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PREFACE.

The subject, commonly called the Calculus of Variations, has
attracted a rather fickle attention at more or less isolated inter-
vals in its growth. Its progress has been neither steady nor con-
secutive, From some cause, in its nature, or in its incompleteness,

or in its presentation, it has not secured an abiding interest.

Not infrequently, investigators have been concerned with appli-
cations of the Calculus and, for their purpose, have been known to
use fragmentary results.

Thus, in the theory of the potential, Dirichlet’s Principle has
been invoked. In instances when regard has been paid to the
establishment of the Principle beyond an assumption of its intuitive
truth, only the initial test belonging to weak conditions has been
imposed ; and a general inference has been drawn, which was not
justified by that test alone.

Again, the Principle of Least Action has been made the support,
and sometimes the occasional basis, of theoretical explanations of
the physics of the universe : though it should be added that the
introduction of kinetic foci in dynamics is the equivalent of another
necessary canonical test. Even so, all the recognised tests have
assumed that variations in natural phenomena must be gently
regular. Variations which, remaining small and continuous in their
magnitude, change in a violently regular or irregular manner within
a very restricted range, have usually been ignored . yet the theory
of small vibrations wields a far-flung domination.

In Newton's problem of the Solid of Least Resistance, the
formal solution satisfies all the customary tests which arise through
variations of the gently regular type. Still, more than a century
ago, Legendre proved that the solution is mathematically unsatis-
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factory, though its neglect by engineers is not due solely to mathe-

matical deficiencies.

The significance of the investigations, due to Weierstrass, is
not always recognised ; but their importance need not be empha-
sised, as though complete finality has been attained. The results,
usually associated with his name, relate to only the simplest class
among the problems which present themselves and which require
no more than the simplest form of his specially devised analysis.
There is ample scope for further research by his method, in exten-
sion of the range of its application.

The present volume attempts a systematic exposition of the
subject by what, in the main, is a uniform composite process.
Though it does not purport to be a history, the gradual historical
growth of the successive tests has governed the arrangement. A
fundamental (yet quite elementary) simplification, derived from the
Weierstrass method, has been used from the beginning, even to
obtain the results originally due to the founders of the subject.
These limited results maintain their standing, because they provide
tests which must be satisfied in simple forms of enquiry, and be-
cause they remain significant even when they are merged in the
wider results obtained by the more general method of Weierstrass.

Moreover, the volume has no pretensions to an encyclopzdic
range. Processes and investigations, however useful in the ex-
ploration of other regions, are omitted unless they fall into the
course of exposition adopted. So far as I am aware, much of its
material is novel. Two sources, more than others, have been
useful to me. The first of them is the Moigno-Lindelof volume
Calcul des Variations, published in 1861; except for the Sarrus
formalities, it seems to me an admirable exposition of the older
range of investigation. The other source is to be found in such
access to the work of Weierstrass as has been possible. Before the
year 1895, I had read a manuscript copy of notes of lectures by
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Weierstrass on his treatment of single integrals of the first order,
including the associated isoperimetrical problems; for the loan of
the volume from their College Library, I remain indebted to the
authorities of St John’s College, Cambridge. Since that date, Pro-
fessor Harris Hancock has published (1908) his volume, based
on similar notes and on lectures by Schwarz. Unfortunately, a
general expectation, that an authoritative edition of the Weierstrass
lectures would be published, has not yet been realised. '

Beyond the sources just mentioned and such other sources as
are quoted 1n the text, my work is independent. Some mathema-
ticians may wish that the exposition had been differently balanced.
Some will feel regret, and may award blame, for the omission of the
work of writers such as Clebsch and Hilbert—an omission not due
to lack of appreciation of their researches. Whatever its merits or
its demerits, the presentation is that which has appealed to me,
as leading most directly to a comprehension of the subject.

An abstract of the contents of the book may be useful, as an

indication of its scope.

In the first chapter, the simplest form of integral is discussed.

It involves only one dependent variable, together with the first
derivative. The method adopted is, in substance, the older method
for restricted variations; and the results obtained, including Jacobi’s
test which limits the extent of the range of the integration, are
typical of those that persist in all subsequent investigations, though
they do not constitute the aggregate of tests of a general character.
The second chapter deals with the same type of integral by the
method of Weierstrass, which makes both the dependent variable
and the independent variable in the older process to be functions
of a new independent variable, usually selected so as not to be
intrinsic to the problem; thus simultaneous independent variations
can then be imposed from the beginning upon both the variables
which occur. It is found that, for gently regular variations, no
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new tests emerge from the use of the Weierstrass method,—a con-
clusion not unimportant in itself—though the formal expression of
the tests is modified. In the third chapter, both methods are
applied to integrals, which still involve only a single original depen-
dent variable and now include derivatives of the second order as

well as those of the first order. Of the analytical material in
these three chapters, convenient geometrical illustration is pro-

vided by plane curves.

The next three chapters are devoted to the discussion, by both
methods, of single integrals which involve two dependent variables
and one independent variable in their initial form, together with
derivatives of the first order, and (less generally) of the second
order, though the analytical development in the latter case is not
carried so far as in the former. The increase in the number of
variables does not lead to an increase in the number of significant
tests, though (as is almost to be expected) the expression of the
several tests tends to become more complicated. For the material
in these chapters, convenient geometrical illustration is provided
by skew curves.

The seventh chapter introduces the essential advance made by
the Weierstrass method, through the emergence of a new additional
test. The advance comes through the consideration of variations
which are not restricted to be of a gently regular type. The varia-
tions are naturally required to be continuous and, as maxima and
minima are being considered, they are required to be small in
magnitude ; but, within that small range, they are permitted to
vary even abruptly, as violently as continuous curves representing
rapid small oscillations or even as continuous serrated curves.
Many such variations can be compounded from rudimentary varia-
tions of a selected type; and the use of the latter variation leads
to the construction of a new test which, necessarily satisfied for
the most elementary form, is cumulative in its effect for the com-
posite form. This Weierstrass test is applied to single integrals
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which, of course, involve only ordinary derivatives. In the case of
the Solid of Least Resistance, it is shewn that the solution, satis-
factory under the tests associated with the gently regular type of
variation, does not obey the further test associated with the strong
variation, and therefore does not supply a minimum. It appears
also that the Principle of Least Action does not supply a mini-
mum : the demands of the tests, arising out of gentle variations,
are satisfied ; but the demand of the Weierstrass test, arising out
of strong variations, is not satisfied.

The eighth chapter is devoted to the consideration of simpler
problems of relative maxima and minima—the isoperimetrical
problems of even ancient interest. In particular, those problems
are discussed, in which the requirement of a maximum or of a
minimum is obliged to fulfil the condition of allowing a coexistent
related integral to maintain an assigned value. Other types of
relative problems—in which, for example, persistent relations hold
among the variables—are considered, though only briefly, partly
because the first stage in their treatment is to be found in treatises
and memoirs easily accessible.

- The ninth chapter deals with double integrals which, in their
initial postulation, invelve one dependent variable and its two first
derivatives. The concurrent geometrical illustration is, of course,
provided by surfaces in ordinary space. Both the older method and
the later method are used for the discussion. The treatment of the
most interesting of all problems of this kind—minimal surfaces—
is simplified when the Weierstrass method is used from the be-
ginning. Schwarz's theorem, which secures the determination of
a minimal surface by initially assigned conditions, has been ex-
tended so as to obtain an analytical expression of the Jacobi test
in limitation of the range. The tenth chapter is devoted to two
issues: one, the construction of the Weierstrass test for double
integrals and a proof that it is satisfied by minimal surfaces: the
other, the simplest type of isoperimetrical problem. The eleventh
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chapter is concerned with double integrals which involve the
partial derivatives of the second order; but there is no attempt at
a full discussion, mainly because, after the application of even the
simpler tests, the analysis becomes unwieldy and the developments
demand the differential geometry of the curvature of surfaces.

A final chapter is devoted to triple integrals, involving the
first derivatives of a single dependent variable. The convenient
geometrical illustration is provided by the consideration of volumes
in quadruple space. Only a slight use is made of the mathematical
notions of such space ; and, because the geometrical considerations
are mainly concerned with volumes, a three-fold amplitude finds,
for most purposes, a working representation in the ordinary space
of experience. The analysis, which is requisite for the full appli-
cation of the Weierstrass method to triple integrals, soon becomes
laboured ; it is here developed only so far as to construct the
necessary tests which shew that, owing to failure under the
Weierstrass test, Dirichlet’s Principle is not valid.

Before parting from the volume, I would thank Professor
H. F. Baker, for his kindness in reading the earliest sheets of the
volume. Above all, I must mention the Staff of the University
Press, Cambridge. Their steady and unfailing co-operation has
been my mainstay during the printing of the book. Now that my
task is ended, I tender my grateful thanks to all of them who have

shared our joint labour.
A. R. FORSYTH.

31 December 1926
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INTRODUCTION.

General range of the subject.

1. The range of Mathematical Analysis, usually known as the Calculus of
Variations, deals with one of the earliest problems of ordinary experience. The
requirement was, and is, to obtain the most profitable result from imperfectly
postulated data; and the data may possibly be subjected to conditions, which
likewise are imperfectly postulated. When data and conditions are expressed
in analytical form, the necessary mathematical calculations cannot be effected
directly, because of some essential deficiency in the information. The gap
has to be filled before the resolution of the problem is attained; and the
process of supplying the lacking information is indirect, as compared with
the regular methods of calculation. It consists of the construction of tests,
which are the mathematical expression of general conditions; it is composed
of various gradual stages, sometimes independent of one another; and the
ensuing requirements are combined into an aggregate which is adequate for
the purpose. Usually, the predominating interest lies in the qualitative
results that are constructed. Not infrequently, the subsequent quantitative
calculations are ignored ; they involve processes which belong to an ele-
mentary range, that is unconcerned with the mode or modes of obtaining the
information lacking in the initial stage of the original statement.

Early beginnings.

2. To the ancient Greeks, with their wonderful geometry, the problem
came not infrequently in a practical form : how to secure the greatest amount
of land, which could be enclosed within a boundary capable of being ploughed
as a contour furrow in a given time: or, geometrically expressed, how to find
the shape of the closed curve, which shall enclose the largest area within a
perimeter of assigned length. The Greeks—perhaps not the earliest race, in
spite of their scientific achievements, and certainly not the only race, desirous
of saving the most and wasting the least out of opportunities subject to
assigned limitations—obtained a number of results, partly by what may be
called inspired guessing or intuition ; partly by assumptions as to harmonies,
and perfection, in curves; partly by experiments. Though the results would
not be regarded by later mathematical precisians as having been established
with complete rigour, they often were sufficiently satisfactory for working
purposes.

Little substantial progress beyond the old attainments was made down
- through the middle ages. In the East, and among the Arabs in the South
West of Europe, the old mathematical subjects were not merely maintained,
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but even flourished, within the range of the old methods; which came to be
processes of record and description, mostly of an arithmetical and a geometrical
type. Indeed, algebra was the main subject where progress was noted and
notable, though often attained in geometrical guise: even the beginning of
Descartes’ Geometry is occupied with the geometrical constructions devised for
the solution of quadratic equations. Real progress began with the new world
of science, which was created in the seventeenth century in Western Europe—
not least with the new mechanics and new astronomy, under Galileo, Kepler,
and Newton. It soon appeared that the old geometrical methods, even in
their new amplifications, must merge into an entirely new method which, in
character, was analytic and not synthetic. Thenceforward, what now is called
Analysis came to be the main instrument in vast fields of mathematical
research. The infinitesimal calculus was developed: its historical origins are
marked by the morbid hostility between the partisans of Newton and the
partisans of Leibnitz, which raged for many a year to the detriment of achieve-
ment in recognised knowledge. Old problems were re-stated ; and they were
solved once more, not infrequently with new additions and unsuspected limita-
tions. New investigations, hitherto belonging to the region of fancy, were
brought within the range of practice. In particular, during the late seven-
teenth century and through the eighteenth century, problems were propounded
by individuals as public challenges—a habit that has survived among Aca-
demies in the present day when proceeding to the award of their prizes.
The actual propounding of the problem was frequently an intimation that
the challenger had achieved the solution. Specially in mathematics, this was
a form of initial publication. The Bernoulli family, in its successive genera-
tions, was conspicuous for contributions of this type. Others, less publicly
aggressive in tone, were content to achieve a result and to be satisfied with
the knowledge thus attained, without challenge or publication in any similar
form. Of such men, perhaps Newton is the most conspicuous instance.

Newton, John Bernoulls.

3. The gradual development of the infinitesimal calculus led to the
formulation and the solution of new problems; and the new inquiries were
not less frequent in problems, the aspect of which was mathematical rather
than astronomical or mechanical or physical. Particularly within the range
of problems connected with maximum attainment or minimum reduction, the
new calculus proved effective; usually, the data were sufficient to allow a
direct attack to be made upon the problem. But, soon, the problems some-
times became of a subtler indirect nature: the very character, not merely the
magnitude, of the unknown quantities was the essence of the problem ; and
even behind this difficulty lay processes that could not be effected.

Such difficulties arose most directly when the maximum or the minimum
was to be possessed by a quantity which, however veiled in expression at the
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time, can be formulated as an integral, definite or indefinite. The quadrature
—the actual evaluation—of the integral could not be made, because it would
contain unknown quantities. On the one hand, the quest of these quantities
was the main problem; on the other hand, progress towards solution of the
problem was barred, so far as the old methods were concerned, precisely
because the quantities were unknown. Among such preliminary and isolated
problems, two (among others) survive in interest to the present day.

One is Newton's problem of the determination of the shape of the solid
of revolution which shall meet with the least resistance to its motion through
a fluid, on the assumption of a law of resistance conforming roughly to obser-
vation. Newton’s solution was not satisfactory so far as practice is concerned,
even if the law of resistance be regarded as adequate; and Weierstrass's
analysis provided, more than half a century ago, a reason why the Newtonian
solution is not satisfactory, even from a theoretical point of view. This general
problem has come into more importance in recent times, owing to the develop-
ments of submarines and air-craft; and the necessary association of new
knowledge, derived from successive physical and mechanical experiments,
has added grave complications to the mathematics of the general problem.

A second problem, of historical importance and still of interest, is that of
the Brachistochrone, associated (1696) with the name of John Bernoulli. In
its simplest form, it requires the determination of the curve joining two given
points such that the time of passage of a given mass from one point to the
other along the curve (as in a smooth groove), under the influence of gravity
alone and subject to no retarding force, is a minimum, that is, less than the
time of passage in like circumstances along any other curve Joining the two
points. The original solution, which requires the curve to be a cycloidal are,
is accurate as regards the quality of the characteristic curve ; later investiga-
tions have added limiting specifications on the range of the curve. And,
naturally, analogous problems have been propounded and solved, when the
motion is due to external forces other than gravity, and when retarding
forces can come into play.

Without multiplying the citation of instances unduly, it may suffice to
mention the mathematical-physical conception denoted by the word Action.
Philosophers have been fain to deduce the mechanical movements of a dyna-
mical configuration, even much of the physics of the universe, from the single
property, that the Action between any two states of the configuration in
continuous change is a minimum; and the property has been elevated in
postulation to the Principle of Least Action.

Euler and Lagrange.

4. The mathematical development of that section of Analysis, which has
to be considered here, has been fitful, sporadic, slow; and, as so often is
the case, not entirely free from controversy. Amid many names that now
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belong to the history of mathematical science, four stand out, because of the
significance of their contributions towards the attainment of the first stage
in the systematic construction of the calculus.

The earliest name is that of Euler, fruitful in that branch (as in all
branches) of Analysis in his day. He discovered * the characteristic differential
equation which, as a necessary requisite, must be satisfied. It was obtained
by considering the increment of the integral which arose through the varia-
tion of a rudimentary arc. In the first stage, Euler stayed his investigations
at this mathematical result; it secured a stationary quality, as a preliminary
common to a maximum or a minimum property of the magnitude under
discussion.

Lagranget discussed the problem by regarding variations as active through
the range of integration, not restricted to any rudimentary portion of that
range. Indeed, he made a new foundation of the subject, entirely analytical
in character as was his mathematical wont. To him is due the introduction
of the symbol §, which discharged useful duty through successive generations
of mathematicians: though, as can happen from lack of definite and precise
explanation, initially unexpressed, inferences by later investigators were
sometimes drawn, more comprehensive in statement than could be justified.
He also extended his analysis so that it could be applied to problems
involving two independent variables; and, in particular, his researches con-
stitute a foundation of the theory of minimal surfaces].

Subsequently, Euler resumed his consideration of the subject, on the basis
of Lagrange’s work. His completed account§ is based upon the geometrical
representation of the analysis, in which he regarded 8y as a change in the
position of a point on an original curve, along the ordinate, to a contiguous
point on the varied curve.

There, for a period, advance in the progress of the subject was arrested.
Detailed amplifications within the range were forthcoming, but always in the
field of work already achieved by Euler and Lagrange, whose names dominate
the first stage in the systematic calculus.

Legendre.

5. The results obtained by Euler and Lagrange were of the nature of
necessary qualifying tests. The discrimination among merely stationary
values, as between a maximum or a minimum, was left to intuitive considera-
tions, foreign to the analysis.

* Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio
problematis isoperimetrici latissimo sensu accepti (Lausanne et Geneva, 1744).

+ Miscellanea Taurinensia, t. ii (1760-1), pp. 173—195; ib., t. iv (1766-9), pp. 163—187:
&Euvres, 1, pp. 335—362, 11, pp. 37—63.

+ For reference, see the preliminary note to Chapter IX.

§ Institutiones calculi integralis, t. iii (2nd ed., 1793), pp. 381—475,
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The next achievement in progress is due to Legendre. Thus far, all the
investigations had concentrated on the stationary requirement—the Euler
test, when there is one independent variable; and the Lagrange test, when
there are two independent variables. All of them were concerned with the
terms of the first degree in the small quantities in the increment of the
integral (the so-called first’ variation), consequent upon a small increment
of the independent variable. The customary requirements for a maximum or
a minimum of an ordinary function, when the function is given explicitly,
demand the consideration of the aggregate of terms of the second degree in
those small quantities in its increment (the so-called ‘second’ variation).
Legendre was the first to discuss this aggregate. To him is due the idea of
modifying its initial expression, by adding suitable arbitrary variations within
the range, and subtracting their corporate effect in the balance at the boundary,
always subject to unaltered conditions at the boundary. This device enabled
him to express the second variation in a compact form, the sign of which
became of essential significance for the main purpose.

Legendre thus added * a, further test, discriminating as to character, which
must be satisfied by integrals in one independent variable if they are to
possess a maximum or a minimum. The new requirement, like the Euler
test and the Lagrange test, is a necessary qualifying test.

Jacobs.

6. The next name to be mentioned is that of Jacobi. Discussing the
second variation as formulated by Legendre, he proved that a quantity, of
critical importance in Legendre’s expression, could always (without any
inverse process) be derived from the knowledge presumed as attained in the
Legendre stage. Making this advance in the purely mathematical range of
the problem, he obtained extended forms for the tests already established ;
he constructed an essential modification of Legendre’s form; and from this
modified form, he deducedt a further test, limiting the range of the integral.

A full proof, and an extension (also with full proof), of Jacobi’s results
were given in a memoir by Hesse}; and further investigations connected
with the transformation of the second variation are due to Clebsch§, and to
Mayer||, though their inferences for the most part are left without a state-
ment of the geometrical significance of the form of the second variation, such
as was made by Jacobi.

The character of Jacobi’s test admits of simple illustration. The shortest
arc on the surface of a sphere, between two points on that surface, is the

* Mémoires de V' Académie Royale des Sciences (1786), pp. T—37.

t Crelle’s Journal, t. xvii (1837), pp. 68—82.

I Crelle’s Journal, t. liv (1857), pp. 227—273.

§ Crelle’s Journal, t. 1v (1858), pp. 254—273, 335—355.

Il Beitrdge zur Theorie der Mazima und Minima einfacher Integrale (Leipzig, 1866); Crelle’s
Journal, t. 1zix (1868), pp. 238—263.
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portion of the great circle passing through them and lying between them: so
far, the tests of Euler and Legendre are satisfied. But the portion of the
great circle must be less than half the circle; if it is a half-circle, the length
(minimal in this case) is not unique; if it is greater than a half-circle, the
length is certainly not a minimum between its extreme points, because
(among other reasons) it can always be reduced by small variations. The
requirement in this instance (and the cognate requirement in any corre-
sponding problem) comes into Jacobi’s work: the limit of the integral, as
ranging between conjugate’ points on the curve obtained, is bounded by a
point on the circle and the diametrically opposite point.

The general test devised by Jacobi indicates the limit (if there be a
limit) to the range along the characteristic curve within which the magnitude
of the integral under consideration is a maximum or a minimum.

With the achievement of these results, essential progress in the solution
of the problem again came to an end for a long period. Mathematical ampli-
fications, and generalisations wider in range but cognate in character, were
made from time to time; but, in real effect, there were only the three types
of test, to be associated initially with the names of Euler and Lagrange,
Legendre, and Jacobi.

General notion of variations.

7. In all the analysis hitherto applied, whatever its form, the general
notion behind the mathematical expression was the same. A hypothetical
maximum or a hypothetical minimum was postulated; if it were a maximum,
every small change (called a variation) must lead to a decrease in the hypo-
thetical maximum value; if it were a minimum, every such variation must
lead to an increase in the hypothetical minimum value. Much explicit
virtue lay in the assumption of the smallness of the variation. Not a little
implicit difficulty was involved (though not recognised) in the lack of
adequate specification of the properties constituting that smallness. Latent
limitations (also not recognised) were imposed by the use of the symbol 8,
which was initially employed to indicate the actual small variation of the
unknown magnitude and which, by argument presumably deemed too obvious
for statement, was allowed to exercise a supposed and unchallenged parsi-
monious influence solely by its literal character, wherever and whenever it
was made to appear. When once the range, within which the tacit assump-
tions are legitimate, is actually examined, the result is to shew that the
small variations are themselves gravely limited in character. Other small
variations can be postulated, initially the same as regards type of magnitude,
but with action gravely different from the restricted influence exercised by the
other magnitudes, which are derived from them by some of the operations
that were freely used. One consequence is that the old tests, when satisfied,
lead to inferences which are legitimate only within the range of the small
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variations that remain small, not only in their own influence, but through
the influence to be exercised by these derivatives. Another consequence is
that the old tests can be trusted solely as connected with such range of
variation: and that, precisely because they cease to be applicable when the
hypotheses leading to their establishment are no longer valid, these old
tests can furnish no information for small variations of the other kind
indicated. They will remain, as necessary tests, because the maximum or
the minimum property must be possessed for all small variations and there-
fore for variations of the limited character. They are inadequate for the
discussion of the magnitude, when it is subjected to small variations not of
this limited character. In fact, the three tests are necessary for the solution
of the problem; they are not sufficient to secure the completeness of the
solution.

8. Further, another limitation was imposed upon the small variations
adopted. It was imposed explicitly; no attempt was made to shew that it
is immaterial ; and any significance, that the limitation might have borne,
was so far ignored as not even to come within the range of examination.
The limitation consisted in restricting the variations so that they should
affect the dependent variable alone and should not apply to the independent
variable, either independently or concurrently with the changes made in the
dependent variable. If we turn to the graphical representation, whereby the
relation between the two variables is illustrated by a plane curve, the small
variations adopted consisted of a small displacement along the ordinate,
coupled with a small displacement of the direction of the tangent ; but small
displacements, made sideways off the ordinate, were never entertained.
Occasionally, such a displacement had to be considered for an isolated point
or for isolated points; thus the extreme point might be required to lie on a
given curve and be not merely a fixed point. In such instances, a special
detailed argument was applied to take account of the effect caused by such a
displacement of the particular point, while the possible effect of such a
displacement throughout the range was ignored.

When the corresponding investigation, necessary to take these small
variations into consideration (subject to the old limitations as to the character
of the variation of their derivatives), has been completed, it is found that no
new test emerges. The sole change is of a formal character; but such a
result requires definite establishment. The net conclusion, however, is that,
for small variations which are subject to the limitations indicated, three
necessary critical tests exist.

Weak variations : strong variations.

9. Now these small variations, even when imposed upon both the depen-
dent variable and the independent variable, are only the simplest type of all
small variations. Thus, to return to the graphical representation, we could
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have small variations of a curve such as are given by displacements corre-
sponding to very rapid small oscillations. In these, while the change of
position is small, the change of direction may be finite though not small; the
change of curvature may be very large; and so on. For all such variations,
the analysis that has been effective in the other stages no longer applies;
some new process must be devised that will cause these less simple variations
to be taken into account.

Small variations of the earlier type, viz. those in which the derivatives of
the variation are of the same order of smallness as the variation itself, are often
called weak variations. Among weak variations, those which are restricted so
that they affect the dependent variable alone, will be called special variations
(the quality of weakness being tacitly included in the name). Small variations
of the later type, viz. those in which the derivatives are not limited to be
small, though the actual displacement is definitely small,—are called strong
variations. Manifestly strong variations will be much more versatile in
character than weak variations; and progress will initially be secured by
considering selected types of strong variations.

Weterstrass.

10. An adequate method, new in form and (as regards later develop-
ments) new in substance, was initiated by the work of Weierstrass. Although
he died as long ago as 1897, no fully authoritative exposition of his researches
has yet appeared. He gave lectures on the subject in 1872 and 1879, perhaps
earlier, in Berlin. Notes of his lectures have circulated, though without
indications as to whether their range is complete or only partial. The work
of Schwarz on minimal surfaces, as on branches of the theory of analytical
functions, may be not unfairly presumed to have had its foundations in the
teaching and the work of his master, whom he succeeded at Berlin. The
results of the earlier stages of Weierstrass’s work have found a partial record
in some books* published since his death. Renewed interest was stirred in
the subject owing to his influence; and writers, in varying degrees of in-
dependence, have been stimulated to further researches. Besides Schwarz,
the names of Hilbert, Goursat, Hadamard may fitly be mentioned, as well
as those of Kobb, Bolza, Kneser, Veblen, Hedrick, and Tonellit. The work
of Clebsch also was important, though it belongs to the older range; and
Todhunter’s two volumes, dealing with the history of that range, may be
consulted with advantage.

