 2 = ^> -, :j,^ (z — nn)'

where the summation does not exclude n = o.

Prob. 23. Show that the doubly infinite series

P(*) = 7.+
1

_(z — a>y a?

where 00= moo
1

-\- nw^ , defines a function whose only finite critical

points are z = 00. This function is Weierstrass's ^-function. (Com-

pare Problem 21.)

Prob. 24. Prove that
72

*>(*) = - ^1 log <r(z).
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Prob. 25. Prove that $>'{z) — — 22- r-H where the summa-
(z — 00)

tion does not exclude oo = o.

Art. 29. Critical Lines and Regions.

The functions whose properties have been considered in the

preceding articles have been assumed to have only isolated

critical points. That an infinite number of critical points may
be grouped together in the neighborhood of a single finite

point is evident, however, from the consideration of such ex-

amples as

w = cot - , w = ecosec—

.

z

In the former an infinite number of poles are grouped in the

neighborhood of the origin. In the latter an infinite num-

ber of essential singularities are situated in the vicinity of the

point z = a.

It is easy to illustrate by an example the occurrence of lines

and regions of discontinuity. Take the series*

*> = 7^+7=7 +7^ +;£-, +-
The sum of its first n terms is

1

which converges to unity if
[

-sr
| < 1, and to zero if \z\> 1.

Hence the circle |#|= I is a line of discontinuity for this

series.

Consider now any two regions 5, and S,, the former situated

within, the latter without, the unit circle. Let <p{z) and f(s)

be two arbitrary functions both completely defined in these

regions. The expression

<t>{£)t){z)+ rp{z)\_l-0{z)-\

* This series is due to J. Tannery. See Weierstrass, Abhandlungen aus der

Functionenlehre (1886), p. 102.
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will be equal to <p(z) in 5, and ip{z) in 5,. In regions com-

pletely separated from one another by a critical line, the same

literal expression may thus represent entirely independent

functions.

For a single continuous region, however, in the interior of

which exist only isolated critical points, the character of the

function in one part determines its character in every other

part. Let 5 be such a region, and assume that its boundary is a

critical line. In the neighborhood of any interior point a, not

a critical point, the given function is expressible as a power

series, viz.

:

fa) = f{a) + (* - a)f\d)+ . . . + -kf-$Lf*(a) + . . .

1 .2 ... n

This series will converge uniformly over a circle described

about a as a center with any determinate radius less than the

distance from a to the nearest critical point. It serves for the

calculation of f{z) and all its successive derivatives at any point

b interior to this circle. From the preceding power series, ac-

cordingly, can be obtained another

M = A*)+ (* - b)f\b) + . . . + ^^t-rXb)+ . .
.

,

representing the f(z) within a circle described about b as a

center. In general, the point b can be so chosen that a portion

of this new circle will lie without the circle of convergence of

the former power series. At any new point c within the circle

whose center is b, the value of the function and all its succes-

sive derivatives can be calculated ; and so, as before, a power

series can be obtained convergent in a circle described about c

as a center and, in general, including points not contained in

either of the preceding circles. By continuing in this manner

it will be possible, starting from a given point a with the ex-

pression of f{z) in ascending powers, to obtain an expression of

the same character at any other point k which can be connected

with a by a continuous line everywhere at a finite distance

from the nearest critical point. It follows that the character of
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the function everywhere within 5 can be determined completely

from its expression in ascending power series in the neighbor-

hood of a single interior point.

It will be impossible by the process just explained to derive

any information in regard to the function at points exterior to

5. The example given above, furthermore, shows that a com-

plete definition of/(^) within 5 may carry with it the definition

of an entirely independent function without 5.

As an example of a function having a critical region con-

sider the function defined by the series

I -+- 2Z+ 2z" -|- 2Z° -|- . . .
,

which represents a function without critical points in the

interior of the circle \z\ = I. For points on or without this

circle the series is divergent ; and, further, it is impossible to

obtain from it an expression converging when \z\ = 1. The

function thus defined, consequently, exists only in the region

interior to the unit circle. By changing .s into \/z a series22^
z z z

is obtained, representing a function which has no existence in

the interior of the unity circle. Functions in connection with

which such regions arise are called " lacunary functions."*

Art. 30. Functions Having n Values.

Let the function w = f{z) take at the point z of a given re-

gion 5 a value wm . Suppose that along any continuous path,

beginning at z
a , and subject only to the conditions that it shall

remain in the interior of 5 and shall not pass through certain

isolated points a, , a,, . . . , w is continuous and has a contin-

uous derivative. If it is impossible, when z traces such a path,

to return to the point z so as to obtain there a value of w dif-

ferent from w(0)
, w is one-valued in the region 5. On the other

*Poincare, American Journal of Mathematics, Vol. XIV; Harkness and
Morley, Theory of Functions (1893), p. 119
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hand, certain paths may lead back to z, with new values of w.

Suppose that at each point of 5, except #,,«,,..., w lias

n different values, and that starting from such a point z
a
and

tracing any continuous curve not passing*through a, , aa , . . . ,

the several values of w give rise to n branches w
x , wq , . . . , wu ,

each of which is characterized by a continuous derivative. In

the neighborhood of ak any one of the points «, , a, , . . .

these branches are said to be distinct or not, according as small

closed curves described about this point lead from each value of

w back to the same value again, or cause some of the branches

to interchange values. In the latter case the point is a branch

point.

About any branch point ak as a center describe a small cir-

cle ; and suppose that, starting from any point of it with the

value wa corresponding to a certain branch, the values

Wp
)

Wy ... are obtained by successive revolutions about ak ,

the original value being reproduced after p revolutions. In-

troduce now a new independent variable z' such that
i

z' = (z - a ky.

It can be shown that when z makes one revolution about

ak , z' makes only one /th part of a revolution about the ori-

gin of the ^'-plane, and that to a complete revolution of z'

about the origin of the ^'-plane correspond p revolutions of z

about ak . Considering then the branch wa as a function of z',

the origin cannot be a branch point, for whenever z' describes

a small circle about it, the value wa is reproduced. The

branch wa must accordingly be expressible by Laurent's

series in the form

w, = 2A mz"»,

or, substituting for z' its value,

1 2

wa =A C+ A,(z- ak
)~*+ A

t(g - ahf + .

2

This expression makes plain the relation between the different
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branches of a function in the neighborhood of a branch point.

When the development of a branch in the neighborhood of one

of its branch points gives rise to only a finite number of terms

containing negative powers, the branch point is called a " polar

branch point."

Consider the functions

f
1
= ffl, + a/,+ • • + *»„ ,

P
t
= w^w, + w,w, = . . . + wn _ 1

w„

,

P„ = w^, . . . wn .

Each of these functions is unchanged in value when several or all

of the quantities «/„ wv . . . , wn are interchanged, and is con

sequently a one-valued function of s within 5. Hence w must

satisfy an equation of the «th degree,

w" + P.w"- 1 + P, iv"-* + . . . + P* = o,

the coefficients of which are one-valued functions of z having

only isolated critical points within 5. When the entire 2-plane

can be taken as the region 5, and those branch points at which

the branches do not all remain finite are polar branch points,

the only other critical points being poles for one or more
branches, the functions Plt Pt , . , . , P„ are rational functions

of z. In this case w is an algebraic function of z.