Two contributions, different in kind yet connected, and both of funda-

* Hancock’s Calculus of Variations may be consulted in this connection.

+ A considerable amount of research has appeared in scattered articles in the Bulletin of the
American Mathematical Society. An article, by Love, in the supplement to the Encyclopzdia
Britannica, gives a concise account of the earlier stages of the older theory; and a fuller account
of the subject will be found in two articles, by Kneser, and by Zermelo and Hahn, in the
Encyclopéidie d. math. Wissenschaft, vol. ii, A. 1, pp. 571—625, 626—641.
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mental importance, are made by the work of Weierstrass. In one of these,
he ignores the preferential selection of the dependent variable as the subject
of variation; with him, the dependent variable and the independent variable
are alike subjected to arbitrary small variations, independently of one another.
The old tests, in modified amplification and with added elucidation, are
obtained, in connection with weak variations. The discussion of strong
variations, and the deduction of one new test—the so-called Excess-function—
derived from the consideration of one simple class of strong variations, are
entirely due to his initial researches in the matter. But he dealt with only
the simplest class of strong variations, the particular class being sufficient
for the purpose of the particular type of problem which he had under con-
sideration. It may be that similar researches, involving less restricted strong
variations for less particular types of problem; will only lead to generalisa-
tions, however important, of his Excess-function; it would appear as if such
researches still remained for investigation.

11. As regards the weak variations, a further remark may be made to
confirm the desirability of examining variations other than those which have
been entitled ‘special” The more immediate geometrical representation, of
the relation between a dependent variable and an independent variable by
means of a plane curve, would imply one kind of special variation, were the
analytical equivalent expressed by Cartesian coordinates; it would imply a
different kind of special variation, were that equivalent represented by the
usual polar coordinates; for homogeneous coordinates, and for bipolar co-
ordinates, other different kinds of special variation would be used. All
possible kinds of special variations are included when the most general kind
of weak variation is adopted, because each special variation is only one
particular case of the general type.

Moreover, the general variation includes, as a particular case, that
apparent variation which consists of displacement merely along the length
of a curve without any alteration of its shape. Such an apparent variation
is not a variation of the value of the integral because, when the integral is
regarded as a sum of infinitesimal elements between its upper limit and its
lower limit, the value of the integral is independent of the precise detailed
mode of selection of its constituent elements.

Lastly, the use of general variations makes it possible to consider (with-
out the supplementary discussions needed for special variations) the cases,
when the limits of the integral are liable to partial (though not quite
arbitrary) mobility instead of being definitely fixed.

Assumed limitations on functionality.
12. Throughout all the investigations, we shall suppose, and now explicitly
assume, that the subject of integration either (i) is a regular function* of its

* That is, a function which (with its derivatives) is uniform, finite and continuous.
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arguments within the range of integration: or (ii), when not a uniform
function for all possible values of its arguments within the whole field of
variation, remains a uniform branch of some function, so that it behaves as a
regular function in each part of the range of integration.

If, at any place or places, an argument or arguments should suffer dis-
continuity in value, so that the function or any derivative of the function
potentially may cease to be regular, explicit note of the fact or of the
possibility will be taken. Again, during the analysis and unless a warning
to a contrary effect is given, the solutions of ancillary differential equations
will be regarded as providing regular functions, when these are determined
by regular data. In particular instances, it may happen that the conditions,
which are imposed, cannot be satisfied by regular functions; it may even
happen that, of a postulated problem, no solution exists of a type which is
regular: the impossibility will be noted. But we shall proceed on an initial
assumption that a regular solution may exist and shall make its discovery
our quest. The hypothetical solution of that type (perhaps with the assist-
ance of existence-theorems, established with similar initial assumptions) will
be subjected to all the conditions, and will be made to conform to all the
data, that are imposed and provided. When the conditions are satisfied and
the data are incorporated, the result will be regarded as the solution. In the
contrary event, note will be taken of the fact, which thence will have
emerged, that the imposed conditions and the assigned data forbid a solution
of the foregoing type. It may be that conditions could be modified and
that data could be changed; such alterations could be considered in their
turn, as raising a new specific problem.

Moreover, unless some contrary demand occurs requiring satisfaction, we
shall expect that the fanctions concerned are of an ordinary simple character,
using these words as in common parlance. Unless expressly forbidden, we
shall suppose that our functions have derivatives which are unique, save
at isolated singularities or in the immediate vicinity of singularities;
e.g., we shall not be concerned with uniform continuous functions, which
nowhere have a unique differential coefficient. Equally we shall suppose
that all the functions, with which we have to deal, are capable of uncon-
ditional integration, e.g., that they are not beset with singularities. The
present purpose is the development of a calculus, without delaying over the
foundations of Analysis, which will be regarded as having been duly laid and
recognised in any bearing that has significance. It may happen that, when
strong variations are considered in a full detail which would be essential in
a complete discussion of their influence, corresponding refinements will prove
necessary. For the present, its more ordinary and less critical commeonplace
range will be held sufficient; and, of course, the functions admitted will be
subject to the corresponding limitations as regards regularity, continuity, and
variation.



CHAPTER I

INTEGRALS OF THE FIRST ORDER: MAXIMA AND MINIMA FOR SPECIAL
WEAK VARIATIONS : EULER TEST, LEGENDRE TEST, JACOBI TEST.

The chapter is devoted to the discussion of the conditions for the possession of
maxima and minima by integrals which involve a single dependent variable and its first
derivative. The conditions emerge from the application of weak variations, which are
imposed solely upon the dependent variable and do not affect the independent variable.
The problem thus is the simplest of all the problems in the calculus; and the analysis,
though modified and amplified from the original form, is substantially in accord with the
analysis that occurs in the researches of Euler, Lagrange, Legendre, and Jacobi.

The Weierstrass method, in which variations of both the dependent variable and the
independent variable are considered, is reserved for the succeeding chapter.

Types of problems arising from integrals mazima and minima.

13. The calculus of variations deals with those problems which, enun-
ciated in mathematical phraseology, require the determination of the form of
an unknown quantity or unknown quantities as a function or functions of a
variable (being a dependent variable or dependent variables), so that some
integral may assume a maximum or a minimum value. The dependent
variable or variables will be supposed to occur in the expression of the inte-
gral: a derivative or derivatives of the unknown variable may occur in the
integral ; and it is supposed that the Integral cannot be evaluated for un-
specified forms of that variable, so as to become free from quadratures.
Sometimes the demand is that the maximum or the minimum is unconditional.
Sometimes there is a demand that the required maximum or minimum is to
be possessed subject to assigned conditions, which may have a variety of
forms : thus one form of condition requires that another integral of similar
form may possess a fixed value.

Even when there is only a single dependent variable, various cases may
occur. Thus there may be only one independent variable; advantage then
accrues, if only by way of illustration, from the association of the problem
with the geometry of a plane curve. There may be two independent variables;
the corresponding advantage comes from an association with the geometry of
a surface.

There may be two dependent variables and one independent variable : the
corresponding advantage comes from an association with the geometry of a
twisted curve. Or there may be any -number of dependent variables and a
single independent variable ; and then a natural association, for purposes or
needs of illustration, is provided by some dynamical system.



12 MAXIMUM AND MINIMUM [cH. 1

The central demand is for the possession of a maximum or of a minimum.
The maximum is to be a true and a full maximum in the mathematical sense
of the term, as distinct from the phrase ‘largest value’ in common parlance :
that is to say, the change in the value of the integral, which is caused by
every small variation, however general or however particular, or by any
number of small variations of every type, whether taken together or acting
individually, must be an increase, uniformly definite in character as an
increase, though its magnitude will be small because the variation or varia-
tions effected from continuous finite quantities, are small. Similarly, a minimum
is to be a true and a full mathematical minimum ; that is to say, every small
variation (of the preceding range in all its extent) must lead to a decrease in
the value of the integral, uniformly definite in character as a decrease.
Should the integral provide a decrease for only some variations but not for
all, its value cannot be declared a maximum; and, similarly, if it should
happen to provide an increase for some variations but not for all, its value
cannot be declared a minimum. Partial maxima and partial minima are not
recognised as maxima or as minima. Thus a mountain peak is a place of
maximumn elevation ; the bottom of a tarn is a place of minimum elevation;
the top of a mountain pass is not a place of either true maximum or true
minimum in elevation.

In discussing questions of maxima and minima, it is an advantage when
the independent variable increases continuously throughout the range; if it
decreased continuously, a mere change to the opposite direction of the range
would allow the desirable continuous increase. Sometimes care has to be
exercised, at least initially, in the selection of an appropriate independent
variable ; thus, if there were a question of determining a curve of shortest
length so as to satisfy some permanent condition, it is preferable not to
choose the length of the arc for the purpose.

Integral of the first order : its variation.

14. In order to give an indication of the method of analysis, we shall
begin with the simplest general problem, and shall proceed to obtain neces-
sary tests for the possession of a maximum or a minimum by an integral

[r@y.y)da,

where y’ denotes dy/dz. The integral* is supposed taken between fixed con-
stant limits; and no external conditions are imposed. The unknown element,
to be obtained for the purpose, is the form of y as a function of the variable ;
and, in the first instance, we shall use only special variations—that is, we
shall assume that y alone is subjected to weak variations. In the earlier

* Sueh an integral, involving only the first derivative, will be called an integral of the
Jfirst order.
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historical development of the subject, such a variation was represented by
the mathematical expression
8,

where the symbol & (perhaps in imitation of the d in the infinitesimal
element dy: it was introduced by Lagrange) is assumed to impose the
restriction to smallness, and where the properties of the quantity 8y are not
always explicitly stated, sometimes not even hinted. A varied value of y can
be taken in a more definite form

Y+ «v,
where « is an arbitrary constant and is so small in magnitude that any posi-
tive integral power is unimportant relative to every lower positive integral
power. Also, v is any regular uniform function of z within the range of the
integral, and all its derivatives also are regular uniform fanctions of x
within that range. Moreover, v otherwise is an arbitrary function; and we
further postulate that v is independent of x. Denoting the original value and
the varied value of the integral by I and J respectively, we have

T-I=[(f@y+m, y+e)-f(oy,y)dn,

the integration extending between the fixed constant limits. We further
assume the function f to be of such a form that f(z, y+«v, ¥’ + «v') can be
expanded in a uniformly converging series, which proceeds in powers of «.
Thus we have, after this expansion,

J—I=xl+4}x2l,+ Ry;
(oY Ly &
I,-f(va—y+v ay,)da:,

2
I,= f(v’ 22—3}{+ 2v0’ 2f + v %{) dz,

where

oyoy’ o

with the same range of integration as for 7; and where R, denotes the aggre-
gate of terms that involve third and higher powers of . Manifestly the
quantity «Z, (called the “first’ variation), if it does not vanish, will dominate *
the value of the right-hand side; and R, is unimportant in comparison with
«21,, if I, does not vanish.

Modsfication of the First Variation.
15. The expression for I, is to be modified. We have

L g f 4 31) ds
f "oy do = ['u ay'] s (ay’ @
where the quantity in square brackets is to be taken at the limits. But when
the limits are fixed, no variation of y is admissible for those values of z;

* See foot-note on p. 17.
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consequently, v vanishes at the upper limit and at the lower limit. Hence

of d(of
Lo -2 ) o=
Now the quantity «I;, when it does not vanish, dominates the value of J — I.
In that event, a change of sign for « changes the sign of «I,, that is, changes
the sign of the value of J—1I: in other words, one variation would lead to an
increase, and another variation to a decrease. As a maximum must be
characterised by a decrease for all variations, and a minimum by an increase
for all variations, the preceding possibility must be excluded: consequently
the quantity «I;, and therefore the integral I;, must vanish.

o ) Then the integral I,, which is

Let Y denote the quantit —Z - fl—(

equal to f vY dz, must vanish for all arbitrary values and forms assigned to

the regular function ». This result cannot be attained unless Y vanishes
throughout the range. If Y were positive in any portion of the range, the
integral would be positive, for an assigned positive value of » through the
portion and a zero value elsewhere ; and the integral would be negative, for
an assigned negative value of v through the portion and a zero value else-
where. Similar definite values, positive or negative at will, could be secured
for the integral, if ¥ were negative in any portion of the range. Hence we

must have
_of d of
V=2 5 (ay) ="

16. This relation ¥ = 0 is either an identity, or an equation not identi-
cally satisfied.

If Y =0 is an identity, then the term gj;y which would arise from the

second term in Y cannot exist, for there is no other term mvo]vmg y” to

of;
oy*

cancel it in the supposed identity.

form
S=yU+V,

where U and V are functions of # and y only. Then

Y= oU 4+ 97 oV dU
y oy 9y da
,oU a4 oV Ef U
=Y 9 oy o= v oy’
an expression which can vanish identically only if

ov oU

oy om
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that is, if some quantity M (z, y) exists such that
oM oM
V= 5 U= TR
In that case, we have

I=[f(.’l7, Y yl)dw

oM oM

~J(v% + ) e

=M (2, 3);
and so the integral can be evaluated explicitly, contrary to the initial re-
quirement (§ 13) that the initial integral is not capable of explicit evalua-
tion *,

This possibility is excluded, as being irrelevant to our purpose; and we

therefore assume that ¥'=0 is an equation not identically satisfied.

Further, if f has the same linear form f=yU + V, and if the equation

ov a8l _

oy oz
(which now is the form of ¥ =0) is not identically satisfied, ¥ =0 becomes
an equation involving & and y alone: it provides y as a function of & which,
when substituted, renders the integral I merely dependent upon known
constants. Such a result is insignificant for our purpose; no element is
left which can be used for the construction of tests concerning maximum or
minimum. This second possibility is therefore excluded : that is, we reject
from further consideration the case when 7 is a mere linear function of Y

Characteristic equation, and curve; the Euler test.

2
17. In all other cases, 37'{: is not zero: the equation ¥'=0 is a differential

equation, manifestly of the second order. In passing, the form of the equation
is to be noted; the second derivative y” occurs only through the term

2
%’; y”, to which the other terms are additive; and a later test, which will be

2
imposed upon gy—{ if a maximum or a minimum is to exist, gives to this
differential equation ¥ =0 a character that is of organic importance for its
primitive.
This equation ¥'=0 is often called the characteristic equation. It deter-
mines y as a function of #; and the curve, which is the geometrical repre-

* When I can be thus evaluated, the problem does not fall within the range of the calculus of
variations ; the value of I then depends solely upon the values of = and of y at the two limits of
the range.
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sentation of the functional relation, is called the characteristic curve. The
equation was first obtained by Euler, in 1744, and indeed was obtained for
the more general integral which involves derivatives of y up to order m.
Sometimes it is called Euler’s equation, hardly a distinctive name; it is the
first of the essential tests to be satisfied if the integral is to have a maximum
or a minimum.

Note. The integral of the equation, or properties of the integral when
the actual integration of the equation is not feasible, will arise later (§§ 22-25)
for detailed consideration. But two simple cases may be noted where one
stage in the integration can be attained at once.

id

(i) Let the function f(z, y, ") not involve y explicitly, so that 3y 0;

then the characteristic equation is
of
& (ay) =0,

of _
=4,
oy’
where 4 is an arbitrary constant.

(ii) Let the function f(z, y, ') not involve « explicitly. Then

so that we have

t_i[_af + I

do=oy? Tay ¥
v l o
=Y iz (6y’> +8y’y ’

on using the equation ¥ = 0: integrating, we have
JS= y Bf ;+ B,

where B is an arbitrary constant.

In each of these simple cases, the equation remaining to be integrated is
only of the first order.

Ex. 1. Required the curve constituting the shortest distance between two points, or «
point and & curve, or two curves, tn the same plane.

We shall deal only with the characteristic equation; terminal conditions, and other
possible conditions or tests, either intrinsic to all the problems or accidental to any
particular problem, belong to a different (and later) range of investigation. In the present
case,

I= f A+y2? dz,

so that f(x,y, %), which is (1 +_1/2)’}, is independent of # and of y; and the example
belongs to each of the simple cases adduced. The first gives

yA+y? =4,
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and the second, on reduction, gives

(1+y%~b=B.
From either, we have
¥=m,
and therefore
y=mz+c,

where m and ¢ are constants to be determined by other considerations.
Here 424 B?=1. Generally, if the function f is free from explicit occurrence of # and
of y, the arbitrary constants 4 and B in (i) and (ii) are not independent.

Ex. 2. A unit mass moves in a plane field of force so that its velocity depends only
upon its distance from a fixed point, and / vds along the path, between any two points, is

& maximum or & minimum. Prove that the force is directed to that fixed point ; and
determine the orbit.
Quadratic terms in the small variation : the ‘second’ variation.

18. We shall assume that the characteristic curve is adopted, so that the
Euler test is satisfied. The term «J, in the expression for J— I now dis-
appears ; and «?I, (called the second variation) becomes the governing* term.,
As x is constant, the sign of this term depends upon the sign of I,. If the
sign is positive for all variations of the type considered, then J — I is positive
for all such variations; and I is (so far) a minimum. If the sign is negative,
then J — I is negative for all the variations; and I is (so far) a maximum.
It therefore becomes necessary to make a detailed examination of [,, which
denotes the quantity

% L opy O L n®f
2 ~J —_ 2 " J
f(v 8y’+2w ayay'” 8y") dz.
. of f f .

For brevity, we shall denote 5y Gydy 5y by fos fous fus respectively.

Because Ed—w (¥"N) ="\’ + 20\ for any quantity A, we have

L+ [o\] = /{vz (fo +X) + 200 (for + ) + 7,0} do,

where [v"A] denotes the term v\ taken at the limits, and it is implicitly
assumed that "\ is continuous through the range of the integral. As the
limits are fixed, » vanishes at both of them; hence, if A is assumed to remain
finite at each limit, the quantity [v*A] vanishes. Bearing this last assumption
in mind, as one of which account must be taken, we have

I,= f{w( FooFN) 4200 (for +0) + o) d

Thus far, no quantitative condition has been imposed upon \; now let it be

chosen so that
Ju(foo + M) =(fou +2)

* In a series ag+kay+x3ag+..., of finite sum S, the sign of S is governed by that of ay for
sufficiently small values of x. Let Sy, necessarily finite, denote the largest numerical value of
the sum a,+pag+p2ag+ ..., for ~A< #<X where \ is a small positive quantity ; and choose x
less than X and small enough to secure that kS1=6a,, where —1<f<1. Then S,=ag(1+8), is
of the same sign as a,.
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In this equation of condition, let the value of y derived from the character-
istic equation be substituted, so that fi, fu, fu become functions of z alone.
To determine 1, let a quantity z be chosen so that

d
f;n+7"' fudi’

then z satisfies the equation
&z ., d ,
fam+ il o= (u=Fu)5=0,

a linear equation of the second order, of which the coefficients are known
functions of #. And then, with such a vaiue of A, it follows that

I,= jfu ('v’ +f—“"—-t—7—~v)2 da

"ffn '_’ii{)

In order to take account of the most general admissible variation v for y,
it is desirable to have the most general value of 2 possible: that is, we must
have the primitive of the linear equation in z. But sub_]ect to restrictions
actually 1mposed M is at our disposal, because the main purpose of its
introduction is merely a modification of the expression of I,; therefore the
general elements in z, which survive after the restrictions are obeyed, can be
used for other aims that may be in view.

If the value of y, satisfying the characteristic equation, is only a particular
solution of that equation, then the foregoing equation for z must be com-
pletely integrated. If the primitive of the characteristic equation has been
obtained, the primitive of the equation in 2 can be deduced by direct pro-
cesses alone, as follows.

The subsidiary characteristic equation.

19. To obtain the primitive of the equation in 2, we return to the forms
of I, and I,. Two expressions for 7, have been obtained, viz. the original

form
e[ 2 v Z)an

f {%_ o% (ay )} da, = vKdw,

deduced from the first in association with the terminal conditions; and the
two expressions are equal to one another, because terms at the fixed limits
vanish. To both forms of I, let the same variation be applied as was applied
to the original form of the integral I; let J, be the deduced value of I;, and

and a form



19] SUBSIDIARY CHARACTERISTIC EQUATION 19

let Y, be the deduced form of ¥, From the earlier form of I,, we have

~I= o & a0
Jl I,—xf(v’w+2vv W-{-’Uea?,’)dw-l-lfz,
where K, represents the aggregate of terms in x? and higher powers of «;

that is, neglecting K, in comparison with quantities involving only the first
power of «, we have

J] - Il = ’CIB'
From the later form of 7,, we have

Ji—I,= [0(¥, - Y) da,

there being no variation of v, because it is assumed to be a function of
which is not subjected to small variations. Now, as

_y_4a (al
oy dz \9y'/’
we have

Y= V= e (fap +fa) & e (o +fat)

=k (fo=fu)v—r d% (fu?).

Our immediate concern is with the sign of I,, when the equation ¥ =0 is
satisfied so as to make I, vanish; so, as before, we imagine the value of y,
determined by that equation, to be now substituted in the coefficients. As y
is a solution of ¥ =0, let y + x7 be a solution of ¥; = 0: that is, Y+xnis a
solution of what still is the characteristic equation. Hence when the value 7
is assigned to v, we have ¥, =0 as well as ¥ = 0, and so

(omto)n =& (fum)=0,

manifestly a linear equation of the second order in 7, the coefficients in
which are functions of .

The quantity y + x5 has been introduced as a solution of the characteristic
equation when small variations are imposed, so that 5 can be derived from
the general value of y when this latter is known. But, if the value of y
satisfying ¥ =0 be only special and particular, the quantity » must be derived
as the primitive of the new equation which, owing to its source, may be called
the subsidiary characteristic equation.

We now have
wly=J, - I,

=Jv(Yl—Y)dx;
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and therefore

I,= f” {(ﬁw—fm’) v di.l-z (fn'”’)} dz
= [2 ok (fur) =0 g, (o)} do
= f % ‘% {fu(on' —v'n)} da

= [% (vn' —v'n) fn:l + f fu (v’ —v %)2 dz.

I+ [v(v’—v%)fn] =ffn('l/—v%,)gdw,

where the terms in square brackets are to be taken at the fixed limits of the
integral, and where (as before) an implicit assumption has been made as to
the finiteness of the subject of integration through the range. With this
assumption, and remembering that » vanishes at each of the fixed limits, we
make these limit-terms zero, and finally obtain

L={fu(v —-v:’—;)z da.

The equation for % is the same as the equation for z: we therefore can
take 5 as the value of 2, and the two expressions for I, are now the same.
Whether % be deduced from the value of y, when the primitive of the
characteristic equation is known, or be obtained by the independent inte-
gration of the subsidiary characteristic equation, the magnitude 5 can be
taken as any form of the primitive of the latter equation that may have been
found. The function v must be allowed all arbitrary values, subject to the
requirements of regularity and of vanishing at the limits of the integral.

Ex. Prove that the intermediate forms of J, are equivalent to one another, in virtue
of the variation of the quantity the evanescence of which makes the two forms of 7
equivalent.

Thus

The Legendre test.

20. The sign of the quantity I, is to be a steady positive, or a steady
negative, for all possible variations of y represented by «v, where v is limited
to be a regular function of #, which must vanish at the extremities of the
range of the integral but otherwise can be arbitrarily chosen. As regards

N\ 2
the sign of I,, we note that ('v’—v 1—:]-) is always positive unless it is zero;

and, later, we shall assign the condition that it shall not be zero unless v
itself is zero, in which event there is no variation. Then as a first condition
for the permanence of sign of I,, it is necessary that fi, shall keep the same
sign throughout the range.
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The requirement is established as follows. Suppose, for a part of the range,
say from a lower limit @ of the integral up to a value z, which is less than
the upper limit ¢ of the integral, that £, has one sign, say the positive sign,
and for the rest of the range that £, has the other (the negative) sign; and

- consider the effect of the two following variations. In the first portion of the
range, let v = (z —a)* (2, — )V, where Vis a regular function of , so that
v and v’ obviously vanish at = and z=a,; and everywhere in the second
portion of the range beginning at #=u,, let » be zero. For this composite
small variation, the sign of I, is positive. Next, everywhere in the first
portion of the same range, let v be zero; and in the second portion of the range,
let v =(z—a,)? (c ~ ¥ U, where U is a regular function of #, so that v and »'
obviously vanish at #=, and z=¢. For this composite small variation, the
sign of I, is negative. Hence, on the hypothesis assumed as to the change
in the sign of f;, within the range, the sign of I, can be made positive by the
choice of one kind of variation, and can be made negative by the choice of
another kind of variation. The same alternative sign can be obtained for I,
by appropriate selected variations, whenever changes of sign* of £, occur
otherwise in the range of integration. We therefore infer that, for the pos-
session of a maximum or a minimum by the integral 7, the quantity f, cannot
change its sign in the course of the range of integration. If the sign is regularly
positive, the value obtained for the integral is (so far) a minimum; if the
sign is regularly negative, the value obtained for the integral is (so far) a
maximum. But the new condition has only been proved to be necessary ; it
has not proved to be sufficient, and it is not in fact sufficient, to secure a
maximum or a minimum,

This second test was first obtained (in 1786) by Legendre+; and it is not
infrequently called after him, as the first test is called after Euler. The
Legendre criterion manifestly is distinet in character from the Euler criterion.
When the Legendre criterion is satisfied, the property of Ju thus possessed
is important, as regards both the nature of the integral of the Euler charac-
teristic equation, and the nature of the primitive of the subsidiary character-
istic equation.

’

21. The quantity ' — 1)13]— remains for consideration, in relation to I,. As

it occurs squared, there is no question of sign; the collapse of the signi-
ficance of I will ensue if, through the appropriate selection of v, this quantity
can be chosen so as to vanish over a continuous portion of the range—a zero
value at merely isolated places is not of material importance. Such an
eventuality would occur if we could choose v as a constant multiple of 7, the
only relation (except the irrelevant persistent zero for ») which can secure

* The character, postulated for the function f, implicitly requires that, in any finite range,
the number of changes of sign, for any derivative such as J11, shall be finite.
t lec., §5.
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a continuous zero for the magnitude in question. Now v is subject to the
conditions that it shall vanish at each extremity of the range of the integral.
If, therefore, the suggested relation is a possibility, the quantity » would
be such that it could be chosen so as to vanish at each of these extremities.
(The relation would be a fortior: possible if 5 could be chosen so as to
vanish at two places within the range: for we then could take » a constant
multiple of  within that portion of the range, and a steady zero outside that
portion.) As 7 is the primitive of a linear equation of the second order, its
general form is
7 =171+ CaTey

no matter how the primitive is derived; the arbitrary constants c, and ¢,
are at our disposal, so that they can be used for any desired purpose.
Manifestly a relation can be established which would make # vanish at one
extremity—say, at the lower extremity of the range. If the functional
character of 7 is then such that it does not again vanish within the range,
or (what is organically the same restriction) if the range of the integral does
not extend as far as the first place, where 7 vanishes next after vanishing at
the lower limit: the contemplated relation is excluded from the possibility

of occurrence. The quantity v/ — v% could not be made to vanish for admis-

sible variations, as these are bound to vanish at the limits; and, when the
Legendre test is satisfied, I, would have a permanent sign for all such
variations.

The primitive of the subsidiary characteristic equation.

22, The function » thus becomes of critical importance; we therefore
proceed to its discussion, and we shall deal with its construction by the most
general process, viz. by derivation from a supposed knowledge of the primitive
of the characteristic equation.

This characteristic equation is
_¥_d
Y=3y " (By )
of of o of 4

=%y owoy syay? “aY T
being of the second order and (usually) not linear. The only term, which

2
involves ¥, is %"Zy”; and, when the Legendre test is completely satisfied,

2
the coefficient g J does not vanish for any value of  in the range of z that
is considered. Then the general existence-theorem* for ordinary differential
equations gives us the result :—if values z=a, y=C,, y'=0C,, be chosen

* See my Theory of Differential Equations, vol. iii, § 209,
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arbitrarily, subject to the conditions that a lies within the range of in-
tegration and that these values constitute a set of ordinary (that is, non-
singular) values for the derivatives of # which occur; a uniform integral of
the equation exists, uniquely determined by the requirement that y and y’
acquire the respective values C, and C, when #=a. This integral is of the
form

y=0+C(z~a)+(x—a)PR(z—a, O, C),

where R is a regular function; we may denote it more briefly by
Y= ¢($, 01) 02))

where ¢ is a regular function, and where C, and C, may be regarded as
arbitrary constants, the presence of which constitutes a primitive. The first
form is not the unique expression of a primitive for all initial requirements.
But the quoted theorem establishes the existence of a primitive, containing
a couple of arbitrary constants; the later form, taking no special account of
the initial value of , will be adopted as the analytical basis for further
developments.

Every primitive y=¢ (2, C,, C,) satisfies the characteristic equation
Y =0, for all positive arbitrary values assigned to the constants ¢, and C,.
It therefore will provide a primitive, when variations are applied to C, and C,,
such as a choice of C,+ k¢, and C, + «c, in place of C, and C, respectively,
where ¢, and ¢, themselves are arbitrary, and where « is the current small
constant. When the new value of y is denoted by y+ 7 on the customary
assumption as to the smallness of « in magnitude, then
nN=0e aa_gy)l +C g—gy: H
or, if
9 o
nh= 3—01’ N2 = 3_03 »
we have
7= C17 + Ca7,.

Now the new value of y satisfies the equation ¥;=0; hence 7 satisfies the
equation ¥, — ¥ =0, that is, it satisfies the subsidiary characteristic equation

(o= to!) 1= (fum) =0.

As 7 involves the two arbitrary independent constants, the value of 7 provides
the primitive of the equation, which may be written in the form

Y=fun"+fi'n ~(fu—Sa)n=0.
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Properties of the primitive of the subsidiary equation Y = 0.

23. One or two useful properties of this integral may conveniently be
established at this stage. The quantities %, and #, are clearly not in a
constant ratio, because (when they are taken in the initial form)

oR
m=1+(w—a)’5—01,

oR
n2=x—a+(x—a)”m,

and R is a regular function of #—a: that is, 4, and 7, are linearly inde-
pendent. Now

fn ’71” +fn/"h' - (f 00 —.ﬁ)ll) m=0,
ﬁl"h” +f;1"'72l = (fo ".ﬁn') 7,=0;

and therefore
Su(mms” = nam) + i’ (mm’ — mam) =0.
Thus

ﬁl (’71 "Izl - ’72"71/) =4,

where A is a constant. As %, and 7, are linearly independent, the quantity
mns — nemy’ does not vanish. The Legendre test is supposed to be satisfied
throughout the range, and therefore f;, does not vanish; consequently A does
not vanish. But f;, contains no arbitrary element in its first form, merely as
derived from the subject of integration in the original integral; it usually
will contain C,, or C,, or both C, and C,, after substitution is made for y.
Also 7, and %, contain no arbitrary element other than C, and C,. Hence 4
may involve both C; and C,, because it is equal to the value of the left-hand
side in the last equation ; but 4, different from zero, is not a new independent
arbitrary constant.

From the last equation, it follows that

d "h) — _4
- dz ("71 N 7, fu-
On the right-hand side, the signs of A and of 7,? do not change; and, by the
Legendre test, the sign of f;, does not change throughout the range; hence
the sign of the right-hand side remains unchanged through the range. If the

sign is always positive, t;hen::—2 increases throughout the range. If the sign
1

is always negative, then :—Zfdecreases throughout the range. This result, as
1

to the persistence of sign, is (or may be regarded as) a consequence of the
uniformity in the sign of f;, through the range; therefore it is a consequence
of the Legendre test.
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24. There is a temptation to infer, as an immediate and obvious corollary,
that the quantity :’T’, which is always increasing or always decreasing through-
1

out the range, can never acquire again, in the course of the range, the value
which it possesses at the lower limit. The inference would be justified if the
quotient were always a continuous function; it is not necessarily correct, if
the range should include a zero of #,, which would cause a discontinuity
through an infinite value, always provided such a zero is not simultaneously

a zero of n,. For example, let 7, =cosx and 5,=sin z, so that 4 (ﬁ) is

dz \n,
always positive and never zero; we know that the function tan z increases as
x increases. But tanz can resume an initial value, say the value zero for
=0, if the range is extended as far as x=ar; the explanation is that, in
spite of the steady increase in its value as « increases, it suffers a sudden set-
back through its discontinuity as « passes through the value z=4m It is
not therefore justifiable to assume, as a consequence of the persistence of

sign of :77’, that this quantity cannot resume the value which it had at the
1
beginning of the range.

Note. From the relation

Ju (mnd —namy) = A4,
where the constant A is not zero, it follows that there can be no value of z
within the range, for which 5, and 7, vanish simultaneously. (This result has
been anticipated in the preceding argument.)

It equally follows that there can be no value of z within the range, for
which 5," and 7,’ vanish simultaneously.

It is unnecessary to consider a possibility of a value of & for which 5, and
7, (or, alternatively, 5, and #,") vanish simultaneously ; it would follow, from
the linear differential equation Y =0 of which %, and #, are integrals, that
(or 7,) would be zero over & continuous range.

26. The preceding construction of 7 is based upon a supposed knowledge
of the primitive y of the characteristic equation. It shews that, if such
primitive is known, then formal integration of the subsidiary characteristic
equation is superfluous : the primitive of that equation can be obtained other-
wise, by purely direct operations.

But if the primitive y is not known—if, for example as an unfavourable
case, only a very special value of y can be obtained satisfying the character-
istic equation—then, to complete the set of present operations, the formal
integration of the subsidiary equation must be achieved. By some process,
its primitive must be obtained.
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Note. It might happen in this event, that the couple of fundamental
integrals composing the primitive are different from #, and 7. If so, let
them be denoted by & and &. Then, by the properties of an ordinary

linear equation of the second order, we know that there are relations
=t b+ a6, m=bE + bk,
where a,, a,, b,, b, are constants such that a,b, — a,b, does not vanish; and

then
My — e’ = (b — azby) (E,& — E.E).

The corresponding equation

fu (Elfz/ - fzfl') = B,
where B is a constant, agrees with the earlier equation

fn (711"72’ - "12"711) =4,
provided the relation 4 =(a,b,— a,b,) B is established between the constants
4 and B. All the argument and the conclusion are the same as before.

The Jacobr test : conjugate points on a characteristic.

26. It has been seen that, if a maximum or a minimum is to exist for the
integral, we must be precluded from the choice of a non-vanishing function »
which (i), could be a constant multiple of the magnitude # throughout the
range and (ii), could also be consistent with the condition that v is to vanish
at both the lower and the upper limit of the integral. If the choice were
possible, then n would have to vanish at the lower limit. Because

N =C1"M + Ca7e,

this requirement can always be satisfied by choosing one relation between the
two constants which are at our disposal, so that — ¢,/c, is equal to the value

(say m) of at that lower limit. Now, owing to the other conditions that have

been 1mposed 2 i always increasing through the range of the integral or is

always decreasmg through the range.

If, then, whatever be the range, the quantlty never returns to the

value which it acquires at the lower limit, then 9 cannot again vanish. A
non-vanishing function » cannot be chosen (i), to be a constant multiple of 7
through the range and (ii), to satisfy the terminal conditions. No new test
emerges as an additional requirement to be satisfied in connection with the
integral.

If, however, the quantlty can return to the value which it acquires at

the lower limit, and if the ra,nge is sufficiently extended so that it includes
the value of # where this return is made (and made for the first time, should
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the initial value recur more than once), then y acquires the value zero at this
place. We then can take v= u7, where p is any constant (its magnitude is
significant only as regards the scale of the small variation x7 to which yis
subjected); and, for that variation, I, would vanish. In other words, some
variation is possible under which a claim for a maximum or a minjimum could
not be regarded as established. Such a possibility must therefore be pre-
vented ; hence the range must not include the first place at which the mono-
tonic function again assumes the value assumed at the lower limit. It therefore
follows that the range of the integral must not extend so far as that first
Place, if such a place exist; while, if no such place exist, there is no corre-
sponding restriction on the range of the integral when there is to be a
maximum or a minimum,

The place, where the initial value of :l—’f' is next assumed, is customarily

1
called the conjugate of the initial place. We thus have a new test—the third:
viz., the range of the integral must not extend as far along the characteristic
curve as the conjugate (if any) of the lower limit,

This test, imposing a limit upon the range of the integral, is due to
Jacobi*, and is frequently called the Jacobi test. The earlier discussion as to

the variation of :77’ shews that, as a test, it is independent of, and additional

1
to, the Legendre test.

27. The Jacobi test can be expressed in a simple geometrical form. Let
a characteristic curve 4 P... be drawn, passing through an initial point 4 ;
the position of the point 4, and the tangent at A to the characteristic curve,
are the geometrical representation
of the arbitrarily assigned initial
values determining the solution y
of the characteristic equation. The
special small variation consists of
a small displacement of a point P of
the curve along the ordinate, as to a
point §; when this small variation is effected along the curve, then (for weak
variations) the inclination of the tangent  to the displaced curve differs from
the inclination of the tangent at P by a correspondingly small amount.

The new ordinate y + «n is the ordinate of a new characteristic curve
AQ..., passing through the initial point 4, and having its tangential inclina-
tion at 4 differing by the appropriate small quantity from the tangential

* It was first stated by him in 1837 (l.c., §6) ; for the establishment, reference may be made
to a memoir by Hesse, Crelle, t. liv (1857), pp. 227—273.
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inclination at A on the original characteristic. If this consecutive character-
istic cuts the original characteristic in some point after 4, we consider the
first of such points of intersection; its limiting position, say B, as the initial
deviation between the two curves at A is incessantly diminished, is the con-
Jjugate of 4.

The Jacobi test requires that the range of the integral, taken along the
characteristic curve, and beginning at 4, shall not extend so far as the point
B, thus defined as the conjugate of the initial point 4.

Ex. 1. We know that a straight line is the shortest distance between two points in a
plane. Thus the characteristic curve (Ex. 1, § 17) is a straight line. Another characteristic
curve (also a straight line) through the initial point, slightly inclined to the first, does not
again meet the initial straight line. The initial point has no conjugate on the characteristic
curve; there is no finite limit to the range of the integral.

Ezx. 2. We know that the smaller arc of the great circle through two points on a
sphere is the shortest distance on the surface of the sphere between the two points.
Later (§ 75), as an illustration of the analysis, the great circle will be obtained as the
characteristic curve for the spherical geodesic.

A consecutive characteristic, through a point 4 on the great circle, is a consecutive
great circle; the two circles intersect at the point B, which is diametrically opposite to 4.
The particular great circle between 4 and B cannot be declared a unique minimum
between A and B: in order to have an actual minimum, the great-circle range, which
begins at A, must not extend beyond B.

Ez. 3. Shew that, if B is the forward conjugate of 4 on the characteristic curve, 4
is the backward conjugate of B on that curve.

Summary of the tests.

28. It may be convenient to summarise the results thus far obtained in
connection with special variations, as follows:

1. The Euler test: the characteristic equation

Y_af d <af>=0

T 0y dx\oy
must be satisfied; and (for subsequent purposes, but not as a part of the
Euler test) the primitive of the subsidiary characteristic equation
Y= (foo "_ﬁn,) n _ﬁllnl —ﬁlﬂ” =0

must be obtained, in a form 5= ¢,%, + c.n, where ¢, and ¢, are arbitrary con-
stants.

II. The Legendre test: the quantity

o

@72
(when, in it, the value of y derived from the characteristic curve has been
substituted) must keep its sign unchanged through the whole range of the

integral.
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III. The Jacobi test: the range of the integral must not extend so far, as
to allow the monotonic magnitude »,/n; to resume the value it assumes at the
lower limit; or, in geometric phrase, the range of the characteristic curve
must not extend so far as the conjugate of its initial point.

Conjugate as actual limit of a range.

29. It may however happen that an assigned range extends so far as to
include the conjugate of the initial point. In that event, a small variation,
given by v=pun where u is a constant, will make the quantity I, vanish: that
is, will make the term in J -1, depending on «?% to vanish; while, for all
other variations, 7, does not vanish. Except for this particular variation, the
terms in J — I involving powers of « higher than the second are negligible.
But for this particular variation, those terms require consideration; and, among
them, the most importa.nt initia.lly is the term },x‘I 3, where
In order that J — I may keep an unvarying sign for all variations—so that a
maximum or a minimum may be secured—it is necessary that 7, should
vanish for the variation v = un which makes I, vanish ; otherwise a change of
sign for the arbitrary constant x would alter the sign of «*I;. The requisite
condition is that

f (n’ g;f 37y ay,{/+3'm a;aj;,ﬁn s de
taken between the limits of the original integral, or taken between the range
bounded by the conjugate points, shall vanish,

If this condition is not satisfied, then the integral does not provide a
maximum or a minimum.
If this condition is satisfied, then the sign of I,, where
a.f 2,./2 a‘f a‘f ‘4~ J a‘f
must be umformly positive for a minimum and uniformly negative for a
maximum.
A fuller discussion is given at a later stage (§§ 76—80).

Note. The same kind of consequence would follow, if an assigned range of
integration extended beyond a conjugate. In that case, it is possible that I,
might be made to vanish; then the term, involving «* in the expression for
J — I, would have to vanish under the conditions making I, and I, vanish,
and the term involving «* would have to keep one sign under those conditions.
But it will be proved (§§ 76—80) that no maximum or minimum can be
possessed by an integral over a range, which extends beyond the conjugate
of its initial place.
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EXAMPLES.

30. We pass to some examples: in the first of these, the catenoid is
discussed.

Ex. 1. Find the plane curve joining two points such that, when the curve is rotated
round a line in a plane which passes also through both the points, the surface of the generated
solid is a mintmum.

(A) Take the line for the axis of #. The element of arc is (1 +y'3)§ dz, where the
positive sign is taken for the radical. The area of the generated surface is

e [yds, =2n [y +ytds,

the integral being taken in the positive direction of the axis of x between the values of
for the two points, Here the subject of integration is £, where

—y (1+y?},

which does not involve x explicitly ; and therefore (§ 17, Note)

ok, I
y(1+y%) 3/(1+y,z)i+c,

where ¢ is an arbitrary constant. Thus

=c(l+ ym)i .
and therefore Y ’
zr-b

P b

y=ccosh

where b is another arbitrary constant independent of ¢. This equation, containing two
arbitrary constants b and ¢, is the primitive of the characteristic equation ; it represents
a catenary, the directrix of which is the axis of revolution (the curve is the form of a
uniform heavy string, when it hangs freely).
(B) Deferring temporarily the discussion of the possibility of drawing such a catenary
through the two points, we proceed to the other tests.
For the Legendre test, we have
&f_ _ ¥
dyr (147t
The sign of the radical is positive. The catenary does not meet the axis, so that y is

o2
always positive and does not vanish. Hence & is always positive ; and therefore, so far

0y’

as the Legendre test is concerned, the catenary provides a minimum superficial area.
(C) To apply the Jacobi test, the quantities 7, and 5, must be constructed. As the
arbitrary constants in the primitive are b and ¢, we take
o ., x=—b
r;1=a—‘z= -smh—c- s

q2=g—Z=008hx%b —x—bsinh x—:—b H

and therefore the critical quantity for the Jacobi test is

ne_x-b_ 20
m c (4
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To trace the value of 7y/n;, we use the geometrical representation. At any point P of
the curve, draw the tangent cutting the
directrix in 7'; the vertex is 4; and 4B,
PN are ordinates: and OB=5b, AB=c.
Then

PN=ccosh xT—b, tan PTN =sinh ""_:é;
and so
TN=ccoth"'—%b.
Thus °

¢ %’=(z—b)—coothx7_b=BN— TN=BT;
1

consequently, for successive points on the curve, the position of the point 7 on the

directrix gives the measure of the value of :"—2 Also ‘% (?) is positive, so that :’T’

1 1 1
increases with z, corresponding to the motion of 7' to the right as P moves along the curve
in the direction of increase of .

Now let a moving point @ pass from the initial point I of the curve corresponding to
the lower limit of the integral, 7}, being the initial tangent. As @ moves along the curve
towards 4, the intersection of the tangent at @ and Oz moves to the right; as @ moves
through 4, that intersection suffers a violent discontinuity in position from the extreme
right of Oz to the extreme left of Oz; and then, as @ still moves onward, the intersection
still moves in the positive direction towards the right. When the intersection returns to
its initial position, the position of @ is the point of contact (say J) of the other tangent
from 7|, to the catenary. This point J is the conjugate of the initial point /.

Accordingly, the Jacobi test requires that a range of the integral, which begins at 7,
shall terminate before J, the conjugate of the point 7. We shall assume that the Jacobi
test is satisfied : the range of the integral is to be restricted within the indicated limits.

(D) The three critical tests are satisfied by the curve, as drawn. But there persists
the fundamental question : can a catenary be drawn, passing through two arbitrarily given
points and having the axis of x for its directrix ? There are subsidiary questions: if a
catenary can be so drawn, is it unique? if it is not unique, which (if any) of the possible
catenaries can be taken as satisfying the requirements ?

In the first place, no such catenary can be drawn when the two points lie on opposite
sides of the axis Oz; the analysis becomes illusory. If, in the first integral

y(1+y?) =c
of the characteristic equation, a zero value is assigned to the arbitrary constant ¢, we could
have y=0, or g indefinitely large, or both; but such variations do not accord with the
original assumption that y (147’ 2)*, the subject of integration, is a regular function for such
arguments. Manifestly, some different analysis must be devised, in order to admit the
hypothesis that the points lie on opposite sides of Oz—a hypothesis which still leaves a
reasonable problem.

Next, when the two points are on the same side of the axis, we shall assume (in order,
at this stage, merely to simplify the immediate algebra) that the two points are at thesame
distance £ from the axis; and we shall denote their distance apart by 2¢. When the
origin is taken at the point B, we have =0; the equation of the catenary is

z
y=ccosh;,
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and the quantity ¢ is to satisfy the equation
k=ccosh .
[

To determine whether this transcendental equation has any real positive root ¢, let

then any real point common to the curves
k

=- X, Y=acosh£,
a a

will give a real value of c.

Let ¢ denote the abscissa of a point K on the Y
new catenary where the tangent to the curve
passes through the origin O; as the equation of \ K
that tangent is
- € _(x-gsinhé
Y acosha—(X f)smha, v
we have
coth £_ §
a a o) X

Simple geometrical considerations shew that this equation has only a single positive
root*. From tables, we find that
§=asec 33° 32’
approximately. Thus, if the angle XOK be denoted by a, then
a=56°28),
also approximately.

(i) If ¥ < atana, the line ¥ =§ X lies within the angle XOK, and consequently does
not cut the catenary L VK of the second figure in any real point. No real value of ¢ occurs
as a root of the equation k=ccosh g; and no catenary for our problem can be drawn
through the two assigned points having Oz for its directrix.

The analysis has hypothetically assumed the existence of a real catenary associated
with a real finite value of ¢; and the assumption does not accord with present data. It
may be that a zero value for ¢ has to be considered ; as before, some different analysis
must be devised.

(ii) If k=a tan q, the line ¥ =§ X is the line OK, which touches the catenary LVK of
the second figure in the real point K. There is one catenary (and only one catenary) for
the original problem : the pure constant a (which is <} ) is determined by the equation

coth (coseca)=cosec a;
the value of £ is @ tan a ; and the parameter ¢ of the catenary is equal to asin a.

The two limiting points are conjugate to one another. The case is of the character
which sometimes arises as intermediate between the cases, where two real solution. exist,
and the cases, where no real solutions exist. For the curve, thus bounded by the two

* There is also a single negative root £, equal in magnitude and opposite in sign to the
single positive root; it leads, for our purpose, to the same result as the positive root.
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conjugate points, small non-zero variations can occur, which cause the term «in J-T
to vanish because the range extends from a point to its conjugate. Taken in that sense,
the Jacobi test is not satisfied: and the exact discrimination requires the investigation
of terms of higher order in « in the expression for J—7 in powers of «.

(ili) If £>a tan a, the line ¥ =§X lies within the angle YOK and therefore cuts the

catenary of the second figure in two real points. Each point of intersection gives a real

Yy
L c A D, Ky
1
Le Az Kz
) z

value of ¢; and therefore, in this case, two distinct catenaries can be drawn through
the given points € and D, 50 as to have Oz for their directrix.

It is not difficult to prove that the envelope of the family of catenaries
z
y=ccosh P

(with ¢ as the parameter of the family) is the two straight lines

y=taztanaq,
with the former significance of a. Thus the two catenaries through € and D are as in the
third figure. For both of these catenaries, the Euler test and the Legendre test are
satisfied. The Jacobi test is not satisfied for COL; 4, K, D, because K, and L, within its

range are conjugate. The Jacobi test is satisfied for the catenary C'4,D ; the conjugate of
C on CA4,D lies beyond D, and the conjugate of D lies behind C.

Thus, in the present case, there is a single catenary for our problem, satisfying the three
critical tests. Its parameter is the larger of the two real values of the quantity ¢ satis-
fying the equation

k a

—=cosh —,

c e
when £ > o tan 56° 28'.

(iv) We have to examine the catenary in the case (ii) ; that is, we must consider the
quantity 3, where

= asf 2y’ a3f 2 a%f 7 asf
to= (0 G g o s ) o

for the value of v, which makes I, vanish ; it can be taken as equal to 5. Now as
1=y L+yh,

we have "
&7 *f _
W
% 1 ¥ __ 3y

Wyt Ay eyt

e Gl
L= / - da.
T\ 1y

and therefore
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Taking
xz—-b

Y=c cosh —-c—'

and one of the foregoing forms of 7, viz. 7, so that
pcosh Z=8_ =5 sinh =2
c ¢ ¢

we find ” 5

7 z—

=1 Ty

The quantity

/ 30” coshw—_—b dz
a+ynt ¢
has the subject of integration everywhere finite and positive through the range; hence J3
does not vanish. Consequently, in this case, when the Jacobi test is in the critical
marginal stage between being satisfied and not satisfied, the integral does not provide a
minimum or a maximum. Most small variations make J— I positive; one set, as above,
certainly can make the sign of J— Z, which then is dominated by «3I;, positive or negative
at will

(v) Hence there is a unique minimum. It exists when % > atan a, and is given by
the larger of the two real roots of the equation

k=ccosh 2:
¢
if ¢; denote that larger root, the curve is the catenary
z
y=c, cosh o

(E) To illustrate the changes in the area of the surface of revolution when different
curves are taken joining the two points, we may state the magnitudes of these areas in
several cases as follows. (It will be noted that some cases are given when discontinuities
of direction occur along the continuous curve.)

For simplicity, we take a square ABCD of side 2a; the side AB is along the axis Ox:
the origin is the middle point of 4B: the terminal

points of the curve are C and D: and whatever the D
curve from C to D, the area of the surface of revo-
lution is k- Vi ___I¢
o
41r[ v (1+yDbda.
)
(@) The curve joining € and D is a catenary. As Ve
the angle 40D, =tan=12, is greater than a, there 1) A x

are two such catenaries having BOAx for directrix.
The parameter ¢ satisfies the equation

a
2a=c¢ cosh;,

of which there are two real roots.
For the greater root ¢;, we have

Z_ 5894,
1

and the vertex of the catenary is at Vy; for the smaller root ¢;, we have

2 91276,
C2
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and the vertex of the catenary is at V;. The area of the catenoidal surface is
2me (a+ccosh 2 sinh ﬁ) .
[ [

The area S; of the catenoidal surface through the catenary C'V,D, having the larger

parameter ¢;, is
8=2mra?x 3814 ;

this is the unigue minimum area for the problem.

The area 8; of the catenoidal surface through the catenary CV,D, having the smaller
parameter ¢,, is

S3=2mwa?x 4:358 ;
this is neither a maximum nor & minimum.
(6) The curve joining € and D is a semicircle on CD as diameter, the vertex being
turned downwards so that the arc is convex to 4B. The area XK of the surface is
K=2mra? (2w —2)
=2mwa?x 4283,
(¢) The curve joining € and D is the straight line CD. The area L, of the surface is
L,=8na?
=2ma?x 4.
(d) The curve joining € and D is the broken line, made up of CO (straight) and OD
(straight). The area ZL; of the surface is
Ly=2ma?x 4:472.
(¢) The curve joining € and D is the broken line, made up of OB (straight), BA
(straight),-and 4D (straight). The area L, of the surface is
L,=2ma?x 4.

(f) The curve joining ¢ and D is the parabola, having O as its vertex and OV, V, for its
axis. The area P of the surface is

P=2ra? x 4'236.

(9) The curve joining C and D is the sems-ellipse on CD as major axis, with ¥; as an
extremity of the minor axis. The area £, of the surface is

Ey=2na?x 3-899.

(%) The curve joining C' and D is the broken lLine CG along OB (straight), any line
(straight) GH parallel to BA, the line HD along 4D (straight). When CG'=#, the area of
the surface is

107a? -2 (k—a)?,

the least values of which are Z; and Z, above, and the largest value of which is 2ra?x5,
occurring when GH is midway between 4B and CD.

(?) The curve joining € and D is the semi-ellipse with CD as minor axis, with O as an
extremity of the major axis. The area Z; of the surface is

Ey=2na? x 5028.
Ez. 2. Find the surface of the generated solid when £=a tan 56° 28' ; and compare it

with the surface 2x%?% when the generating curve is taken to be a broken line as in the
foregoing case (e).
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Er. 3. A catenary LVK has OX for its directrix, V is its vertex, and VO is perpen-
dicular to the directrix (fg., p. 32); the tangents from O to the curve are OL and OK.
Any point L' is taken in OL, and a point K is taken in OK, so that OK'=0K; and a
catenary L' V'K’ is drawn, with 0X for directrix.

Prove that the surface generated by the revolution of L VK about the directrix is equal
to the surface generated by the revolution of the curve LL' V'K'K about the directrix ; and
that each of these equal surfaces is equal to that of the surface generated by the revolu-
tion of the broken line LZL'OX’K about the directrix.

Mobile limits of an integral : terminal conditions.

31. The preceding investigations have proceeded on the assumption that
the extremities of the range of integration are definite: in analytical vocabu-
lary, that the upper limit and the lower limit of the integral are constants:
in geometrical vocabulary, that the curve, along which the point (z, ¥) moves
during the range of integration, is terminated by fixed points.

Frequently, however, the terminal conditions are not so simple and so
precise. Thus the upper limit of the integral may be provided by the abscissa
of a point, which is required to lie on a given curve, but which is not other-
wise specified; and similarly for the lower limit. In such a case, the full
solution of the problem requires the determination of the limits, in accordance
with the assigned requirement, as well as the determination of the character-
istic curve between these initially unknown limits. Thus farther unknown
magnitudes may arise for determination ; and they can be obtained only in
accordance with added requirements.

The admissible maxima and minima are to possess their distinctive pro-
perty for all possible small variations that can be effected, alike individually
and in all combinations. Now among such variations, there must occur the
aggregate of those which are possible when the limits of the integral are not
subjected to small variations, that is, when these limits are fixed. All the
preceding conditions and tests must therefore apply ; but now, instead of con-
stituting the total of such tests, they constitute only a part of the total.
There will be—at least, there may be—further conditions, although descrip-
tive (rather than intrinsic) properties are sufficient and necessary to satisfy

these conditions.
Variation of the integral with mobile limats.

32. Accordingly, we resume the consideration of the integral
I=f:f(m, v, y)da,

with the same function f(z, y, ') as before. The limits z, and z, are now no
longer necessarily invariable ; they may be subjected to arbitrary small varia-
tions, independent of the small variations actually within the course of the
range between ; and ;, and restricted only by the need of being continuous
with these at the extremities of the range. Within the range, we still take
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no variation for #; and we take the same variation for y as before, namely, the
value y + «v in place of y. But now we cannot use the requirement that v must
vanish at the limits; though, throughout, v remains a regular function of z.
As the limits are to admit possible small variations, we shall suppose an upper
limit 2, + &, in place of ,, and a lower limit z, + £, in place of x,, where £,
and £, are finite quantities, which have an arbitrary quality independently of
one another in the absence of further specified conditions. (It will be necessary
to bring the value of v at a, into relation with &, and the value of v at x;
into relation with £,.) Denoting the value of the integral under this wider
variation by J”, we have

Zg+xky ,
J'=f sf(x,y+/w,y +xv')dz
&+«

R Ty 1+,
=(f 2+/ —fl )f(w,y+/w,y’+/cv’)dw;
X3 L2 z,
and therefore

J'—I= f ” {f@y+uv,y+cv)=Ff(@,y, o) do

Tgt+aé,
+ S(@, y+x0, ¥ +xv)da

&y
2, +xf,
—/ f(@.’y'f'/w:y/*"‘?/)dw-
Zy

The first of these three integrals is the same in form as the integral which
occurred in the initial expression for J— I; but v is not now restricted to the
value zero at each limit, We accordingly have

Jovreytenysa-re s a=. " (D)) oce

of
+« [v 87] + K 2
where the term [ ] is taken at the limits @, and #;, and where K, denotes the
aggregate of terms of the second order and higher orders in powers of «.

In the second of the three integrals, the whole range (from z, to z, + «£,)
of the integral is very small. The subject of integration is finite, one-signed,
and continuous through that range; and therefore, by one of the ‘ theorems
of mean value,’ there is some place within the range, such that the value of
the integral is

"fﬂF ’
where F denotes the value of 7 (z, y + «, ¥ +«v') at that place. But owing
to the finiteness and continuity of £, the value of F differs from the value of
(2, 9, ¥) at @y, say from f,, by small quantities of the first order and higher
orders in powers of . When the aggregate of these quantities is denoted by
x4, the value of the second integral is expressible in the form

"fﬂfz + 2 sz:-
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Similarly, the value of the third integral in the expression for J'— Iis
expressible in the form
"E],ﬂ + K’ElAl,
where f; denotes the value of Fz,y ¥)at o, and xA, denotes the difference
between f; and the value of f(, y +«v, 3’ +«v') at some place in the range
mediate between z, and a; + «£;.

When these values of the respective integrals are substituted, the value

of J' — I takes the form
£2
r-1=ef" {%—%(%)}vdm+x ['v%] +e(Bofom B.S) + R,
R,=K,+ K2 E A, — K€ A,

so that R, is an aggregate of terms of the second and higher orders in «. In
this expression, the quantity v is an arbitrary regular function of # throughout
the range ; the quantities £ and £, are (or can be) independent of one another,
and are independent of the variation of v in the range; but £, £, and the
values acquired by v at 2, and z,, are subject to the relations imposed by
the terminal conditions.

where

33. In order that I may have a maximum or minimum, the aggregate
of terms of the first order must vanish. If they do not vanish, they govern
the value of J’—I; and they can be made positive or negative at choice—a
result which, if attainable, excludes the possibility of a maximum or minimum.
Further, this vanishing of the aggregate of terms of the first order must
ensue under all possible small variations, in whatever form or forms they may
arise; that is, for every form, and not merely for some individual form or for
some group of forms.

Consider three particular forms: (i), a variation continuous through the
range and vanishing at each extremity ; (ii), a variation continuous through
the range, vanishing at the lower limit, and subject to an assigned external
condition at the upper limit; and (iii), a variation continuous through the
range, vanishing at the upper limit and subject to an assigned external con-
dition at the lower limit.

In the variation represented by (i), we make v =0 at each limit, also
£=0and £ =0; and then
= (gf d (2
[P G- E@) =0
for all admissible arbitrary regular functions v, the limits «, and x, now not
being subject to variation. These requirements are precisely the same as the
requirements in the earlier discussion: the former argument is applicable

and so the relation o d o
Y,=5 i (@) =0
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must be satisfied throughout the whole of the range: that is, we have the
Euler characteristic equation. Accordingly, the first term in the foregoing
expression for J vanishes.

In the variation represented by (ii), there is no variation at the lower
limit; hence v =0 when # = ,, and £,=0. Also the integral term in J'— T
has disappeared ; there thus survives, for the test,
the relation 4

x (v g‘{/f,)m’ +aE,fo=0,

applying solely at the upper limit at P. Let the
upper limit be required to lie on a given curve of
which the equation is

9(z,9)=0, E
represented by the dotted curve PQ, while EPR
is the characteristic curve. Let F8Q be the varied curve, obtained from EPR
by small displacements along the ordinates; P is displaced by the variation
«v along the ordinate to §; the upper Limit of the integral is varied, so that
PN =k, ; and NQ is the ordinate through &, cutting in R the character-
istic curve, and in Q the curve on which P is bound to lie. Then

RN =y «t,
where y' is the value at P of the derivative of y belonging to the character-

istic curve. Because P and @ are consecutive points on the curve g(z, y)=0,
we have, at P,

F

% .+ % oN =
aT’pKEg'l'ay-QN—-O.

But
QN =QR + RN = xv + y't,;

consequently the relation becomes

og
olis-oi-(4E) -
oy/,

If the upper limit were fixed, we should have £=0, and no new relation
would ensue. When the upper limit is not fixed, £, can have a non-zero value ;
and then the relation becomes

09 (¢ ral) _Yog_
oy ( Y oY) oy ox 0,
which is to be satisfied at the mobile upper limit #, of the integral.

The same line of argument applies to the variation (iii); and the result is
that, when the lower limit of the integral belongs to a point required to lie
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on a given curve of which the equation is

. 1!’ (w: Y ) = O:
the relation
o
T _ Yoz _
f-y e - ay'% =
oy

must be satisfied at the lower limit &, of the integral, provided , be not a
point absolutely fixed by the limiting conditions. If the point were absolutely
fixed, no new relation would ensue.

Note. The relation (p. 39) between v and 7, can be obtained simply as
follows. When P is taken as origin, PN = k&,, QN = xns, the equation of the
tangent at Q to the curve FSQ is

Y~ imy=y' (X — «&y),
accurate up to first powers of . The quantity SP, equal to v, is the inter-
cept on the ordinate PS of that tangent: that is, we have ¥ = «v and X =0
simultaneously, and therefore
kv — K1y =— Y &3,
so that
v=m—y'&,
which is the relation in question.

Characteristic equation : terminal conditions.

34. When all these conditions are satisfied, then the part of J'— I de-
pendent upon the first power of « disappears for all small variations of the
kinds contemplated. The portion, arising from small variations within the
range, vanishes because of the relation

Y=0,

which holds throughout the range. The portion, arising from small variations
at the upper limit, vanishes because the relation

99

,of of ox _

I=Y oy~ oy~
oy

is satisfied at that upper limit; and the portion, arising from small variations
at the lower limit, vanishes because the relation

oy
f _f om _
oy

is satisfied at that lower limit.
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Thus the characteristic equation and the two terminal relations are
sufficient, as well as necessary, to secure that the part of I depending on the
first power of « (the first variation of I) shall vanish. In that event,

—I=R,:
the change in the value of I is measured by quantities of the second order
and of higher orders in powers of «.

The characteristic equation ¥ =0 determines, as before, the characteristic
curve. The two new conditions at the limits, taken conjointly with ¢ (2, y)=0
and ¥ (#, y) =0, determine the final values and the initial values of # and ¥ :
that is, potentially they suffice for the determination of the two limits of the
integral and the two arbitrary constants in the primitive of the characteristic
equation.

When these are known, the limits of the integral are fixed. The remaining
tests are, therefore, the same as before.

£z.1. Prove that, for any integral of the form / (1432} F(z)dz, or of the form

/ (1+y2} @ (y) dy—effectively the same integrals analytically—when the range of the in-
tegral is to terminate at a given curve, the characteristic curve and the given curve must
cut orthogonally at that limit, if the integral is to provide a maximum or a minimum,

Complete the analytical solution of the problem in Ex. 1, § 17, when the straight line
is to be the shortest distance between two circles external to one another.

Ezx. 2. Shew that, if the curve in Ex. 1, § 30, is to be drawn, not from the fixed points
(a, k), (- , k) as there required, but from one circle of radius » to another circle of radius »
having these points for centres, the terminal inclination of the tangent to the catenary is
given by the equation

1 l+siny _asecy—r
% Cosy  k—rsiny’
Ez. 3. It is required to find the curve which shall provide the briefest time of passage®

for a heavy particle, moving from rest at a given initial point O to a given straight line the
vertical plane through which contains O.

(We may imagine the curve to be a smooth wire or hollow tube in a vertical plane,
the particle being a bead.)

We take O as origin, and the horizontal through O towards the given line to be the
axis of x; and we take the axis of y vertically downwards. The velocity of the particle
at a depth y below the origin is (2gy) ; and the time of passage is

3y-3%
e

the upper limit for the integral being the value of # for some point on the given line yet
to be determined.

(i) The subject of integration does not involve # explicitly; hence (§ 17, Note) a first
integral of the characteristic equation is

ymy~hey |

'2) 3 ¥y~ 3 +constant,

* The brachistochrone problems were initiated by John Bernoulli (§ 3).
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Let / =tan y, so that  is the inclination to Oz of the tangent to the characteristic curve,
taken in the direction of s increasing. Then
y=a (1+cos2y),
where now ¢ is an arbitrary constant, so far as the equation is concerned. Also
dr=dy.cot = —a(2+2cos2y)d{;
z=k—a (2y+sin 2¢),
where £ is the second arbitrary constant for the primitive. The values of » and y, taken

together, shew that the characteristic curve is a cycloid having Oz for directrix, while « is
the radius of the generating circle.

and therefore .

(ii) As f, the subject of integration, is (1+32)}y =%, we have

il -3 -
aa =Ly "y
2
the radicals are positive, and therefore %—2 is positive. Thus the second test—the Legendre
test—will allow the existence of a minimum,

(iii) Before proceeding to the third test—the Jacobi test—we deal with the terms at
the limits. At O, we have y=0 and #=0. From y=0, we have {y=4%=; and therefore
the origin is a cusp of the cycloid. From x=0, and using the initial value of v, we
have k=ax.

The other extremity is to lie upon a given line. The equation of this line may be taken
in the form

y=(z—0)tans,
where ¢ is positive owing to the positive direction chosen for Oz, and where 0<g<n.
The terminal condition of § 33 becomes

Qrympy~toy—L gt Y y“*('t*lmﬁ)=o,

Q+ymh” (g

that is,
’ 14y tan 8=0.

As y'=tan, we have y=8—4n in the left-hand figure, and —y =3~ —p8 in the right-
hand figure: that is, the terminal value of ¥ is always
But for that value of y, y=f-im
y=a(l-cos2B), r=a(2m—28+sin28),
and the point lies on y=(x—c) tan 8. Substituting, we find
2a (7 —B)=c,
excluding the value sin 8=0; and so the radius of the generating circle is known.
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(iv) For the Jacobi test, we return to the unspecialised primitive of the characteristic

equation. From the equation
k—a(2y+sin 2y) =g,

it follows that y, and therefore any function of 4, is a function of Zc——;—“f; 80 we write
cos2¢y=¢ (I%;_.z‘) ,
and the primitive becomes
y=atad (’f-;'—z) .
From these, we easily find
, (k-2
n=gi=¢ (3°)=-ten¥,
o k- k—zx ,, (k-2
m=g=1+¢(125) =22 ¢ (50) —2 4y tany),
so that '
Z_:= —2(y+cot ).
It is also easy to shew that
a (1 _——— L
dz 7'1) T 2asinty’
so that Z—z is monotonic and is continually decreasing.
1

Now the initial value of y is 4= and it decreases steadily along the arc of the cycloid.
The initial value of —2 is —s. The value of — 22 decreases towards — as y» decreases

m )1
towards zero; it suffers a discontinuity as y passes through zero from an infinitely large

negative value to an infinitely large positive value; and as Y decreases to —3= (that

is, as x increases), the value of :"—2 decreases to w. At that place, ¥ suddenly changes from
1

—4m to 4 ; the value of ;lf again becomes —, that is, the place is the conjugate of O.
But the place is the first cusp of the cycloid next after the cusp at the origin.
)Y Y

Accordingly, the Jacobi test requires that the range of the cycloidal arc, which begins
at 0, shall not extend as far as the next cusp. The requirement is satisfied, because the
values 0 and = for 8 have been excluded.

Hence the cycloidal arc, having its cusp at O and cutting the given line orthogonally
below the horizontal line Oz, and having no cusp in its range except at O, provides the
curve of quickest descent from rest at O to the line.

(v) If Tis the time of descent along this cycloidal arc,
2¢ 3
7= {2 -p)} s
while, if 7 is the shortest time of descent along a straight line from O to the given straight
line,
3
T,={4;ccot§ﬁ} .
As B lies between O and =, we have 71> 7.

Note. When dealing with the cycloid, advantage sometimes accrues in the discussion
of the reality or the uniqueness of the curve by choosing the current variable to be the
angle @ through which the generating circle of the cycloid has, in the usual generation
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rolled instead of the angle Y- through which its tangent has turned. In particular, the
difficulty at the cusp arising from the latter choice—the variable suddenly increases by =
at such a point—is avoided by the former choice. We have

y=4r-16;
the coordinates, referred to the cusp as origin and the directrix as the axis of #, are

X=a(0-sinf), Y=a(l-cosd).
In the preceding example, the initial value of 8 is zero. The final value is §=2x—28;
for the final value the point (X, ¥) lies on the line
y=(x—c)tanp,

and, as before, we have

2a (v —B)=c.

Ex. 4. When the particle starts downwards along the curve in Ex. 3 with an initial
velocity (29&)*, and the curve is referred to the initial -point as origin and the horizontal
line as axis of #, obtain the coordinates of a point on the curve in the form

y+h=a(l—cosé), x+k=a(8—sing),
where a and % are the two constants of integration. Shew that, if the time of quickest
descent to a given point below the axis of # is required, one (and only one) cycloid exists
satisfying the requirement.

Ex. 5. Prove that an ellipse is a brachistochrone between two points on its range,
under a central force to one focus varying inversely as the square of the distance from the
other focus. Find the limit to the range between the two points, in order that the property
may be secured.

Ez. 6. A plane curve is a free orbit under one central force, and is a brachistochrone
under a different central force; and #, ¢, are the velocities of the respective moving
particles at any point. Prove that v’ is constant.

Ex. 7. Prove that, in an ellipse under a central force to the focus varying inversely as
the square of the distance, the quantity [ vds between two points on the curve (v being

the velocity at any point) is a minimum, provided the length of the arc is less than a semi-
circumference by a vectorial angle greater than

2e8ina
1+2¢ cos a+e?’
where a is the angle between the radii vectores to the nearer apse and the initial point of
the arc, and ¢ is the excentricity of the ellipse.

2tan-1

Ez. 8. Prove that a minimum of the integral

/ (1 +2+ 229y + (1499 g dz

is provided by y=0, if the upper limit and the lower limit of the integral have the same sign ;
and that, for a minimum when the lower limit of the integral ©s —a and the upper limit is c,
where a and ¢ are positive, ¢ must be less than the root of the equation

sinh“‘u+sinh‘1a=% Q1 +u’)§ + 7:’ Q1 +a’)§.

A geometrical interpretation is immediate. The curve is a meridian on the paraboloid
of revolution 2:=2%+y?%; the meridian is a geodesic between any two points on its length,
if the vertex does not lie between them ; there is a limit to the range of the meridian as
the geodesic between the points, when the vertex does lie between them. Also the example
is adduced to indicate the analysis necessary (§ 25) when only a special integral—here, it
is y =0—of the characteristic equation is known.
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The characteristic equation is

(=+39)y _ & {wy+(1+z/’)y’}=
a? d Al

where A denotes 1+22+22yy + (1 +y2) y2=0: an equation which reduces to

(1+22+y0)y"=(ay —y) (1 +57).
A first integral of the equation is
Y-y =(1A},
where a is an arbitrary constant ; the primitive is expressible by circular and logarithmic
functions, and will be obtained later. Manifestly, y =0 satisfies the characteristic equation ;
it is a very special integral, and it cannot be used in the same way as the primitive for the
construction of the critical function in Jacobi’s test.
For the Legendre test, we have
o _1+atsy
7N
in general, and
=(1+22)"%
2
for the particular solution, Thus a]’f is always positive. The stated integral, so far as
0y"?

concerns this test, is a minimum.

For the subsidiary characteristic equation ¥ =0, we have

s @
a—zf;=o, ay?{z/_x(“'”z) 5

when the value y=0 is inserted in the general values; hence the equation for 7 is

d . _
%{(1 +x2)—§,] }+n%{x(1 +a2) %}=0’
that is,
(1+2% 9" — 2y +7=0.
The primitive of this equation is
'1=Bm+A {-Z'Siﬂh_lx_. (1+.Z‘2)%}.
Thus we can take
m=2x, pe=xsinh~lx—(1 +x2)%,
and therefore

72

2%
—sinh-1g_ 122
) z

Hence

2 (1+r2>*

t 72

so that =° is always increasing.
m

If, in passing from the lower limit to the upper limit, # does not acquire the value zero,
then 2 remains finite throughout ; as this function increases through such a range, it
)]

cannot again acquire its initial value in the range.
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Now let = acquire the value zero in the range, supposed to begin with the value —a

For that value of z, the value of :’T’ is
1

2y}
—sinh"a+(l+Ta).

As z passes from negative to positive through the value zero, ? passes from a large positive
1

value through infinity to a large negative value, and then again increases. If when zx=u,
where u is positive, it again acquires the initial value, we have
2v% 2%
sinh"u—-g-%ﬂ = —sinh~! a+—‘—(l +aa ) ;
that is, » is given by

sinh"lu+sinh‘1a=%(] +ud)} +71t(l +at)},

The possibility of acquiring the initial value must be excluded if a true minimum or a true
maximum is to be acquired ; hence the range of the integral beginning with the value —a
for  must not extend as far as the positive root » of this equation.

Note, The primitive of the characteristic equation for the general problem of minimising
the given integral, viz.,
(422 +9") ¥’ =(2y' - y) (1+¥?),
can be obtained as follows. We have
¥ -
(-9 A+yD  1+224+32°

zy ¥y _ xtyy
zy -y 1+y? 1+at+y*

and so

Thus - .
(g -y  _ -2
T+7) A+ 757 constant= Tra?
where a is an arbitrary constant. Let the variables be changed according to the relations

x=rcosd, y=rsinb.
The equation becomes
49 _a ritlNg
dr r rz_—_a,”) ’
and the primitive is
u+1 -
0~a=34alog =i —tan™! (au),
where
wie P+l al4yi4l
r2—a? 2%+yt—a?’
This equation gives the characteristic curve; interpreted geometrically in connection with
the paraboloid of revolution, it is the projection of a surface geodesic upon a plane perpen-
dicular to the axis.

For the Jacobi test, we have

f=tan—17.
z

04 u+1 %
8_a_§logu— 1 1+a?’
8o that the critical quantity is
u+1 u

élOgu—1_1+a2u2’
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or, if we write

24+y241\}
cothy=u= < m) ’
this critical quantity is
Vv tanhv

“tanh?otat

Now Valways increases ; hence the only way in which V can resume its initial value is by
passing on a positive increasing range for v through the value infinity, then becoming
negative and gradually increasing again. If then v; and — v, are the two limiting values,

we have
tanh v, tanh v,

" tanhZv, +a? ot e vgt+at’

U
which limits the range.
In the form propounded *, the problem leads to a meridian geodesic; the projection is

a straight line through the origin, and @ is zero. Then, for a limited range in a minimum,
the projected range encloses the origin; if d; and dj, are the distances of the limits of the
range from the origin

Lsdmtacothv, L (1+d@t=cothsy,

d dy
so that

sinh »,=d, sinh vy =d,.
Exz. 9. Discuss the integral f 1+ ¥ y~2 dw between fized Limits, with o view to & maxi-

mum or minimum value.

As (14+y?%)y'~% the subject of integration, does not involve the independent variable, a
first integral of the characteristic equation (§ 17) is

(1+3?) Y ioy{-2(1+3?) ¥ ~3}=constant,
1 +y2=czy,27

where ¢ is an arbitrary constant. The primitive is

that is,

y=sinh (cz +a),

where a and ¢ are the arbitrary constants.

We have
_.._6—,4,

which does not change its positive sign for any range; hence the Legendre test will
permit a minimum, ‘

For the Jacobi test, we have

m= g%=cosh (cx+a), W=%—Z=x cosh (czx +a);

as =z which does not resume an initial value through any steadily increasing range,
m
there is no conjugate of an initial point on the characteristic curve.

It thus appears that the three tests, which have been established in connection with
special weak variations, would point to the existence of a minimum for the integral when
y is an ordinate of the characteristic curve y=sinh (¢z +a).

* The question was set in the Mathematical Tripos, Part I, 1894,
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But we must notice that this minimum, while provided by special weak variations, is
not a true minimum. Its value can be decreased by other variations as follows. Let the
curve be required to pass through two points (1, ;) and (%3, ¥) such that

2e>21>0, 3>y >0;
then

o= sinh~!y, —sinh -1z,

B Tg— T ’

80 that ¢ is positive. Take a range for the integral such that, whatever be the value of
a, the increasing argument cx+a is positive through the range. Then y is positive
through the range; while y and ¥/, along the curve, increase continuously with increase
of z.

Now take successive points P, @, R, S, ... along the curve, in the direction of z
increasing, these points being very close together. Draw tangents at @, R, §, ... succes-
sively, meeting the ordinates through P, @, R, ... respectively in Py, @, Ry, ..., so that
the points Py, @, Ry, ... lie between the curve and the axis of z. Thus we have a broken
line PP1Q@RR,..., which is a small variation of the curve PQR... but is not a weak
variation: it is a strong variation. Consider the integral along this broken line; and com-
pare the portion along a section PP;@ with the portion along the corresponding section PQ
of the characteristic curve. Along PP;, the quantity 3’ is infinite; the contribution is
zero, Along P;¢), the value of 3’ is greater than its value along P@, while the value of ¥
is less than its value along PQ; on both grounds, (1+2)y'~2 is less for P, than for PQ.
Thus the element of the integral for PP, is less than the element of the corresponding
integral for the curve PQ. Similarly for every pair of associated elements. Thus the
whole integral along ...PP1Q@,RR,... is less than the integral along ...PQR....

Consequently the minimum provided by the weak variations is not a true minimum ;
for there are other small variations which lessen that minimum (see § 215, Ex. 5).

Note. The systematic consideration of strong variations is deferred until Chapter VII.

First integral of the characteristic equation : Hilbert's theorem.

86. The solution of any problem of the present type requires the inte-
gration of the characteristic equation
y_d (o)
oy dz\oy/
o_ B W .,
oy dwoy ogoy Y T ayr¥ TV
The equation is of the second order. For a form of the function £, which is
quite general and unspecialised, the explicit expression of a primitive or of
a first integral (except as an infinite series, usually to be associated with an
existence-theorem) is not possible,

that is, of

When we postulate a first integral which, when resolved with regard to y’
may be expressed as
y=p@y=p,
we have i 3
9P _% %P
Y =5 Py
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If, then, we regard p as a new variable, to be determined as a function of
# and y, we can take it as satisfying the partial differential equation

*F( op Op\_oF &F  @F

o Py ) =0y a5~ P
where F denotes f(z, y, p), a known function of its arguments.

As this partial equation of the first order, when p is the dependent
variable and « and y are the independent variables, is of the Lagrange linear
type—linear, that is to say, in the derivatives of p—we may be able to obtain
an integral. Let some such integral*, necessarily involving p in its expres-
sion and also involving an arbitrary constant, be obtained ; it will arise as an
integral of the subsidiary equations

de dy dp
1 p " T oF &F &F
7 ?)
op*
and will be satisfactory, provided it contains the variable p. We denote this
integral, resolved so as to express p in terms of z and ¥, by

(=du),

p=p(zy)
Now take
y=p=p(zy)
We have
. p_ ..
% + p ay =Y

the function F becomes f(z, y, y'); and the partial differential equation is
transformed back into
o s

of __of &
oy~ owoy " oyoy Y TayY T
that is, into the characteristic equation. Hence the relation
y=py)

provides a first integrated equivalent of the characteristic equation, when P
satisfies the partial differential equation of the first order.

The transformation is used by Hilbert$, in an investigation with the
different aim of substituting, for the original integral I, an ultimately equiva-

lent integral, chosen so as to become independent of the path between the
lower limit and the upper limit.

Hilbert’s investigation is based upon the requirement that an integral,
allied to f £(@, 9, ') da, and taken in the form

[r@yp+a-p 4y s,

* The primitive of the partial equation is not required for the purpose ; any integral, of the
specified type, will suffice.
+ Gott. Nachr. (1900), p. 291.
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where A is some function of z, ¥, p, shall yield a maximum or minimum as
regards the variations of p, and then shall be independent of the path, p
being some function of # and y. For the first property, we must have

Tr-ng-4=0,

which can be satisfied by taking

as this relation leaves the result

f

prov1ded == is not zero.

With thls value of 4, the integral becomes
s, of
f {y Py (f P )}

If this is to be independent of the path,and therefore is to depend only upon
the variables at the limits, the subject of integration must be the exact
differential coefficient of some function U. Then

U_of oU_,. of
Py
ofy o
By(f pap) 6(10)
that is, as p involves « and y,

(f af@) {apaf+ (ﬂﬁi@)}ﬁ_’uw_p
By op 9y oy op opdy = op* oy ozdp ~ op*ox’

Y- e )
z Y

J

and therefore

or

0y Owxdp papay op®
which is the characteristic equation.

For the use of the analytical property, reference may be made to
Hilbert’s memoir.

Ez. 1. When the integral is /y 1 +3/2)5dx, the integral for the catenoid (§ 30, Ex. 1),

we have

F=y(+y??.
For this function,
or 0 F F - *F _
_—(1"' ) ’ W=O, @a—P=p(1+p2> i} é;z".y(l"‘}’z) %;
and so the partial equation for p is
ap _1+ p2
ozt P Y
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Of the subsidiary equations
dz _dy_ ydp
1 p 1+p¥
an integral is
y=a(1+p3,

Hence a first integral of the characteristic equation is
y=a(l+y?h

Ez. 2. When the integral is f {14+224+ 229y +(14+3%) y”}idx, the integral for a geodesic
on a paraboloid (§ 34, Ex. 8), we have
P42+ 20yp+(L+y) .
After substitution and reduction, the partial equation for p is

o _(1+p)(pzr-g)
ax Py oy  1+22+y
From the subsidiary equations
dz dy 1422442
——— = =d y
T e —g) PN

we find ( 2
a 1+p%) (zp—y)
A A At v i i
d 1+p*
e e
8o that

1 dF

L ( )=
.z'p Y TP Fdu’
and an integral is

ap—y=ak.
Hence a first integral of the characteristic equation is

2y ~y=a {1 +a*+2ayy +(1+y%) y )b,



CHAPTER II.

INTEGRALS OF THE FIRST ORDER; GENERAL WEAK
VARIATIONS ; THE METHOD OF ‘WEIERSTRASS.

The chapter is devoted to the discussion of maxima and minima of single integrals,
involving one dependent variable and its first derivative. The method adopted is due to
Weierstrass. It enables the application of variations, still limited to the weak type, to be
made simultaneously to the independent variable and the dependent variable, instead
of limiting the discussion to the effect of variations upon the dependent variable alone;
and it thus allows the consideration of general weak variations.

The most direct account (as yet published) of the method seems to be that given in
Harris Hancock’s Caleulus of Variations (the Weierstrassian Theory).

Weak variations in general.

36. We now proceed to the consideration of weak variations, which
are not restricted to the preceding type and have the general property of
admitting simultaneous weak variations of both the dependent variable and
the independent variable, each without regard to the other. The integrals,
in the discussion that ensues immediately, will still be restricted to the first
order, that is, they will involve derivatives of the first order and no deriva-
tives of order higher than the first. The results to be obtained must include
all the preceding results connected with the special weak variations. More-
over, they will have the added advantage of proving useful for the considera-
tion of strong variations.

Accordingly, the variables # and y will now be regarded as subject
to small variations, whereby the variable # is changed to @« + «xu and
the variable y to y+xv. As before, « is a small arbitrary constant
quantity, so small that any positive integral power is negligible in com-
parison with every preceding positive integral power. Also, v and v are
regular functions throughout the range; they are quite independent of one
another; and they are completely at our arbitrary choice, subject (for the
immediate purpose) solely to the condition of being regular. But in order to
secure this general variation of # and y, we make both of them functions of
a new independent variable which can be chosen at will. It might, initially,
seem natural to choose, as this new independent variable, a magnitude
intrinsically connected with the characteristic curve to be obtained, such as
the length of the arc of the curve measured from any assumable point. Yet
any such intrinsic magnitude may itself be the subject of discussion; for
instance, the problem may be limited by an arc of given length, or we
may be required to find a geodesic arc on some surface. Thus there is an
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advantage in assuming an initial independent variable, unspecified by any
particular intrinsic relation; when once the analytical results have been
obtained, they may be subsequently modified or simplified by any speci-
fication that can be appropriate and convenient. We therefore take z and y
to be functions of an independent variable denoted by ¢; and then % and v
will be arbitrary independent regular functions of . But it will be assumed
(so far, the assumption is a partial limitation on arbitrary functions intro-
duced) that the variable ¢ increases continually throughout any range of
integration.

Modification of the form of the integral.

37. Derivatives will be denoted by a single subscript number, so long as
the derived quantity is a function of only a single argument; thus

@ VO W_, TY_

dt et 8] dtg — w2 dt —?/1, dtg -—,%,
and so on; modifications will be required for partial derivatives, when the
derived quantity involves more than one argument. Thus

dy _ %
y= dz '
n_0Y _ oy — my
Y =i 3 ’

and so on. Making this change of variable in the integral, we have

ff’(w, 79 dw=ff(w, Y, Z—:) z dt = fF(w, Y, @y, Y1) dt.
Thus our integral becomes
4
[[Fayama,
t

where the range of the real variable ¢ is from ¢, with continuous increase
to #,; and where ¢, and ¢, may be variable quantities, if occasion demands.
Moreover, owing to its source, the function F is such that

F(z,y, o, y)=af (w v, ‘1")

= wlf(w’ Y y)'
We at once have of f
oF % %39
ézl_f+m‘3?( z? ) =f- z, 0y’
oF of
oY, Tk
and therefore ' yl
oF oF

@ ot gy =,
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a permanent identity satisfied by every function F which arises in the manner
indicated.

What is desired is the determination of « and y as functions of £ so that
the integral, extended over an assigned range, shall acquire a maximum or a
minimum for the weak variations indicated, of every type possible within
the limitation.

88. Manifestly, the change to a variable ¢ is not unique; thus, if a
variable 7 were chosen, we should have

de dy
F(o,9 57, 39) dT=f (@ 9, 9 ds

- de dy
.._F(a:,y, L dt)dt'

In particular, let ¢= 7, where u is taken to be a constant for our immediate
purpose ; then
F (2, 9, par, py) = uF (x, y, 2, 30).

This relation holds for all values of u. Two important inferences can at
once be made.

Firstly, let p=1+ ¢, where ¢ is a small arbitrary quantity; then

F(a, 9 a1+ em, y+ey)=(1+€) F (2, 9, @, ).
Expanding the left-hand side in powers of ¢, and equating the coefficients of
the first powers of € on the two sides, we have
oF oF
B3t Yoy =D

the permanent identity satisfied by F'; and from the other powers, relations

such as
,0°F o*F o*F
zla ,+2a:,y.a£ay+y1 ay =0,

immediate consequences of the identity—being the customary property of
an infinitesimal transformation in a continuous group.

Secondly, let 4 =—1; then
F@y —o, —y)=—F(a,y, x, )
It is an immediate corollary that, if

or F
5_— = @ (w .'/, &y, ,%), A= ‘I’(KB :'/, &y, yl)

then
@ (ws 3/, — &, — yl) = (p (w’ :'/: &, :'/x):

Yy —o,—h)=Y(2, 9, @, 1)
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General variation of the integral.

39. We now consider general weak variations of the integral 1, where
t
1=["F(o, 9, 2,3,
t

the function F being subject to the permanent identity

In the first place, we shall assume (though, later, the assumption will be
modified) that all the arguments and all the functions of the arguments,
which oceur, are continuous.

We take a variation by which 2 and y are changed into « + xu and
y + «v respectively, x, u, v being limited in the modes already stated. Such
a variation changes a curve into an immediately neighbouring curve in such
a way that, to each point of the original curve, there corresponds one (and
only one) point of the modified curve: and that, as « is a small constant
quantity at our arbitrary choice, the distance between two such corre-
sponding points can be made less than any previously assigned small
quantity. Initially, this is secured by the finiteness of » and v for all values
of # and y within the range. But the wider restriction has been imposed
that » and v are to be not merely finite, but also are to be regular functions.
This restriction carries the property that, in these small variations, the
inclination between the tangents to the original curve and the modified
curve at the corresponding points also is small; for the trigonometrical
tangent of this inclination is

& (Bt = 91%)
2+ Y+« (@u, + o)’

a small quantity of the same order as «.

We shall further assume that » and v are independent of «, so that the
magnitude of any derivative of % or of v remains unaffected by the magnitude
of k. Thus, for example, we shall not consider, at this stage, the possibility
of a variation such as

. (¢
u=qsin (;7‘ t),
for then
c
KUy = ace'™" cos (:—c_“ t) s

which, when n differs from zero and is less than unity, is small but is not of
the same order of small quantities as xu; it is finite if n=1; and it is large
when 7 is greater than unity.

40. Within these limitations, we take the most general small variation
of the integral. Let the upper limit be varied to ¢ + «T), and the lower to
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t, + xT,, where T, and T, are finite quantities independent of one another,
though « and » may possibly be subject to limitations at ¢, or at £, or at
both £, and %, for such variations. Denoting the modified integral by I,
we have

4+ T, t
1-I= F(z+ ru, y+xv, &+ cuy, y1+/w1)dt-ft F(z, y, 2, y) dt.

to+xTo

Then, for a maximum or for a minimum, the magnitude I—1 is to have a
persistent sign, whether « be positive or negative, and whatever functional
values be assigned to the functions » and v, independently of one another.

The right-hand side is
t,+«T, t to-+xTy
f +{ -—f }F(x+/cu,y+rw, &, + Kuy, Yy + xv;) dt
B ) to

-U.

t
__fto F(z, y, z,, y,) dt.
Now, as in § 32,

4T,
f F(z + xu, y + kv, 2, + xuy, 3y + v)) dt = T, F® 4+ RO,
LY

where F denotes the value of ¥ (z, y, @, %) when ¢=1#,, and R® denotes an
aggregate of terms of the second and higher orders in «. Similarly
to+eTy
f F o+ xu, § + 10, &+ Kth, 93 + kv,) dt = €T, FO + RO,
t

where F© denotes the value of F (=, y, @, v,) when ¢ =%, and R® denotes
another aggregate of terms of the second and higher orders in «. Also

4
Lo {F(@+ cu, y + kv, 3+ cuy, $o + wvy) — F (2, y, 21, 1)} dt

by oF oF oF oF
=l€f (u—i3—w+”537+u1%:+015_3/1

where R denotes an aggregate of terms of the second and higher orders in &,

arising out of the expansion of F(x+ xu, y + «v, &+ kuy, ¥, + «v;) in powers
of . We thus have

I—I=r{U+T,Fo — T,Fo} + K,
oF oF
U= f + o +vlayl)dt

E=R®—Rv +R.

Here U, Fv, Fo, T\, T, are independent of «; and the quantity K is the
complete aggregate of terms of the second and higher orders in «.

)dt+R,
[

where

and

When regard is paid to the smallness of the arbitrary constant «, so that
K becomes negligible in comparison with non-vanishing terms of the first
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order in &, the value of I — I is governed * by the quantity

x{U+ T\ FY — T, Fo}
when this quantity does not vanish. In the latter event, the value of I —1T
can be made to change its sign by a change in the sign of «: that is, I— 7

does not have a persistent sign, the prime condition for either a maximum or
a minimum,

It follows that, in order to secure our aim, the quantity
U+ T, Fo -T,F@

must vanish. It must vanish for all admissible variations, separately for
each however arbitrarily chosen, and collectively in all combinations. For
the present condition, the latter requirement is fulfilled if the former require-
ment is fulfilled, because of the linear character of the expression in the
quantities u, », T}, Ty; and therefore it is sufficient to require that the
quantity shall vanish for every admissible variation separately.

Two critical equations.

41. The expression, denoted by U, can be modified throngh integration
by parts, such integration being possible because the subject of integration is
continuous through the range. We have

t  oF oF b d (OF

ot de=[wae] o= v Ga) &

t. oF oF % 4 d (OF

S AT (AR
and therefore

4 oF d (oF\) oF d (oF oF  oF%
v-fo e fe-a @ -GG e [ i FilL
The whole expression for U now consists (i), of an integral, which involves the

arbitrary variations w and v but not their derivatives: (ii), of terms at the
upper limit: (iii), of terms at the lower limit.

42. We write

oz di \om

> _OF _d F\| ‘
V=% @ (@)I

In the first place, take variations through the range of the curve such as to

vanish at each extremity; thus we might have

u=(tL—8)(E—t) (), v=>E—-)(E—t)¥ (@)

* See foot-note on p. 17.

X=y‘_i <aF>]
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where ¢ and < are regular through the range; and, simultaneously with
variations through the range, keep the upper limit fixed and the lower limit

fixed. In this case, we have

aF or
a@'; +v 5_%

zero, both when ¢=t and when ¢=1,; also 7, =0 and T,=0. Hence the
requirement is that
to
f (uX +v¥)di=0.
t

fo
First, take v =0 throughout; then we must have f uXdt=0 for all values
2!

of u. If X, which is independent of » and of v, does not vanish everywhere
12}

along the range, then [ uX dt can be made positive, by taking u positive
4

when X is positive, and « negative when X is negative; and it can be made
negative, by taking u negative when X is positive, and u positive when X
is negative, choices that are admissible. These possibilities must be ex-
cluded ; and the exclusion is possible, only if

X=0.
A similar argument leads to the necessary result that the equation
Y=0
must be satisfied. Hence, from the foregoing requirement, we have
X=0, Y=0,
as necessary equa,tions, and when these are satisfied, the integral in the

modified expression for U vanishes, whatever admissible variations » and v
are adopted.

It will appear that, if the limits of the integral are not given as definitely
fixed by the data of the problem initially, they are definitely determined by
other assigned conditions. When the limits are definitely fixed, we have
T,=0and 7T,=0. In the alternative when they have to be definitely deter-
mined, then, as soon as this determination is achieved, we have 7} =0 and
T, =0. Accordingly, in any event, we can take T, =0 and 7,=0; and so no
condition accrues from the terms involving T} and T,

43. It therefore remains to secure that the magnitude

shall vanish at the upper limit and at the lower limit, independently of one
another.

Various inferences are drawn, according to the various terminal data that
are given. If the range of the integral terminates, not merely in a fixed value ¢,
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but in a fixed point giving values of z and y that are not subject to variation
at that point, then » =0 and v =0 at that extremity; and the terms, thus
vanishing, provide no condition that is new. If the range of the integral
terminates in a point that is required to lie upon a given curve represented
by some equation such as
g (@ y)=0,

then the varied extremity & + xu, y + #v also lies on that curve; thus at the
extremity, we have from the geometry

o9, .99 _
L3 +v @ =0,
and therefore we have
oF og oF og

thus providing a condition that is new. But it is only a terminal condition;
and therefore it can be expected to prove of use for the determination of
arbitrary constants which have arisen or may arise.

Similarly, the same type of equation is satisfied at the other extremity.

Note. This relation
0F 89 OF dg _

to be satisfied at a mobile extremity (not determined by initially assigned data which
require =0 and v=0), is in actual agreement, though superficially not in formal agree-
ment, with the relation obtained (§ 34) for the special variation. To harmonise the two
forms, we note that

F"‘zlf(xﬁ’/’ 3/)»

=
ayl ayl ]

80 that

and therefore
oF oF
(51 (-gl=“’1f(w)—3/1@
that is,
F_.
v
The form of the relation, for the present type of weak variation, thus changes to
(f—-y’ %\o9 _ of og_

%)%y oy ox %
which is the form for the other type.
The two equations are equivalent to one characteristic equation.

44. It follows that, in order to make the terms in I — I which involve
the first power of « (the first variation of I) vanish, we have two kinds of
conditions to be satisfied. The one set of conditions belongs to the limits
we must have
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at each limit. The other set of conditions persists throughout the range of
the integral; the two equations
X=0, Y=0,
must be satisfied everywhere along the range.
But when the identity satisfied by F is taken into account, these two

equations are equivalent to a single equation, in virtue of which both are
satisfied. This claim can be established as follows. We have

1 9z, ke on
Differentiating this identity with respect to #; and to y, separately, we find
o°F oF o°F 8211’

% on T Wamoy,~ O P amoy, t oyl
Hence
lep 1 @F 10F_
7y oz, Y a-'lf'layl z? 33/1
when we denote the common value by P, a critical quantity that recurs

through the whole investigation.
We have
4 (EE’) _OF - oF +8’F °F
t \Ox,) Owox, ' dyox, 4 ox? @+ 0,09, Ye
_F _ oF
= fwom 0y o,
The same identity, when differentiated partially with respect to =, gives the
relation

h—% (xlya - -'11'23/1) P,

oF _ 82F oF

Hence
oF d joF
*= ow - dt (axl)
*F oF
=4 {39033/ oy oz, + (@Y — 2aY) P} = -y, &,
where
o°F 2F
€= oyox, owdy, (@2 — @) P.
Similarly
oF d /o
Y— a—y -— Zt a—‘% = -’01@,

It therefore follows that the two equations X =0and ¥ =0 are satisfied in
virtue of the single equation

@®=0;

and this is the characteristic equation.
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45. Sometimes it is convenient to take the equation ¢8 =0, sometimes the
equation X =0 or the equation ¥'=0; and sometimes it is convenient to
retain both equations. Moreover, the two relations

X=-y¢ Y=5¢,

have been deduced by means of the permanent identity affecting the form of
the function, and without reference to the subsequent requirement that the
first variation of I shall vanish,

The integral in the former expression for U is

ft‘ (uX +oF)de
o

t
=ft (zv — y,u) @ dt.
If then we write ’

[
W=J’t., (2,0 — yyu) &dt,

and if we assume that the terms at the limits vanish—as, from the foregoing
argument, they are bound to vanish—we have

I-7I=«kW+K,,
where K, is the aggregate of terms of the second and higher orders in the
small quantity «.
Covariantive character of P and .

46. We at once have the important properties that, whatever independent
variable be chosen, P is a relative covariant, and & s an absolute covariant,

Let t and 7 be two distinct independent variables, so that (as in § 38)

dz d
F(w, y’d_T’ H—g’) AT =F(x, y, z,, y,) dt;

and write i
z dy\ _ _
F(x; y;d—]'n ET)_F} F(.T, :% &y, yl)—F7
dz _ dy d*x _ dy
W—Xh d_yr— Yl: d——P—Xz’ dTg“ 2>
dt
ar=#*

so that u is a variable quantity in general. Then
X, = My, Y,= My, F= uF.
Also
oF _OF oF _oF
0X, oz’ 0Y, oy’
o*F o F

0X,0%, "~ amoy,’
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and therefore

T XY, 0X,0Y, @\ xy, 0zmon

shewing that P is a relative covariant.

1 o*F 1( 1 B’F)’

Again, we have
Xo=p(pts+ ma), Yo=p(pye+t )
and therefore
XY, -X,Y.= # (901% - wzyl)
Also
*F _o°F O°F  *F
0x0Y, oxdy,’ 0yoX, Ooyom,’

so that
¥ #F _XY-XV #F _o
oyoX, oxdY, XY, oXpY,

shewing that € is an absolute covariant.

In what follows, it will appear that the permanence of the sign of P
throughout a range is of fundamental importance as a test. The independent
variable is assumed to increase continually throughout the range; hence, at
any place, dt and d7" have the same sign, and so w is positive. As

P=%R
the signs of P and P are the same; a test, as regards permanence of sign in
P, is unaffected by the change.

Further, as the characteristic equation is thus essentially unaltered by
change of the independent variable, we may change that variable after the
equation has been constructed, should advantage accrue from any particular
choice. Later, it will be found convenient (for some purposes) to choose the
length of the arc measured from some fixed point as the variable, especially
if intrinsic properties of the characteristic curve, or of variations from that
curve, are under consideration; the change can be made after the characteristic

equation has been obtained.

Two quantities continuous in passage through a discontinuity.

47. One important theorem can be established for the subject of integra-
tion in the case of a maximum or a minimum, when some of the assumptions
already made as to continuity of arguments are not satisfied, viz.

Should the characteristic curve suddenly change its direction at a free place,
that is, a place unhampered by conditions as to fizity, the quantities g—f: and %'
1

1

suffer no discontinuity in value,
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As there is a sudden change of direction, y, or «, or both ¥, and &, must
suffer a sudden discontinuity in value there. Let such a place be T'; and sup-
pose that the curve possesses no singu-
larities in the immediate vicinity. Take
a point ¢y, near 7' between T' and t,, and
another point #, near 7' but between T
and ¢,; the direction is taken continuous
from ¢, to 7', taken continuous also from 7'
to &, and it undergoes a sudden change
in passing through 7.

Let the limiting values* of g—ﬁz and
1
oF . . to
e as t, approaches indefinitely near 7T'

in the range ¢,T be denoted by

("’_If) (Qf) .
ox/+” \oy/+’

and let their limiting values as ¢, approaches indefinitely near 7 in the range
T't, be denoted by
) G
ox,/ " \oy)_-"

Take a variation of the characteristic curve such that =0 and v = 0 along
tota, and also along #f; ; as the arc of the curve itself is continuous between ¢,
and #;, we can take
u=@E—0)0C—t)d@), v=_>—2t)({Et—t)¥(t),
within that range, where ¢ (f) and () are arbitrary regular functions of ¢
which do not vanish at 7. The first variation of the integral I is to vanish;
taking account of the fact that u and v vanish (for the present variation)
between ¢, and ¢, and between ¢, and ¢, we have the analytical condition (as
in §§ 41, 45)
T (b oF oFT oF  oF %
{Jt,+JT} (zv — yyu) @dt + [ua—wl+va—yl:|tz+ [u;ﬁ: +v§§;JT=O.

Now @ =0 everywhere along the characteristic curve; thus the integral from
t,to T, and the integral from 7 to ¢,, vanish. Also

oF oF T oF oF
[u a—wl +v a—letg = uT(é;l)— + vp (3-3/1)— ’

(6 o5l Ga). ~ oo G,

The condition therefore becomes

(). ) o) - (2o

* It is assumed that each part of the curve yields a limiting value for each of the two derivatives.

and
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The quantities xp and vy are arbitrary ; their values can be chosen, each inde-
pendently of the other, and distinct from zero. Hence the condition can be
satisfied for all such quantities, only if

(o)~ G5, (o)~ G,
Thus the proposition is established.

But the property that gg and 8_31;_' are continuous in value, even if #; and
1 1

% are not continuous in value, in passing through any place, can be inferred
solely if the place be free. When the place is fixed by external requirements,
both up and vy are zero: the condition is then satisfied without leaving a
residuary relation.

Ez. 1. Let it be required to find the shortest curve passing through three fixed points
4, C, B, not in a straight line.

The characteristic curve is always a straight line ; so the shortest
curve will consist of two sides of the triangle 4BC. If the two sides
are AC and OB, the limiting conditions arise from

Ug [—il—:l - U [——w‘—{l A B
(-”12+?/12)% ca (@2 +y:%2 Jen

k4! K2 ] _
+, o J1 -y | ————— =0.
¢ [(xnz’l'!/lz)é] ca ¢ [(‘”12"'?/12)% cB

But ;=0 and »,=0 in the present instance; the conditions at € are satisfied without
limitation.

c

Ezx. 2. In the case of a curve, rotated about the axis of 2 and providing a minimum

area for the surface of revolution (§ 30), we have
F=z,.9(1 +y D=y (e +yd)k.

Therefore, at a free point,

Y Y4

(‘”12"'.%2)’} ' (‘7’12"'.712)% ’
suffer no discontinuity in value, in passing through the point. In particular, the curve is
y(1+yH~i=0;

that is, if there is a sudden discontinuity in direction, ' is unaltered when the point is
passed.

An exceptional case was noted, when the two limiting points were on opposite sides of
the axis; the catenary could not be drawn. But the possibility of the catenary has
assumed a finite non-zero value for 0. We must then consider C=0: that is,

Yy =0= ¥ .
Q+yt (et}
Before reaching the axis of x, we must have ;=0 or y=w; the curve is the straight
line perpendicular to the axis of z. When it reaches the axis, the equation is satisfied by
=0 and z, not zero; the curve now lies along the axis. At the point of change, which is
free from external conditions, there is a discontinuity of direction while the (zero) value of
the constant is unchanged.

Similarly, in passing to the other extremity taken, in the present case, to lie on the

other side of the axis, the remainder of the curve is the ordinate of that extremity.
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The number of discontinuities of direction in a finite range is limited.

48. One important inference can be made. The result shews that a place
may exist within the range of integration at which there can be discontinuity
of direction and that, at such a place, g%' and 3% are continuous, if the place

1 1
is not absolutely fixed. In order to establish the result, it is necessary that
the place should be isolated as a place of discontinuity in direction ; for it has
been assumed that, on either side of the place as a position on a continuous
curve, full small variations xu and «xv are admissible, whether the place be
absolutely fixed or not.

But there is nothing to restrict the number of such places in any range to
a single unit; the general necessity for any such place is isolation. Accord-
ingly, there may eist a finite number of places within a finite range of inte-
gration at which discontinuity of direction may occur; each such place is
isolated. The number of such places within a finite range cannot be infinite ;
if it were unlimited, there would be concentration of a countless number of
discontinuities at one or more of such places, and then a place of concentra-
tion would not admit solely continuous small variations xu and «v at each side
along the curve.

The primitive of the characteristic equation.

49. The characteristic equation @ =0 is, effectively, the former §17)
characteristic equation ¥'=0; the reduction can be made as follows. We have

oy, ) =af(5902) =@y y);

hence
oF _of  @F _ &f
0y, oy’ Owdy, oxdy’
OF ¢ %o _ o
oz, —wlay'_f_yla—g/”
#F _of , Bf
oyom, oy 7 dyoy’’
thus
*F _oF _of &f , &f
dyox, owdy, oy omdy < dyoy’
Also
or_1of
oy z y*’
so that » Y
C1eF 1%
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Again,
d, &\ _TYh— T,
Zi‘t(y)'dt( )" ’

5_'*': a?
hence, when « is made the independent variable,

v d / 1Y — T2l ,

_W_1d n_
y_dm_wldt(y)_ z®
and therefore

1 ag
(@ — 2) P = @'l,:
Consequently
eF _oF _ _Y_¥ O
oyow, 0x0Y (@~ aatn) P = oy owoy Y yoy ~ Y oy
_Y_a (?Jf
oy dw ay’) ’

establishing the exact equivalence of the old characteristic equation and of
the new characteristic equation.

The old characteristic equation was a differential equation of the second
order in y, with # as the independent variable. Its primitive contained two
arbitrary constants, which were to be determined by two assigned data such
as an initial value of y and an initial value of g’ for an initial value of 2.

Initially there are two equations, in the new investigation, for the deter-
mination of # and g, viz. X =0, Y =0, in each of which z, and ¥, occur raised
only to the first power. When z, is eliminated, we have some relation such as

Y= e (x: %1, Y 3/1)-
Two derivatives of this, and subsequent elimination of = and #,, lead to an
equation of the fourth order in y alone; its primitive involves four arbitrary

constants. When this value of y is substituted in y,=® and in y; = %‘? ,and z;

is eliminated, we have z expressed as a function of ¢, the expression involving
those four arbitrary constants.

But the four constants are not essential for the equation of the character-
istic curve in terms of z and y alone. Thus, as ¢ never occurs except in a
differential coefficient, the quantity ¢ must occur in the primitive in a form
¢t— A, where A is an arbitrary constant; and 4 will disappear with ¢, in the
olimination of ¢ when the equation between & and y is obtained. Again, as
initial conditions, we may have initial values of z, @1, ¥, » given for an initial

value of t. But y’ = % , and so these two constants for ¥, and @, merge into a
1

single constant for y'; and the two initial constants for # and y become, for
the equation in # and y, an initial value of y for an initial value of #. Thus
when we pass to the final relation between z and g, there will survive only
two arbitrary independent constants, although in the initial form of the
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primitive of X =0 and ¥'=0, giving the most general values of # and y as
fanctions of ¢, there are four arbitrary constants.

Moreover, because X = — 1@, Y=, the primitive either of X =0 or
¥ =0 could lead to the primitive of & =0; and a first integral of either
would lead to a first integral of @ =0. It thus appears that, in practice, the
integration of either X =0 or ¥ =0 would determine the curve : but, for the
derivation of further results, it is convenient to retain both the equations.

Finally, unless there is express warning to the contrary, it is assumed (as
stated in § 12) that the functions z(f) and y(¢) are analytic functions of ¢,
so that they are continuous in variable and in parameter, are differentiable,
and are one-valued along a finite range or in each one of a finite number of
portions of that range.

The * second’ variation of the original integral.

50. Now that the terms of the first order in #, which occur in the ex-
pression for I — 7, have been made to vanish, we must consider terms of the
second order in «, so as to determine the necessary and sufficient conditions
which shall secure a permanent sign for the aggregate of those terms for all
admissible variations. We may write

4
I-I=xU+4x*| Odt+K,,

to

“( OF oF oF . o\,
U=f¢,(u%+v@+%3z+vla?/:)dt’

where, as before,

here K, denotes the aggregate of terms in I — I, which are of the third and
higher orders in «; and

*F o°F LOF
0= ulza_xl;+ 2u, v, 50y, + v i
*F *F *F *F
+ 2um, Oxom, +2un, 00y, + 20 0y oz, +2m, oyoy,
oF o*F 0*F
+u’a? + 2“7)%4‘?)2@.

As the first variation has been made to vanish, when the characteristic curve

is adopted and the boundary conditions are used, the terms of the second

order now govern the sign of I—1I; they are often called the ‘second’ varia-
¢

tion. We proceed to modify the expression for J Odt, on the assumption
23

that the first variation vanishes; so we substitute the values of z and ¥ in

2 2
the coefficients %, e g;{', which accordingly may now be considered to be
1

functions of ¢ alone,
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Further, instead of using » and v separately, we find it convenient to

introduce a quantity w, defined as the combination
w=ax0 — Y,

As the point (z, y) is displaced to (z + xu, y + xv) by the small variation, the
quantity « (z* +y{")_é (#,v — yyu) is the distance of the displaced point from
the tangent to the characteristic curve at the undisplaced point. Because w
thus measures that distance, we shall call xw the deviation due to the varia-
tion. The vanishing of w means that the point is merely displaced along the
curve; when this deviation vanishes everywhere, the ends being fixed, then
there is no new curve obtained from the variation: in such an event, we
should expect the second variation (and every other variation) to vanish.

Relations among derivatives.

51. We have already obtained the relations
1@F__ 1 @F _10F_
yRom?® &y, 0m0Y, %oy’
Thus the first line in the preceding expression for ® can be written
P (z,0,— ylux)”~

From the characteristic equation & =0, we have

a—aa—:ai% + &y, P= 5%%1 + 0P,
and we introduce three quantities L, M, N, by the definitions
53:—8% =L +y,9P
ggy—l =M -y, P
53551% =M~ y,z, P 8
8?/281’;/, =N+ x,2, P

Thus the second line in the expression for @ can be written
2 {Luyug + M (0, + v1U) + Nvy 03} + 2P (210, — y1) (220 — o).

Next, we write temporarily

oo F dL
8_.w§=A + ny-i—Et- ,
oF aM
soay = B~ P+ 5
o F dN
ay2—0+ wQZP’I'*%.
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But, by partial differentiation of the identity

or oF
F=.’Bla?1+yla—yl

with regard to z, we have
oF _ L+y M,
aw - xl yl ’

whence, differentiating completely with regard to ¢,
2 2 2
g$1+%yl+%%+a%yz=sz +sz+w1%+yl%[,
or, on substituting for the second derivatives of F,
znd +y,B=0.
Differentiating the same identity partially with regard to ¥, and proceeding
in the same manner, we find

zB+y,C=0.
Hence
4__B _C_
W N -y @t ’

introducing a new symbol @ to denote the common value* of the three
fractions; and so we now take

2 F
a y12G+ y22P +il.;

0aF de
oF aMm
W=—x,y1G—w,ng+d—t .
or y

d
aya': 222G+ @'22P+Tt

Thus all the second derivatives of F, ten in number, are expressed in terms of
five quantities P, L, M, N, G.
Normal form of the second variation.

52. When these expressions for the derivatives of F are substituted in 6,
and the terms are suitably collected, we find

0 =P {(mv, - yro) + (mv — yu)P + G (5,0 — g u) + (%(Luz + 2Muvy + Nvo)
= Puw?+ Gu? + ‘% (L2 + 2Muw 4 Nv?).,
Denoting by H, a quantity at our disposal and not involving w, we have
0O = Pw,® — 2Hww, + (G — H)) w* + ‘% (Lu*+ 2Mup + Nv* + Hu?),

Now let H be so chosen, that Puw,? —2Huww, + (G — H,) w* is a perfect square
qua function of w and w, ; thus

H'=P (G- H,).

* As z, and y, do not simultaneously vanish, this common value is finite.
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In this relation, let
H=P2
z ?

where z is a new variable in place of H. After reduction, the equation for 2

becomes
Pz, + Pz, — Gz=0,

which, as P and G do not involve z, is a linear equation in z of the second
order. To this equation we shall return later; meanwhile, for such a value
of z,

Pw? —2Hww, + (G — H)w*=P (w1 - ? w)z,
and therefore
z \* d 2
®=P (wl-- —w) +—(Lu2+2Mm)+Nvﬂ+P— w*).
z dt z
Thus
4 ¢ PRY 2 ¢
J @dt=/ P(wl—;‘w) dt + [Lu2+2Muv+Nv’+P;‘w’:| ,
t t

23
the last term being taken at the limits of the integral.
Note. It might appear as if, when taking solely the combination
w=omv— YU

" in the construction of the modified expression for ®, a limited part of the
small variation were taken into account; and that a combination

T=xu+ypv

also ought to be considered. The quantity w measures the normal deviation

caused by the small variations xu and «v; the quantity 7' measures the tan- -

gential sliding due to the same source. Though T will cause no change in the
shape of the curve and therefore no apparent variation, it is not at first sight
analytically clear that T' should disappear from the expressions.

That T does so disappear is seen from the fact that ® has been expressed
in the form

P (20 — gty + @y — yulP + G (10 — ru) + g—t(I/u’ + 2Muv + Nv?),
where P, @, L, M, N do not involve u and v; and this expression becomes
Puwg+ Gu? +dit (Lt + 2Muv + Vo),

t
so that the integral J O dt becomes
t

6 t
f (Pw? + Gu?) dt + [Lu,2 + 2Muw + N v"] .
% %

Now
w(@+y)=—ypw+anl, v@+y)=aw+ul,
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so that the quantity T could only occur at the limits, if at all. At each of the
limits, « and v (by given data, or after limits have been fixed from given con-
ditions) vanish, so that w and T vanish at each of the limits. Thus P disappears
altogether from the expression of the second variation when the combination,
denoted by w, is used.

53. The preceding expression for ®, which is of fundamental importance
for the second variation of the integral 7, can be established also as follows by
somewhat different analysis.

Let, if possible, quantities a, 8, y be determined so that the magnitude
PB-P % (a? + 2Buv + y1?),

manifestly homogeneous and quadratic in u, v, u;, v,, is a perfect square, which
- o°F o°F @pF
h - 2 aF
(after the values of oz’ dm0g,” 33/1’) must be
{P (zv, — ht) + pv — AUl
The necessary conditions are

o*F
Mi=L +9,9,P—a M=P =5 — Py
Ay =M—zy,P-5 »F
) —Au=P_— -~ P .
—uth=M—yz,P -8 #=2 oady ’3‘?
pry=N+z2,P —y #,=P%IZ' — Py,

From the second and third equations in the first set, we have
Az, — py, = (-Z'lyn — ) P
and therefore we may take

X=sz+y1p, I-"=wsp+w1P:
so that
P(a:,'v,-—_'y,ul)+/.w—7w=Pw1+pw.

The first set of equations now reduces to

a=L-y’p, B=M+ayp, y=N-ax,
so that
aw’ + 2Buv + ov* = Lu? + 2Muv + No* 4 puy,
The second set of equations now gives
? o F dL
7% (%—Pl) =5 T ‘%QP_d_t’
_ PP\ _*F am
“'1?/1 (P Pl)‘-away"‘-’l"syzp—% E}

? o*F d
N (%_Pl) =5? - w“gP_TJtV.
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Hence there exists a quantity G, such that
2

EP_P1=G§

. . . oF o*F o°F
a result in exact accordance with the expressions for W w0y’ Oy deduced
from the identity satisfied by the form of F when account is taken of the
characteristic equation. As regards this equation for p, let

—-_ pAa.
p= Pz’
then
Pzy+ Pz, — Gz=0,

the same equation as before. Gathering the results together, we obtain the
expression for @, given by

@—%(Lu2+ 2Muv+Nv’+P%‘fw’)=P(wl—§w)’.

54. Before discussing the significance of the form obtained for the second
variation, it is worth while to note assumptions which have been made, overtly
or tacitly.

The variables z and y, as functions of ¢ determined by the characteristic
equation, and the quantities v and v, vary continuously. The variables z, and
4, vary continuously ; but places may occur on the characteristic curve, where
the ratio /2, suffers a sudden discontinuity in value. Between such a place
and each limit of the integral, and between every two consecutive such places
(if there be more than one of them), these assumptions hold and the analysis
is valid. The number of such places (if any) within a finite range of the
integral must remain a finite integer.

The original integral involves no derivative higher than the first, and
therefore is formally unaffected by possible discontinuities in a, and y,. These
quantities occur in the characteristic equation ¢ =0, as, of course, also in
X =0and Y=0; and their continuity is assumed, as also is a tacit assump-
tion that w, is continuous. But the quantities u, and v, do not occur in the
analysis, even by implication, although u, and v, are assumed continuous ; yet
such quantities arise, if the curvature of the varied curve has to be considered.
Thus there might be a continuous varied curve, which is continuous also in
direction, but which might have violent discontinuities of curvature at any
number of successive points; for instance, any portion of the characteristic
curve might be divided into very small arcs, and semicircles on these arcs in
succession might be constructed on alternately different sides of the curve.
Such possibilities must not be ignored; they belong, however, solely to the
variations imposed upon the characteristic curve and not to the curve itself.

In order that the varied curve may be continuous, % and » must be con-
tinuous. But for such a curve, », and v, are not necessarily continuous, merely
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because u and v are continuous; thus the varied curve might be sharply and
rapidly serrated. For such variations, the preceding analysis is not valid; yet
such variations must not be ignored : again, they belong not to the character-
istic curve but to the imposed variations. For variations which thus (or in

other respects) deviate from continuity, a ditferent analytical calculation must
be effected.

The more obvious occasions, where such deviations occur, arise at fixed
points, where u and » are bound to vanish : terms
P
Lu”+21&[uv+l\fv’+P;1 w?

vanish at such places.

Discussion of the normal form of the second variation.

55. We now return to the expression for the second variation, given by
2
[odt= [P (w,—2w) dr+ [Lu=+2Muv+Nm+P§wz],
taken between limits.

If none of the preceding types of discontinuities occur in the whole range
of integration, the integral extends from #, to #. In this event, we may
assume (after the discussion of the first variation of I) that the limits are
fixed, and that therefore u, v, w vanish at each limit. The terms at the

limits then vanish ; and
ot

2z \?
J P ('w1 -= w) dt
A z
is the quantity measuring—except as to the positive constant factor }x*—
the second variation.

If some of the preceding types of discontinuities do occur and are subject
to the prescribed limitations, we suppose the range to be made up of a finite
number of sub-ranges, each sub-range extending from one such place to the
immediately consecutive place. At each place, the limit terms vanish, and
the whole second variation is the sum of the second variations

fP ('wl - Z;‘ w>2 dt

for the successive sub-ranges.

In the former case, the tests will apply to the whole range; in the latter
case, they will apply to each sub-range separately and thus, cumulatively, to
the whole range.

We thus have to deal with the magnitude

A=fP (wl—Z;‘uJ)zdt,
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over the whole range, or over the aggregate of the sub-ranges taken separately.
With the assumptions made, the second variation of I is 3#?A; and therefore
its sign is determined by the sign of A, while it can vanish only if A can
vanish,

The sign of A, which is to be permanent for all variations w that are
2
admissible, depends upon the quantity P and upon the quantity (wl - %w) .

In the latter, z is an integral of a definite linear differential equation, while
w is (within a broad range) at our arbitrary disposal; the quantity therefore
is always positive, unless it can be made zero by a choice of w. If then z is
such that, consistently with the conditions, we can choose w = mz, where m
is a constant, and the choice is valid over the whole range or over part of
the range, then the quantity is zero for the whole range or for that part.
In the former case, we should have A =0; in the latter case, by choosing w
to be zero throughout all the range except that part, we again should have
A =0. The second variation of I then vanishes for that small variation or
combination of small variations; we should no longer be in a position to
assert a permanence of sign for I— I as derived from the coefficient of «?
It is therefore desirable, where possible, to exclude this chance: and such
exclusion will depend upon the character of the quantity 2, that is, upon the
primitive of the equation
Pz, + P2, — Gz =0.

The Legendre test.

56. In the first place, we consider the effect upon A of the sign of P. If
P be sometimes negative and sometimes positive, then

(i) by choosing w zero where P is positive, and different from zero
. (or from mz) where P is negative, we can make A negative: and

(ii) by choosing w zero where P is negative, and different from zero
(or from mz) where P is positive, we can make A positive:

that is, variations can be chosen at will which make A negative or A positive.
This possibility must be excluded; as it depends upon having different
signs for P in different stretches of the range, this previous possibility must
be excluded. Hence P must not change its sign in the range: consequently
P must not pass through the value zero and change its sign in doing so, nor
pass through an infinite value and change its sign in doing so. A zero value of
P at some place, without a change of sign, would not be excluded by this con-
sideration ; but owing to the differential equation satisfied by z, it is desirable
to exclude even that possibility. Similarly as regards any infinite value of P
without change of sign in passing through such a value, quite independently
of the assumptions concerning the continuity of the quantities that occur.
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We therefore can summarise the results by the following requirement :

In order that the integral I may acquire a mazimum value or a minimum
value, the quantity denoted by P must never vanish within the range.

Manifestly this is the Legendre test.

The subsidiary characteristic equation.

57. We now must deal with the equation satisfied by the quantity z, viz.
Pz 4 Piz,— Qz=0,
especially with reference to the foregoing requirements. We shall suppose
that the Legendre test is satisfied, so that the quantity P remains finite,
continuous, and distinct from zero, for all values of ¢ within the range; thus
P can be regarded as a regular function of ¢ for all such values,

Further, suppose that G' does not become infinite within the range. As
B 0

@ is the common value of the three equal fractions Ag, ——, —,and as
¥ oy o

2, and y, do not simultaneously vanish-—otherwise g‘—: would vanish—we

then have the requirement that 4, B, ¢ do not become infinite, a require-
ment usually satisfied in consequence of all the preceding assumptions as
regards F, «, and y.

Thus the ordinary linear differential equation of the second order for z
has all its coefficients regular and finite for all the values of ¢ within the
range, these coefficients being known functions after the (presumably) known
values of # and y as functions of ¢ have been inserted. For such an equation,
the customary existence-theorem* yields the following result:

An integral of the equation exists, which is a regular function of ¢, and
which is uniquely determinate by the conditions that, for any assigned
value of ¢, the variable z acquires any arbitrarily assigned constant value
and its first derivative 2, acquires any other arbitrarily assigned con-
stant value. Moreover, the two arbitrary constants occur linearly, so
that z is of the form

z=c¢ () + Y (),
where ¢ and ¢’ are arbitrary constants, while ¢ (£) and + (¢) are regular
functions of ¢.

58. If this method of determining z is adopted, we have to integrate a
linear equation of the second order. We already have an equation, not linear,
of the second order, @ =0 (or the equivalent equations X =0 and ¥ =0).
We now proceed to prove that, when the primitive of the characteristic
equation is known, the primitive of the z-equation can be deduced by direct
operations involving no quadrature.

* Bee my Theory of Differential Equations, vol. iii, § 209.
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As the second variation is to be a criterion for the possession of a
maximum or a minimum by the characteristic curve, the values of # and y
occurring in the coefficients in that variation are the values satisfying the
characteristic equation, that is, satisfying the equations X =0 and ¥ =0.
When # and y are submitted to small variations «u and «v in general, let
X become X, ¥ become Y, and @ become E. Then, as X = -y &, V=&,
we have

—X=(p+s)E, Y=(2++u)E,
and therefore
X -X)=y,(E—@)+x0E, Y- Y=g (E—&)+ruE,

so that
@n-pu)(EB-@) =X -X)+»,(Y-TY)
Now i oF
or 0
X= w dt (&w,)

and therefore
oF o°F o*F o:F o'F
—5.'5+K(u5.7_5§ +”aw—a§+“‘amax,+”lawayl)
_d [oF (uﬂJ, eF T _W_)
dt |ox, oxom, ' oyom % ow? ' ox,0y

the unexpressed terms being of the second and higher orders in «. When
these higher terms are neglected, because of their relative unimportance
owing to the smallness of «, we have

ey

32F oF P oF
X=X = e (u s+ 0+ T, * )
LA ORLe e A c e )
K dt 0z 0z, ayax ttz— Frx + U — al;layl
Then
oF 2F
05 G =~ WP @t =) =~ P (s 0+ ),
so that
oF 0 F oF orF
“awaw, +v 5‘;/‘3;1‘" U Fry] +o Y i ull +vM — y, Pw,.
Also
o°F o02F
b 0z 0z, T4 dxdy, = L+o,M+yP (wy —un);

and therefore

F dL oF dM d
X—X=x{u (a? -—Ei-—y;P> (8 ay o +w2ng) +y‘c_lZ(Pw’)}

d
=Ky, {— Gw + p (Pwl)} ,
by the results obtained in § 51.
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Proceeding in a similar manner, we find

Y- V= ks, {Gw - %(Pw,)} .
Hence
(@0 — yu,) (B — @) = k (2,0 — 1,%) {Gw - %(Pwl)} ,
and therefore

d
E—QB=m{Gw—-(Tt(Pwl)}\.

Now the quantities # and y satisfy the equation € =0, that is, also the
equations X =0 and ¥'=0; and they involve arbitrary constants which are
completely independent of the characteristic equation. Let small arbitrary
parametric variations be imposed upon these arbitrary constants, and let the
consequently varied values of # and y be #+ «£ and y+ &9 respectively;
also, let *

E=zm —y.,
so that ¢ is the consequent value of w. Just as z and y, when substituted,

make & =0, s0 z + £ and y + «7, when substituted, make E=0. We there-
fore have

6t - 5 (PL) =0,

where «£ and «7 arise as the small variations of z and y, when small para-
metric variations are imposed upon the arbitrary constants in the values of
# and y that constitute the primitive of the characteristic equation. The
equation for ¢ and the equation for z are identical; and therefore we can take

z=4¢.
The quantity ¢ is known, by direct operations upon « and y through these
small parametric variations of the most general kind imposed upon the

primitive of the characteristic equation; thus z, that is, the integral of the

equation
Pzy+ Pz~ Q2=0,

can be regarded as known when the primitive of the characteristic equation
is known.

On this account, the linear equation for z (and {) is called the subsidiary
characteristic equation.

59. The expression for the second variation now becomes, on omitting

the factor {2,
[edt =[P (w, —%w)idt,

with the usual limits for the integral.
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This expression can also be derived as follows, The initial form of U is

U= J‘( %If 3_54' aF+‘8y)dt

Let U be the form of u when # and y are subjected to the small variations
z+ «u and y + kv ; then

U-U= ,cf@dt,

in the original form of the function ®, because the varied value of %—i—;’ is

6_F+ (ua_%{’ o0°F +u o*F v a’F)

% % ¥ dwoy T " owom, T " o)’
and so for the other terms in U. The second form of U, when account is
taken of the conditions at the limits, is (§ 41)

v=[[u {5 -GG o o - GGt
=](ux+ oY) dt;

and therefore
U- U=J{u(x_X)+v(Y_ V) dt

— fw {Gw ——~(Pw1)} dt.

Hence

fcpdt =fw {Gw —%(Pw,)} d
- ’ﬁ.{w%(Pg,) ¢ (Pwl)} dt

f i 1P (wh — tun)] .

When we integrate by parts, and in the portion outside the integral impose
the condition that » and v, and therefore also w, vanish at each extremity,
we have

f@dt= - fP(wg,- tw,) é({wl—-wé',)dt
—JP (wl—— w

An integral of the subsidiary characteristic equation® derivable from the
primitive of the characteristic equation, is necessary for this expression of the
second variation. We proceed to consider this integral in closer detail.

the former expression.

* As already seen by an example (Ex. 8, §34), the results for a particular case may be
obtained more simply by solving the subsidiary equation than by first obtaining the primitive
of the characteristic equation. The analysis, which now is to be given, relates to the general
case when the primitive is known and applies, with unchanged inferences, to any particular case.
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The primitive of the subsidiary characteristic equation.

60. The primitive of the equations X =0 and ¥ =0 leads to the (z, ¥)
equation of the characteristic curve, in which the variable ¢ does not appear.
As ¢ does not appear explicitly in X =0 or ¥ =0, one of the arbitrary con-
stants in the primitive is merely additive to ¢; it therefore is not an essential
constant for the curve. Again, the initial values of 2, and 7, combine into a
single constant (say m), as the initial value of ¥, that is, of ,/z,: that is,
these two arbitrary constants coalesce into a single constant for the curve.
Thus, in effect, there are two essential arbitrary independent constants, which
survive in the primitive whatever form be adopted. Let these be 4, and 4,;
and suppose that the expression of the primitive is

Z= ¢ (t> -Al’ Aa)’ Y= '\I"(t, An A2)~
At an initial point of the curve, let z=a, y=>0, t=¢, where ¢ may vary
from one curve to another; then, if %Lf and aa—\f be denoted by ¢’ (¢) and ' (¢)

respectively, we have
a= ¢ (t,’ -Alr Az)’ b = ‘P‘ (tlr Al: As):
¥ ()
M= 775 .

¢'(¥)
The quantity a, without loss of generality, can be regarded as non-parametric,
because the origin can be chosen at will; hence, when ¢ is eliminated, we
have

b=h(Al’ A2)> m=k(A1) Az),

where the functions % and ¥ must be independent of one another. Also,
conversely, the independent constants 4, and 4, are functions of b and m.

Moreover, we have

&= ¢(t» Aly AS): a=¢(tln Al: As),
and therefore
z—a=(@—t)¢' (t, 4., 4,) + powers of (¢ —¢');
and similarly
y—b=0-)Y (t, 4,, 4,) + powers of (t ~ ).
Hence
y —b=m(x —a) + powers of z —a,
say
y=9 (@ b m),
the expansions having been taken in the vicinity of the place (a, b).

Thus the primitive of the characteristic equation can be taken in the
general form

‘”=¢(t’ 4, 4,), y="!’<t: A4,, 4,);
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and also in the more particular form
y=b+m@—-a)+...
=g (w) b’ m)’
where b and m are functions of 4, and 4,, as 4, and A4, are functions of

b and m, the two independent arbitrary constants in either pair being the
essential arbitrary constants of the primitive.

These quantities # and y are such that the equation @ =0 is satisfied,
whatever be the arbitrary constants 4, and 4,. Let A4; and A, suffer small
arbitrary variations so that they become 4, + «c, and A, + xc, respectively,
where ¢, and ¢, themselves are arbitrary constants. The characteristic equa-
tion, now E =0, is satisfied. But the quantity «£ is the term of the first
order in « in the expansion of ¢ (¢, 4;+ «c;, 4, + «¢,), and the quantity x7 is
the term of the first order in « in the expansion of ¥ (¢, 4, + xc,, 4, + x¢;);

hence 5
£=a aj + e aj

o, o
M= 0gg T oy,
We write

x(O)=¢ O 2% ' O 23

@(t)=¢" 71 a"' -«y (t)aA
and then
E=am—y.E

= cyx (£) + ¢ (B). )
But this quantity ¢, as was proved in § 58, satisfies the equation

d
G (PL)— G =0;

and it contains linearly two independent arbitrary constants ¢; and c,.

If then x (f) and w(f) are linearly independent functions of ¢, this
quantity ¢ provides the primitive of the subsidiary characteristic equation.

61. If x(¢) and w(t) are not linearly independent, a relation
ax () + Bw (t)=0
would subsist, « and 8 being constants. Now

z = ¢(tl Ah 'Aﬂ), y= ‘!’ (t) Al: Az),

and also
y=btm(@—a)+(@—ayR(—a,b m)=g (s b m)
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where R (z — a, b, m) is a regular function of # — a, and where 4, and A4, are
two independent functions—any we please—of the two independent arbitrary
constants b and m. Now

o oy g ox 0g 0b 09 om

94, 94, owdd, T34, om a4,

1[» (¢) 09 og 9b ag om
T ¢'(t) 04, " ob o4, Bm 24,’
and therefore

xO=¢ OFF v ) 2 s

- 3_3_311 o o
=¢'(® (ab A, amaA)
Similarly - a )
g o9 om
0 ®=¢0 (5 57 9, om aA,)

If, then, the foregoing postulated relation could exist, we should have

Bg om
2 454 +‘BaA,)+ (3A1+BBA

for ¢’ (t) is not a permanent zero: that is, there would be a linear relation

between the variable quantities g—% and 36791’ in which the coefficients are con-

stant. But, as

dg _ oR
5 =1+ (@—ay =,
og R

Bm =%~ a+(z— a)za

it is clear that no such linear relation between == and Bg can ex1st hence

ob
the foregoing coefficients must vanish, and therefore
ob om om
34, B3t “34, * Bod, =

Now b and m, as functions of 4, and A4,, are independent of one another, so
that

ob om b om

04,04, 94,94,
is not zero; we must therefore have a =0 and 8 =0. Consequently, there is
no linear relation between x (¢) and o (t); and so

E=cx(®) +coo (2),

where ¢, and c, are independent arbitrary constants, is the primitive of the
subSIdlary characteristic equation.
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62. Thus y (f) and (?) are individual integrals of this equation, and
therefore

d*x 4P dy -
P+ = Gx=0,
0  dP dw .
Pt a—90=0

hence, by the well-known property of linear equations of the second order,
P <x (fi—(: - %) = constant.

Now P does not vanish with the range of ¢, the Legendre test being supposed
satisfied ; and there is no relation of the form ay (£) + Bw (t) =0, where a and
B are constants, so that the quantity multiplied by P does not vanish. Thus
the new constant is not zero and, because neither P nor y (¢) nor (?) can
involve the arbitrary constants in the primitive of the subsidiary equation, the
new constant is determinate and not arbitrary. Denoting it by C, we have
do dy
P(xG -og)=0.
We infer, from the fact that the constant C is not zero: that
(i) the linearly independent integrals x (f) anG e (f) cannot vanish
simultaneously for any value of ¢ in its range ;
(ii) the first derivatives of x (¢) and w (¢) cannot vanish simultaneously
for any value of ¢ in its range; and
(iii) no root of y (¢), or of @ (t), or of any integral of the subsidiary equa-
tion, can be multiple.

An integral Z (¢, t') of the subsidiary equation, affecting the second variation.

63. We know that every integral of the equation can be expressed linearly
in terms of x (f) and  (£), with coefficients that are independent of ¢; and any
such linear combination is an integral. Thus, if ¢ denote any particular value
of ¢ in the range, ,
Z¢t, )=o) x®)—xE) o)
is such an integral. It will appear that this function Z(f, ') is of critical
importance, especially because of its zeros. We therefore note that, effectively,
it is independent of any particular choice of fundamental integrals x (£) and
o (t) of the subsidiary equation: for, if any two others be chosen, necessarily
of the forms %y (¢) + ko () and lx (t) + Lo (), where ki, — kI, is not zero,
the new form of the function Z (¢, t') is

kyx (8) + ko (), Lx(®) +bLo(t) |,
by () + koo (t), Lx () + Lo (F)
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which is equal to (&1, — k,0,) Z (¢, t'). The function Z (¢, t') is, in fact, covarian-
tive amid all possible choices of fundamental integrals; and it cannot become
evanescent, because x (¢) and w (') cannot vanish simultaneously for any
selected value ¢ in the range.

The Jacobs test.
64 We return to the second variation of our integral 7, and specially to

the consideration of the permanence of sign of f Odt, where

f@dt=fp <w,—%w)’dt,

where now the limits of the integral are regarded as fixed values. The quantity
P is to preserve a uniform sign along the range, in accordance with Legendre’s

&

2
test; the quantity (wl ——éw) is always positive when it does not vanish.

The acquisition of a zero value, save for isolated values, must be avoided if
possible; and such acquisition can be attained if, over some continuous stretch
in the range, we could have w =«¢, where y is a constant. Let the stretch be
the whole range—the argument is a fortiors valid if it be only a portion of the
range, because we could take w=r{ over that portion, w=0 before that
portion, and w=0 after that portion. We have w=0 at the lower limit ¢,, and
therefore at the lower limit ¢ would have to vanish : that is, we should take

§= Z (t’ to)-
We know (§62) that ¢ cannot anywhere have a repeated zero; thus, in the
immediate vicinity of ¢,, we must have
&= (t—1t,) + higher powers of £ —¢,,

where  is a non-vanishing constant. Again, our quantity w is to be a uniform
function of the variable, which must vanish at ¢, because w vanishes at the
lower limit ; hence any admissible value of w is of the form

w=pu (t— t)" + higher powers of ¢ —#,,
where* n>1. In the immediate vicinity of £,, we have

Wy, — ?w =p (n— 1) (¢ — t,)"* + higher powers of ¢ ~ ¢,

a quantity which vanishes at ¢, whether n=1 or n be greater than 1. Thus
there is no infinity at the lower limit. For the rest of the range, the possibility
of w = ¢ makes

* In the text, w is uniform and 8o » is an integer; for the immediate argument, w might be
a radical. But w, is not to suffer discontinuity for values of ¢ that are considered; in that case,
the positive quantity n would be greater than unity.
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If therefore at the other extremity of the range, or earlier than that other
extremity, the selected quantity £ can again vanish, the terminal condition as
regards w is satisfied by the assumption w=+¢¢{. All the other conditions are
satisfied ; and so the second variation would vanish for the particular small
variation xw. We should not then be in a position to assert the existence of
a maximum or a minimum for the integral, because of the lack of a uniform
sign, either negative or positive, for all small variations of the characteristic
curve. To settle the doubt, we should (in the absence of other knowledge*)
then have to consider the behaviour of the third and higher variations for the
particular small variation w = «¢ under which the second variation vanishes.

But if the quantity ¢, = Z (¢, t,), vanishing at the beginning of the range,
does not again vanish in its course—or, in other words, if the range beginning
at t, does not extend so far as the first zero of Z (%, ¢,) for a value of ¢ greater
than f,—then we cannot have a variation rw, given by w =~Z (¢, t,), because
w would not vanish at the further extremity for such a variation. Over a

2
range thus limited, (w,-—éw) is always positive for all non-zero small

4

variations «w; and then f 0 dt remains permanent in sign for all small weak

variations, that sign being the same as the sign of the quantity P which does
not vanish throughout the range. We thus find the extended form of what

has been called (§ 26) the Jacobi test, viz.
The range of the integral, beginning at @ value t,, must not extend so far as
the first zero of the function Z (t, t,) which is greater than t,.

Congjugate places in a range of integration.

65. Once again, attention must be called to an implicit elusive assump-
tion. The range, beginning at #,, must not extend so far as T, where 7} is
the first value of ¢ after ¢, for which Z (¢, t,) vanishes. Let a value ¢’ be taken
within that range, that is, such that #, <t < T,; and consider a function
Z(t,t), which of course vanishes at ¢. We could have a small weak variation
xw, where w is made zero from 7, to ¥, and is made equal to yZ (¢, ¢') from ¢
onwards; and such a variation could continue onwards, even if Z (¢, ¢') should
again vanish within the range or at its limit, that is, if the range contains a
value 1" of ¢ where 7" is the first zero.of Z (¢, ¢) next after ¢. Manifestly this
possibility has been implicitly excluded in the preceding statement of the
range ; the implicit exclusion must be justified t.

For this purpose, and also specially in order to indicate a geometrical
significance of the results, the characteristic curve may be considered with
advantage. The expressions for # and y lead, when the variable ¢ is eliminated,
to the equation of that curve. The quantities £ and «y, leading to the forma-

* See §29: and §§ 76—80, post.
1 The analytical justification will be found in § 67, post.
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tion of §, z.e. of the function Z (%, t'), are small variations of # and y which still
satisfy the characteristic equation and therefore give a consecutive character-
istic curve. The latter, as represented by the variation «Z (¢, t,), meets the
original characteristic curve in the point determined by the value ¢, of ¢; and
the range of the integral, which is to possess a maximum or a minimum, is
not to extend so far as the first value of ¢ greater than ¢, which corresponds
to the next point of intersection of the two curves.

Accordingly we take a characteristic curve ...APB... and, on it, choose
any ordinary point as the initial point for a range. In connection with the
characteristic equation, the curve is made precise and unique, by the assign-

ment of the value of y and the value of % for the initial value of z—or, as

already explained, by the assignment of initial values of z, #,, ¥, %, for an
initial value of the variable ¢: that is, the curve is made precise by the
assignment of an initial point and an
initial direction. Now consider a cha-
racteristic curve AP'... consecutive to
APB, passing through the same initial
point A ; as the variation is small, the
inclination of the tangents at A is small.
Let P on the curve ...APB... be given
by
= ¢ (t: Al) A2)1 1'/=\P‘(t, Al: AS))

so that, if #, be the value of ¢ at the initial point 4, the coordinates of A are
¢ (t, 41, 4;), Y (8, 4,, A,). For the consecutive curve, there is a small varia-
tion; let it be represented by t, + #7\, 4, + «a;, A, + xa, instead of t,, A;, A,
respectively, and by ¢ + «T' instead of ¢, where T is not necessarily the same
as T,. As the initial points are the same, we have

=k {T ¢ () +a 8¢ (&) , agﬁ(lto) } + terms of at least the second order in «,
t t
—IC{T\P' )+ ala‘!’( °) ag"i )} ............................................. ;

and therefore, on the ehmmatlon of Ty,
0 =« {a,x (t;) + @ (%,)} + terms of the second order in «:
that is, in the limit as x diminishes indefinitely,
a,x (t) + az (8,)=0.
Let the point P’ be the displaced position of P due to the small variation,
so that the coordinates of P’ are & + «£, y + «7, where

80, 0,20
E=T¢ O+ oS

=Ty )+ a ag:;t) + a,ag’A(:) ............................................ .3

+ a, ——— + terms of at least the first order in «,
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that is,
{=am — ylf
= ayy (¢) + @, » (£) + terms of at least the first order in «.
Let the curves, if they meet after A, meet again in B for the first time after
4; and let @ be the value of t at B for the characteristic curve. Then £ and
n, and therefore ¢, vanish when ¢ = 0; that is,

0 = ayy (6) + a0 () + terms of at least the first order in «.

Hence, in the limit as « diminishes indefinitely,
0=a;x (8) + a.w (6).
The arbitrary quantities @, and a; do not vanish; hence
Z6, t)=w)x(0)—x ) () =0,
and @ is the first value of ¢ greater than #,, for which this equation gives
another intersection of the consecutive characteristic with the original
characteristic.

Then B is called the conjugate of A on the characteristic curve. On the
one hand, it is the limiting position of the first point of intersection of the
consecutive characteristic with the original after the initial point of inter-
section. On the other hand, it is given by the first value 8 of ¢ greater than
t, where Z (t, t,) vanishes. We may therefore re-enunciate the Jacobi test by
requiring that the range of integration must not extend along the characteristic
curve as far as the conjugate of the initial point.

66. We may take y (t) and  (¢), more briefly denoted by x and o when
there is no doubt as to the argument, as the fundamental integrals for the
discussion of the covariantive function Z (¢, ,); and the relation

P(x‘—fiﬁt’—w%)=0

has been established, where C is a specific constant. Also

Z(t, t) = o (t) x () — x (t) @42),
so that

d ’ ,
[2260)],_ ~e@x®-x@ o @
E )
where P,, not zero, is the value of P at {,; thus

Z(t, ty)=— g— (t — t,) + higher powers of { — ¢,
L]

verifying the former inference that ¢, is a simple zero of Z (¢, t,). Then as
Z (6, t,)=0, we can take

X(O=ox(t). o(@)=cw()
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where o is not zero, for otherwise y(6) and w (8) would vanish together;
and so
cZ(tt)=w(B) x({t)~x(0) o)
=Z(t,9)
As before

Z(t 0)= —I%(t — 0) + higher powers of ¢ — 6,

where P, is the non-zero value of P at ¢ =6; and again, as is to be expected,
0 is a simple zero of Z (¢, 0), that is, it is a simple zero of Z(t,£,). Thus
Z(t, %) changes its sign as the variable ¢ passes through the zero 8: and so
for any zero.

Note. We have the corollary that, if we pass backwards along the curve,
the limiting position of the first point of intersection of the original curve
by a consecutive characteristic through B, is the point 4. For

Z@¢ 0)=0Z(,t,),

and the first value of ¢, less than 6 in the range between ¢, and 6, for which
Z (t, t,) vanishes is #,; thus A is the backward conjugate of B.

Ezclusiveness of a range bounded by conjugates.

67. We can now establish the proposition that when any point A’ is
taken in an arc of the characteristic curve, limited by two reciprocally con-
Jugate points A and B, the conjugate of A’ lies outside the range AB. (It will
be sufficient if we establish the result for the forward conjugate of 4’, on the
assumption that B is the forward conjugate of 4.)

Let A be the point determined by the value £, of ¢; and let @ be the
value of ¢ at its conjugate B, so that

Z (0) to) = O’
where @ is the first value of ¢ greater than ¢, for which this equation is
satisfied. Let #, be the value of ¢ for 4’, so that ¢{,<¢, < 8. As Z(8,t,)=0,
we have
X (@) =ox(t), w(@)=cw(l)
where o 1s not zero; and therefore
Z, t)=w(t)x(0)—x () (6

=a {0 (t) x (t) — x (1) @ (b)}

=—0aZ(t, t,).
As t, lies between £, and @, we cannot have Z (%, t,) equal to zero: hence

Z (0, t,) does not vanish. Consequently, the conjugate of A’ does not coincide
with B; and A’ is any point within 4B.
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Now take a point 4, within 44" and near to 4 ; and let the value of ¢
at that point be &, + T, where T, is small and positive. As 4, is near to 4,
the conjugate B, of A; must be near to B. Let the value of £ for B, be
0+ ©; then ® definitely is not zero when 7, is not zero, because the con-
jugate of A4, (a point in AB) cannot coincide with B. Also, when T} is zero,
then ® is zero; so that ® and 7T vanish together, and ® must be small
when 7, is small. The sign of ®, as well as its magnitude, has to be deter-
mined. Because 6+ ® gives the point conjugate to the point given by

t,+ T,, we have
Z(O0+0,t+1T);

and therefore as Z (6, t,) =0, and ® and T, are small,

BZ 0, %) 0Z (0, t,)

0t

+...=0,

the unexpressed terms being of the second and higher orders in ® and T,
combined. But, as

Z (¢, t) = (o) x () —x (t) @ (£),

we have

LB @) x @) x ) o ();
and therefore

BO _ o5 O -3 (0)

Now
x(0) _w(0)_
X (to) @ (to)
where ¢ is not zero; and so
ZED_L1o@)x @) -xO)w @)
c

- O'Po.

Also

ZOL ot @) x(0) - X @2 (®)
= {' (t) x (t) — X (t) @ (h);
-2
=0 Po.
Thus the equation connecting ® and T, becomes

o c
-6 5, tTop+:

or, for sufficiently small values of Tj,

..=0,

0= 0-21; T, + higher powers of T,.
[
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Now P, and Ps have the same sign because the Legendre test is satisfied,
and o is a non-zero constant; thus ® is positive, because T, is positive.
Consequently 6 + © is greater than #: and so the conjugate of 4,, which is
near A in the range AA’, lies near B but beyond B. Let it be denoted
by B,; then A,B, is another range bounded by two conjugate points, BB,
being of the same order of magnitude as 44,.

Now take a place A,, in the range A4,B, and near A4,; its conjugate,
say B,, lies beyond B,. And so on, with points 4 in succession from 4
towards A’; the successive conjugates lie beyond B in succession, each beyond
its predecessor: until, finally the conjugate of A, say B, is reached, and it
thus lies in the stretch beyond B.

Lemma on consecutive characteristic curves.

68. The function Z (¢, t,) is of significance in a cognate investigation.
Hitherto the small variations upon the characteristic curve have started from
the curve itself; and the deduced characteristic curve has not been required
to conform to any external condition. At a later stage, it will be found desir-
able to draw a characteristic curve, closely contiguous to a given characteristic
curve in the sense that it is to pass through two assigned points very near
the given curve: thus they may be taken near the initial point and the final
point of some stretch in the range. The conditions, be it noted, differ from
those hitherto imposed, viz. that the curve shall pass through an assigned
point and shall have an assigned direction at the point; the new conditions
require the curve to pass through two assigned points which lie very near a
given characteristic curve. A question arises as to whether there are limi-
tations—and, if so, what are the limitations—upon the data, in order that
the new characteristic curve may be drawn.

We therefore postulate a characteristic curve, given by
z=¢(t, 4,, 4,), y=+v(@ A4, 4,).

We consider a stretch of the curve, beginning at a point (z,, y,) with an
initial value %, and ranging with increasing values of ¢ through a point
(@, 1) where ¢ has the value ¢,; thus

Zy = ¢(to: Aly Az)’ .%=‘\l"(to’ 4, Aa): w1=¢(tl: An Az); yx=1lf(t1, An Az)-

Let (@, + X,, ¥o+ Y,) be a point contiguous to (20, ¥o), 8o that X, and ¥, are
small : and (2, + X, , + ¥;) be a point contiguous to (#, y,), so that X, and
Y, are small. If a consecutive characteristic curve can be drawn through
these contiguous points, its arbitrary constants can be denoted by 4, + ka,,
A, + kay; the value of ¢ for its initial point (z,+ X,, yo+ Y,) by & + «T);
and the value of ¢ for its final point by ¢, + «T), where T, and T are finite.
Should this be possible for small values of «, then, except for relatively
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negligible quantities of the second and higher orders in &, we must have

K= e {04 @)+ 62884 0,200 b

= {Tp @+ o Gy 0, D b
=] w8408 g w),
7= A 4LLN J’—"’—@wvr ®},

being four equations for the potential determination of Ty, T, a,, as, all of
them finite quantities, while X,, Y,, X,, Y, « are small quantities.

The determinant of the coefficients of «7T, xa,, #a,, «T; on the right-hand
side of these four equations is equal to

Z (4, t);
and therefore each of the quantities
kT Z(h, ), xaZ (b, b)), wayZ(t, t), «T1Z (1)

is equal to a linear and homogerfe.ous function of X,, ¥,, X,, ¥;, the
coefficients being integral combinations of the third order in the derivatives
of ¢(ty, 4:, 4y), d(t, 4y, 4,), ¥ (b, 4,, 4,), and ¥ (t, A,, 4,). If then
Z (t,, t,) is not zero, or is not itself a very small quantity of the same order
of magnitude as any one of the four small quantities X,, ¥, X,, ¥;, the
resolved equations give values for «7T), «a,, xa,, T, of the same order of
magnitude as X,, ¥;, X,, Y,: that is, a consecutive characteristic can be
drawn as required. Thus the possibility depends upon the magnitude of
Z(t, t).

We have seen that the conjugate of a point given by ¢=1¢, is the point
given by the first root of Z (6, t,)=0 which is greater than ¢, If ¢ is
appreciably less than 6, that is, if the point on the characteristic curve given
by ¢, falls short of the conjugate of the initial point by an arc-distance of a
magnitude greater than the order of the small quantities X,, ¥,, X;, Y5,
then the consecutive curve can be drawn: and it is a unique curve. If
however ¢, = 6, the equations certainly do not give small values for «T, xa,,
xay, «Ty; and if ¢, while less than 6, differs from it by a small quantity of
the same order as X,, ¥, X, ¥}, no safe inference as to the magnitude of
«Ty, ka,, xay, «T; can be made, without investigating the values of the
coefficients of X,, ¥, X, ¥, in the expressions for those quantities.

It is unnecessary to consider values of # greater than 6, because the
range of the characteristic curve is restricted (for reasons already adduced)
not to extend beyond the conjugate of its initial point.
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69. Lastly, part of the preceding analysis (so far as it applies solely to
the curves at their. extremities corresponding to the value ¢, of £) can be
used to establish an assumption slightly wider than one which has already
been made: a characteristic curve, consecutive to a given characteristic, can be
drawn through a point very near the latter so that the inclination of its
tangent to the tangent of the characteristic vs very small.

We know that a characteristic curve can be drawn through any point
with any assigned initial direction. For the present purpose we have to
prove that a new characteristic, drawn as required, is consecutive to the
given curve.

Taking the given curve in the usual form, let 4, + xa, and A4, + xa, be
the constants for the new curve, where it must be proved that «a, and «a,
occur as small quantities under the given data. Let the initial value ¢ for
the given curve be £, as usual, and for the assumed curve be %, + «T,, so
that the value of ¢ anywhere is ¢ + «7), where T'=T, when ¢ =, (the value of
T will disappear from the analysis); we must prove that «7, is small. Let
the initial points of the two curves be (@, ) and (%,+ X,, y, + ¥,), where
X, and Y, are small; thus we have

A 0
X, =«To¢’ () + xa, 3:;1(1:‘, ) + xay g’jt» + ...,

Y, =T’ (8) + ke a‘g‘it:) + xa, a‘gjt") + ...

where the unexpressed terms are of the second and higher orders in the
small quantity «, and are negligible in comparison with the retained terms
of the first order. Let (, y) be any point in the vicinity of (2, ,) along the
range ; and let (z + X, y + Y) be the displaced point on the new character-
istic. We denote by ¢ the current variable at (z, y), and by ¢+ «T the
current variable at (z+ X, y+ ¥') along the new curve; so that 7' may be a
function of ¢, and is equal to 7, when t=¢,. Then

X=T§ O+ em 20 4 k2D

Y=”T¢'(t)+xh%m+x%a£t) +oe

and therefore

X =t @18 0 10D O

Y'=kI"y' @) + eI () + kay a«g;l(t) + K0, a‘g‘}:) + ey
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where the unexpressed terms are negligible compared with the retained
terms of the first order in «. Hence

Y -y X =Y ) — X'V (@)
= kg (O %" () — ¥ (O " ()
e fg 0Ly %N e fs 0Oy 0% G+

The inclination of the tangents to the curves, at (x+X ,y+Y) and (z, y)
respectively, is

! ’ !
wl Y/ — y/XI
$12+:1/,2+-’0,X, +lel‘
At the initial places this inclination is small, and consequently 2’¥” — ' X’ is
small there, that is, when ¢=¢, and therefore 7'=1,; denoting its value at

t=t, by a small quantity e, we have
e =Ty (¢ (t) ¥ (fo) — ¥ () ¢” (o)}

o (¢ o’ (¢ oV (¢, o’ (t
+n {4 ) T = 9 05 e {9 00 D g )
Thus there are three equations connecting «T,, «a,, xa, with X,, ¥,, ¢, three
given small quantities; in each of the expressions, there are linear terms in
«T,, ka,, ka,. The determinant of the coefficients in the three sets of linear

terms is

(to) \P‘"(to) ‘P (to) ¢”(t0) ¢ (to) a‘l" (to) ‘P‘ (to)a¢ (to) ¢ (to) a“I’ (to)—\ll‘ (to)ad) (to)

— tan

= tan™?!

e a—gj? , B
O o g

Q¥ O-¥ ¢ @) R E W)
R OB SR OL S P

{ ' to)a"" (to) i (t{,)j ©.
The first line of the last nght-hand side
= @782y O E e @ B -y )

{4’ WDy @)% “")} (@B @2
{¢’I (to) a\" (to) ‘Pl, (to) a¢ (to)} X (to) {¢/1 (to) 3\[r (to) '\P’"(to) o (to)} (to);
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and therefore the whole of the right-hand side

~x®) 7 {8 @52 -y 2O
oy (t.)) ¢ ( to)}

- "l" (to)

— o) g {4 @ 2L

do(t dy (¢
=x (&) ( o) o (1) X( o)

-

=5
by §62. Now Cis a finite non-zero constant; and P,, the value of P at the
beginning of the range, is finite and is of the same sign whatever value ¢, is
initially chosen. The foregoing equations therefore give

C C C
"ToE, ’calﬁ’ K%E,

as expressions that are integral functions of X,, ¥, ¢, beginning with linear

terms in these three small quantities; and —g- is finite, being different from
0

Zero.

Thus «a,, xa,, €T, are small, and therefore the new characteristic is con-
secutive. We infer that a characteristic consecutive curve can be drawn as
required.

Characteristic curves through any two assigned points.

70. The limitation of the range of integration, so that it shall not extend
as far as the conjugate of its initial point, has an important bearing on
another issue, already established.

It has been seen that a characteristic curve is uniquely determined by an
initial point and an initial direction, as data which yield the values of the
arbitrary constants in the primitive of the characteristic equation; and no
question arose concerning the range of the curve so determined. There is an
implicit limitation in the theorem quoted as leading to the unique establish-
ment of the curve; the theorem is an existence-theorem, and the validity
depends upon the convergence of the power-series employed—that is, partly
upon the so-called radius of convergence of that series.

Consider a range along the characteristic curve, extending from a point
to its conjugate. By the definition of the conjugate, a consecutive character-
istic curve can be drawn through the two points; if therefore we substitute
(as often is done) a requirement, that the curve shall pass through two given
points, for the requirement, that it have an initial position and direction, the
characteristic curve would not be unique if the two points could be conjugate
on any curve through them.
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The insistence on the Jacobi test, that limits the range, excludes the
admission of the possibility indicated ; when the test is satisfied, the charac-
teristic curve determined by the initial data remains unique for the sub-
stituted data.

To the discussion of this equivalent requirement we now proceed.

71. The property of conjugates upon a characteristic carve—which, in its
analytical form, secures that the function Z(Z,¢,) of § 63 does not vanish
within a range bounded by ¢, and its conjugate on the curve—enables us to
compare the two modes of settling the curve. In one of these modes, which
is the expression of the conditions used to secure a precise and unique primi-
tive of the characteristic equation, the essential arbitrary constants in the
general primitive are made specific, by the assignment of any initial arbitrary
point on the curve and of any initial arbitrary direction through that point
as determining the tangent there. In the other of the modes, the essential
arbitrary constants are made specific, by requiring the curve to pass through
two assigned arbitrary points. In the former mode, the constants are actually
determined by the data. The latter mode is more descriptive in character;
in order to complete the precise expression of the primitive, equations (not
always even algebraical in form, because the general primitive is not always
or often algebraical) have to be resolved. As is seen in the example of the
catenary (§ 30, Ex. 1: § 75, Ex. 1), the resolution of the equations may provide
results, which may be satisfactory, but among which discrimination is not
made without further examination if there is more than one result; or the
resolution of the equations may prove initially impossible in terms of real
quantities. The case of failure, as to the catenary, is treated by reviewing an
initial assumption that the curve necessarily is a catenary and that, in the
assumption, a zero value for the arbitrary constant is necessarily excluded.
The real significance of the difference is that the two modes of determination
are not always equivalent in all circumstances; and the property of the
function Z (¢, ¢,) shews why the second mode of determination does not neces-
sarily lead to the same result as the first.

72. To compare the modes, let 4 be the initial point common to both;
and let B be the final point in the second mode. For the initial arbitrary
direction through A4, let the straight line 4B be taken; then, in its earlier
course at least, the characteristic curve K lies on one side of the line AB.
With B as centre and gradually increasing radius, let a circle be drawn until
it touches K, say at a point C'; and along CB take a point C’ near C, so that
C(’ is finite though small. Along K, let the value of ¢ at A4 be ¢, and its value
at O be 7. Then (§ 68) we can draw a consecutive characteristic through 4
and C’, provided the function Z(Z), %,) is not zero nor a small quantity of the
same order of magnitude as the small length C’B. Thus, if C is not near A’,
the conjugate of A, and if it lies within AA4’, a consecutive characteristic
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curve AC' can be drawn; and the distance of B from A(’ is less than the
distance of B from AC.

Now take AC’ as the first characteristic to be drawn. As before, with B
as centre and gradually increasing radius, let a circle be drawn until it touches
the new curve K’, say at a point D. In DB, take a point D’ near D, so
that DD’ is finite though small: and let the circle centre B and radius BD
cut OB in C”. We now can draw a characteristic curve through 4 and C”,
which is consecutive to .AC"; and it is always possible to draw the new con-
secutive curve, provided C’ is not near 4", the conjugate of 4 along the curve
AC’, and provided €’ lies within the range 44", bounded by the initial point
4 and its conjugate. And the new curve, still a characteristic curve, passes
nearer B than does 4(”, the distance from the preceding curve being finite
though small.

We thus may pass from curve to curve in succession, each curve being
drawn nearer to B than its predecessor. The one persistent requirement,
exacted as the condition of drawing a consecutive curve at each stage, is that
the function Z (t, {,) must never be zero nor (at any stage) be of the same
order as the small (though finite) distance taken nearer to B as a point for
that censecutive characteristic. When therefore the field is such that, at
no stage in drawing the succession of characteristics, a conjugate of 4 is
approached within & small distance, we can pass from the initial arbitrarily
drawn characteristic to a characteristic, still having A as its initial point, and
passing through the second point B. It follows that, when B lies within a
region of the field bounded by the locus of the conjugate of A for different
characteristic curves, a characteristic can certainly be drawn to pass through
the two points 4 and B which are given initially.

It thus appears that, within certain limits as to the range of B depending
on the nature of the characteristic equation, the two modes of rendering the
general primitive a precise curve are equivalent to one another, while, outside
that range, their equivalence cannot be asserted*.

Composite small variations.

73. Finally, one inference from the general result is to be noted. It adds
nothing to the conditions, and it does not limit them. In character, its
interest is not immediate but prospective, as regards the subsequent analysis
in the discussion of relative maxima and minima (Chapter VIII).

In all the variations which have been imposed, we have dealt with only
a single general arbitrary small variation of « and of y represented by xu and
«xv. All our results have been deduced from the consideration of that single
variation, quite general and quite arbitrary within the limits of continuity.

* An illustration of the possible range of the conjugate of an initial point, for varying
initial directions, is given in § 75, Ex. 3, for the catenary.
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But a small variation may be compounded of a number of small variations,

equally general, and equally arbitrary; thus we could have
KUy F KgUg ...+ KplUy,, KUKVt .+ K,

as a combination of arbitrary small variations, «i, ..., k, being small arbitrary
constants, and* %, and v,, u, and v,, ..., u, and v,, being regular functions of ¢.
It is not inconceivable that a combination of two such variations, distinct from
one another, might have some combined discriminating effect upon the second
variation, which is quadratic in the quantities » and v and their derivatives,
though not upon first variation, which is linear in those elements.

To estimate the significance of the possibility, we note that the quantities
z and y, constituting the primitive of the characteristic equations, do not
depend upon «, u, v and are not affected by them. The same remark applies
to £ and 7, constituting the primitive of the subsidiary characteristic equa-
tions; and it therefore applies also to ¢ which is defined as &9 —y, & If
then we write

Wy = X,V — Y1 Ur,y
(for r=1, ..., n), denote the foregoing composite variations by xu and «v
(where, if we please, we may take « equal to any multiple of & +...+ &n)
and write
W =20 — YU,
we have
KW= KW+ ... + £qaWy.

Now «w, so defined, is an arbitrary small continuous variation; and all the
results, that have been obtained, have been established for xw. They hold
for each variation taken by itself, such as xu, and «»,, because it is merely
a special instance of «u and «v. That they hold for two or more such varia-
tions taken simultaneously, and that the requirements of such simultaneous
variations lead to no additional conditions, can be seen at once from the full
expression for the change of the integral. This change, due to the small
variation xu and «v, has been expressed in the form

,cf@wdt +1}x’fP (wl—z-éw)”dt +R,,

where R, is the aggregate of terms of the third and higher degrees in .

n
Now «w= 3 «,w,,and ¢ (with its derivative) is independent of the arbitrary
r=1

constants «; hence the change of the integral is equal to
d o , 2
2 f Gw,d) + 4 JP {% s (x,w,)—z—gz(/c,.’w,)} dt + K.

Because & =0, the first variation vanishes. The expression of the second
variation takes account of the simultaneous variations xu, and xv,. It remains

* For the immediate purpose, the subscript indices merely denote distinct variations and
not derivatives of a single variation.
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steadily of one sign when the Legendre test and the Jacobi test are satisfied.
No new test, to meet the composite variation, is required in order that the
second variation should remain of one sign.

Hence the analytical results, holding for one arbitrary variation, remain
unamplified if any number of simultaneous variations are imposed.

Summary of results.
74. We may now summarise the conditions which have been obtained as
necessary for the existence of a maximum or a minimum in an integral

[F(w’ yy wl: yl)dt)

when the variables 2 and y are subject to weak variations of the general type.
These necessary conditions correspond exactly to the conditions obtained for
the special weak variations. Both of the variables are now subject to the
changes, so that: the form of the conditions differs from the form of conditions
for the simpler type; and other properties have arisen incidentally which lie
outside the considerations governing the former case.
The conditions still consist of three tests:
I. The Euler test: the characteristic equation €8 = 0, or the two equations
X =0 and Y=0, must be satisfied by # and y as functions of ¢; and
their values determine a characteristic curve (§§ 42, 44, 49).
II. The Legendre test: a quantity P, being the common value of
1 o*F 1 o F 1 2F
"Z’aﬁ'/—lz’ _""'1% 0y 9y, &?371&2,
must keep an invariable sign throughout the range of the integral
and may not vanish, the sign being positive for a minimum and
negative for a maximum (§§ 44, 56).

III. The Jacobs test: the range of the integral must not extend over the
whole stretch of variation represented by the arc of the character-
istic curve between a point and its conjugate (§§ 64, 65).

Incidentally, it was shewn that the function F satisfies the identity
z ;—)f+ @‘—If’
w1 oy,
and that the second derivatives of F are expressible in terms of a diminished
number of magnitudes (§§ 37, 38, 51): that, if the limits of the integral are not
given as fixed, they are determined by boundary conditions (§48): that, if
the characteristic curve (supposed to be otherwise everywhere definite in
direction) suffers a discontinuity of direction at a single free place, the
quantities g—fl and ég are continuous at the place (§ 47); and properties of
consecutive characteristic curves, useful in connection with the Jacobi test,
have been established (§§ 68, 69).
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Moreover, the three necessary tests, if satisfied, are sufficient to secure
a maximum or a minimum under weak variations; but strong variations
remain for consideration. The first (Euler) test, together with the boundary
conditions, secures that the first variation of the integral vanishes. The
second (Legendre) test and the third (Jacobi) test, taken together, secure that
the second variation cannot vanish; according as the sign of this second
variation is positive or is negative, a minimum or a maximum respectively is
possessed by the integral.

Note. If it should happen that the Jacobi test is just not satisfied because
the range extends to the conjugate, the second variation may vanish specially.
The discrimination then can be made (as in the example on p. 33) by the
examination of the third variation of the integral for that special variation
of the characteristic curve.

75. Some examples will now be considered.

Ex. 1. To illustrate the preceding analysis, we consider again the problem of the
catenoid already (§ 30, Ex. 1) discussed, to determine the plane curve which, by revolution
round the axis of @ in the plane, provides the surface of minimum area.

(A, 1). As the integral is

o fy@ytan, 2 [yeoranta
we have
F=F(z,3, o, g2)=y (@i+y:2)8,

which is at once seen to verify the permanent identity of § 37. As # does not involve
z explicitly, we choose the equation X=0 to obtain the characteristic curve, as being the
easier one to integrate. It is

a (Q’")=o

dt \oz, ’

and therefore

that is,
By @+ ) " He=e:
or, if we take ‘;/—:!=ta.n v as before, we have
1
y=csecy,
the intrinsic equation of the characteristic curve, a catenary. The variable ¢, even in
implicit occurrence, has disappeared.
(4, ii). If we proceed from the equation € =0, we here have
xl v

- ———+(@1.% —.?/1-772) T ™=
(w242} (22 +y0)t

el

that is,
Y (@1Y9—y1 %) — 21 (212 +9,%)=0.

ﬁl_ .7/_1>=-”"1."/2—3/1-'¢'2
dt Xy .%‘12

But, always,
b
so that
i ) o1 2 2
L (a) —;l(”l +.%)

sl ny
=y!.7/1 {1+(x1) }
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for the equation : or if =2, tan ¥, this is

T=vitany,
and therefore
ycos y=c.
If we proceed from the equation ¥=0, which here is

4 % _ i . 3.’/ 1 =0,
(-1/‘13-1-3/1‘) dt {( z? +3/12)§} y

this becomes

d, .
-5 sm¢>+s§;‘,,=o,
that is,
—ycosy.¥1—y sin¢+sin“p= ;
and therefore

=yy tan
with the same result. n ! ’

(4, iii). The only limitation, imposed upon the independent variable ¢, is that it shall
be capable of continuous increase through the range. When account is taken of the form
of the curve, and the positive direction of the tangent lies in the direction of increasing =,
the variable ¢ is always increasing—it may begin by being negative. The variable ¢ can be
changed arbitrarily, subject to its one limitation ; so, as sec y_is always positive for the
range and is never numerically less than unity, we take

sec Y =cosh 7.
Then tan y=sinh 7, and y,=¢7" sinh 7'; hence 2;=¢7", and so we have
z=a+cT),
y= ccosh 7,
where the function 7'is to increase continually with ¢, but otherwise is arbitrary. Manifestly

the simplest form is given by
r=a+tct }
»

y=ccosh?
where an arbitrary constant implicitly additive to ¢ (as in § 49) is absorbed in ¢, and where
the two essential arbitrary constants are a and c.
(B). As regards the Legendre test, we have
FF__ym®
. oy’ (w12+y,2)%’
that is,
-3
P=-y (x12+.%2) %
the positive sign being taken for the radical (»,2+ _ylz)% throughout the discussion. Thus P
is always positive. The Legendre test is satisfied; if other tests are satisfied, it allows a
minimum.
(C). Next, for the Jacobi test. With the notation of the text, we have
atci=x=¢ (% a c), ccosh t=y=vy (¢, a, c),
where a does not occur in y. Hence

X (t)=¢’(t)aaia'—~1/ (® Eaif= —csinhy,

o {t)=¢'(?) aai;—\p'(t)%% =c(cosht—¢sinh?);
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and therefore
Z(t, t)=a (t) x (t) = x (fo) @ ()
=¢? {sinh % (cosh Z— ¢ sinh ¢)~sinh ¢ (cosh £, ~ %, sinh ¢;)},
which manifestly vanishes when z=¢,. For the conjugate of £, we require the first value
of ¢ which, being greater than #,, makes Z (¢, ¢) vanish. Now

%%Z= —c2cosh ¢ (¢sinh 7y + cosh £, — o sinh ),

the initial value of which is the negative quantity —c? cosh?#,. Hence Z{, t,), zero at ¢,
becomes negative at once as ¢ increases from #, ; as it remains finite for finite values of 7, it
continues negative until the value #;, the conjugate of ¢.

If ¢, is positive, then sinh ¢, sinh ¢ (with the range ¢ > #,) cannot vanish; therefore, as

Z (¢, ty)=¢? sinh £, sinh ¢ {coth ¢ — ¢ —(coth ¢, — %)},
Z can only vanish for a value of ¢, greater than ¢y, such that
coth ¢t —¢=coth %~ ¢,.
Within this range, coth ¢—¢ initially is equal to coth £,—¢, and is always decreasing
because its derivative is negative, and it remains finite for all finite values of ¢; hence it
cannot again resume its initial value. Consequently if £, be positive, there is no conjugate
with a value of £ > #,: that is, no forward conjugate.

‘When #, is negative, Z (¢, t,) becomes negative at once as ¢ increases from ¢, ; when ¢ is
equal to 0, then Z (¢, to) is equal to c*sinh ¢,
that is, it still is negative. Denoting the
negative value of # by —¢, the place #,
where Z first vanishes after the beginning of
the range, is given by

coth ¢, —¢; =t —coth 7.
Whether ¢ —cosh # is negative or positive,
this equation gives one (and only one) positive
root ¢,: and it gives no negative root. (A O vV
negative value of ¢ —coth? gives B in the
figure: a positive value gives 4 in the figure.) The tangent to the curve at # is

Y—~ccosht'=(X-a—ct)sinh ¢,

so0 that the abscissa of the intersection of the tangent with the axis of # is a+¢ (£ — coth?'),
the same as the abscissa of the intersection of the tangent at #; with that axis; the con-
jugate of the initial point 4 (or D) is obtained by drawing the other tangent through
U (or V)to the curve. The construction of the conjugate is thus the same as in the former
investigation (§ 30, Ex. 1).

‘When the initial point and its conjugate are symmetrically situated with regard to the
axis, we have #,=¢'; and the equation is

coth /=7,

the former limiting case,

(D). For an effective solution by the preceding analysis (with ¢ real, and different from
zero), there must be a real catenary. Hence the initial data must be examined, to indicate
whether they allow a real catenary ; manifestly they admit no such curve if, for example,
it is to join two points on opposite sides of the axis. The only alternative left is that
¢ should be zero, when the foregoing analysis does not apply ; and the alternative must be

considered independently.
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We therefore take the case when the curve is to join two points on the same side of the
axis; and we'shall assume now (as distinct from the assumption in § 30, p. 31) that the
points are not equidistant from the directrix. Taking the axis of y midway between the
points, we denote these by (£, a) and (%, ~a); so that, as

z=a+¢t,  y=ccosht,
we have
aze _a-a
k=§c(e ¢ e ¢ ),

+a et
h=-§’0 (e_a_cl'l' ea_ca) 3

being two equations for the determination of ¢ and a. We have

@ 2% 2 =
kec=3%c\e ce °‘+e°),
22 a a

-2 2 & a
ke c=§c(e Ce ¢+tec),
80 that

a ay _& s -
3c (622_3 2c)e c=kec —he ¢,
a a a a a
- _2_ —_ —— -
te (e20-e 0)e°= —ke © +het;

and therefore, on eliminating a,

a a a a
= —2%y2 = 2
E(c)=}c? (320 - 0) + AR (ez"+e c)=O,
an equation for the determination of ¢. For the existence of a real catenary or real
catenaries, this equation must have a real root or real roots.

(E). Consider the march of & (c), as the positive quantity ¢ ranges between zero and

infinity. Let
cu=2a,
so that the positive quantity u ranges between infinity and O; then
E (c)=4¢?(cosh 2u — 1)+ (k- £)2 — 24 (cosh % — 1).
Hence, when ¢ is very large and therefore « is very small, ¥ (c) differs only slightly from
4a? 4 (k—h)2,

and thus is positive. For any finite non-zero value of ¢ and therefore of u, K (c) is finite.
As ¢ becomes small and therefore % becomes large, £ (c) grows large and is positive ; and

a zero value of ¢ makes X (c) infinite. Hence as & (0) is positive and £ (w ) is positive, the
number of real roots of £ (¢), for 0 < ¢ < @, must be even and may be zero.

To find whether there are any real roots, we investigate the minimum values (if any)
of E(c) ; and so we need the roots of E' (¢). From the first expression for £ (c), we have
2a 2a; 2a 2a 2a 2a,
E'(c)=(e° —e "){éc e¢ —e 0)—a(e¢ +e 0) + 2%2—16}
The factor 2 sinh Q?a is finite when 0 < ¢ < « ; s0 possible zeros of E' (¢) are the possible

zeros of . .
2a 2a.
0Ot P i) (5 ) 2

hk 1 1 1 1 1 1
= 2au? {m—§‘+u2(5—! —E>+u4 (7" '—E,—|>+u° (9—! - a)'l‘ ...}.
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If then %ﬁ — } is negative, the quantity G (c) is steadily negative for all the admis-

sible values of « ; and therefore E’ (¢)also is steadily negative. In that case, £(c) decreases
continually from « to 4a®+ (k- %)? and cannot vanish: & (c) then has no real root. There
is no real catenary.

If % —} is positive, @ (c) is positive for a small value of . As u increases, the value

of G (c) decreases. Before u? attains the value 30 (i% - %) , the quantity G (c) has become

negative ; and thereafter it remains negative, as %.continues to increase. Thus G(c) has
one zero in the range in this event, and therefore E’(c) has one zero. Thus E (c) has
a stationary value ; a maximum is excluded by the range of values of £(c); and therefore
there is one value of ¢, which gives Z (¢) a minimum value.

When this minimum value of E (c) is positive, £(c) never vanishes. There then is no
real catenary.

When this minimum value of E(c) is negative, let it arise for a value of ¢ denoted
by ¢;. Then £(c) changes sign once for

0<e<e,
from positive to negative ; and it changes sign once for
g<e<w,
from negative to positive. In this event, £ (¢) has two roots. There are two real

catenaries.

When the minimum value of E (¢) is zero, we have & single root of £ (¢) at that place.
There is one real catenary.

We must certainly have A% > 4a? for the possibility of any real catenary. Though G(¢),
and therefore £’ (c), then has one real root, it may not lead to a real root of E(c). The
existence of a real root, or of real roots, will depend upon the magnitude of the quantity
hk—4a?, necessarily positive.

(F). As an illustration, consider a case

kk=402
The instance, when k=#, has already (§ 30, Ex. 1, p. 31) been considered ; so we take
% and % unequal, e.g.
k=%a, h=fa
‘We now have .
G (c)=2a (u’+m%ﬂ —cosh u) ;

and it is easy to verify that

(i) when u is small, G (c) is positive,

(ii) when u?=124, G (c)="014...,

(iii) when #2=13, @ (¢)= --015...,

(iv) as u? increases further, @ (¢) increases numerically and remains negative.

Hence G (c) has one and only one real root, lying between (g-g)’l a and (gg%)% a; thus
E (c) has one minimum, and the minimum occurs for that root. It is easy to verify that,
when u2=124, £ (c) is negative ; hence £ (c) has one, and only one, root, such that

0 < o< (3ghia,
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and it hag one, and only one, root, such that
(ﬁ%)ia <c<w,
By actual calculation, we find the following:
i) u*=2*, E (c) is positive ;
(ii) #2=2, E(c)is negative ;
(i) #?=18, Z(c) is negative ;
(iv) u?=20, E(c)is positive.
‘We thus have two real catenaries. As a is not zero, their vertices do not lie on the same
ordinate.
A reference to the Jacobi test shews that the catenary range
HV;K provides a minimum, and that the catenary range H V, K
does not provide & minimum. X
(@). We still have to consider the possibility that no real H
catenary can be drawn; (i) when the two points are on the
same side of the directrix, but the equation £ (¢)=0 provides
no real root : (ii) when the two points lie on opposite sides of
the directrix.
The characteristic equation still has
oF_ my
oz (m*+y)h
as a first integral. In the preceding analysis, the constant has been assumed to be different
from zero.
We now take the alternative hypothesis that the constant is zero; and so we now have

=constant

OF __ my -0, K
2 (xlz',".ylz)} H
For a point on this curve off the axis of z, so
that y is not zero, we have #,=0; that is, we
must have parts M and KN when the limiting
points H and K are on the same side of Oz, and M o) P N %
parts HM and LP when the limiting points H |
and L are on opposite sides. From M to N in
the one case, and from M to P in the other, the L
equation is satisfied by y=0, that is, that part
of the axis of # is a portion of the curve. Thus the broken line HMNEK, or the broken
line HMPL, provides the solution of the characteristic equation.

The points M and N (or M and P) are ‘free’ points, in the sense that they are not fixed

by assigned conditions; hence (§ 47) 5— and aF remain unchanged at ¥ and ¥, (or at
M and P), in passing suddenly from one dlrectlon to the other. But

OF__my  F_ gy oy

0z (-”12+3/12)* ’ Y B (1'12"'.7/12); - ;i+ l>§ .

At Mfor HM, we have ;=0 and y=0; so both these quantities vanish. At M for MN, we
have y=0 and y,=0; so both these quantities vanish. Hence the requirement is satisfied
at M. Similarly it is satisfied at & (or at P).
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For the Legendre test, we have
_LPF_ ¥
A @yl
with the positive sign for the radical, which is positive along M and KX : while, along
MN, the contribution of a necessarily non-negative quantity to the original integral (com-
posed of otherwise positive quantities) is zero and therefore cannot be reduced. Thus the
test for a minimum is satisfied.
For the Jacobi test, there is no conjugate of an initial point on a straight line because it
cannot be met again by a consecutive line through that point.

Ex. 2. Tangents, drawn to a catenary from a point 7' on its directrix, meet it in the
points P and @. Prove that any number of catenaries can be drawn having the same
directrix and touching the lines 7P and 7'Q, and that all their vertices lie on a straight
line through 7.

Denoting the points of contact of one of these catenaries with 7P and 7'¢ by P’ and ¢
respectively, shew that ¢ lies within 7'Q when P’ lies within T'P.

Prove also that the surface engendered by the revolution (round the directrix) of the
curve made up of the straight line PP’, the catenary arc P'¢/, and the straight line €@, is
equal to the surface engendered by the revolution (round the directrix) of the catenary arc
P, and also is equal to the surface engendered by the revolution (round the directrix) of
the curve made up of the straight lines P7 and 7'Q.

Ex. 3. Through a point 4 on the axis Oy, catenaries are drawn having Oz for direc-
trix; and 04 =y,. Prove that the locus of the conjugate of 4 for the different catenaries
is given by the equations

sinh? 4 <l _coth 9)% _Y=Y

[ [ z
I
cosh?d ( tanh 6)% Y+
1- =
é 8 x

where 6 is a parameter increasing from sec 33° 32",

Ex. 4. Consider the geodesics on a sphere of radius a.
The coordinates of any point on the sphere are
x=asinfcosd, y=asinfsing, z=acosh,
so that ¢ is the longitude and 4 is the angular distance from the North Pole. As
ds?=a? (d6? +sin? 6 dep?),
the integral
(92+¢2sin? 8)} dt
must be a minimum, so that
F=(82+¢2sin? 6)%,

As F does not involve ¢, a first integral of the characteristic equation is given by

gé:=constant,
that is,
_ paine
(02 +¢'% sin 6)
where q is an arbitrary constant. Hence, for the characteristic curve,
db sina 6.

sin  {sin? 6 — sin? a)i
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For reality, sin 4 cannot be less than sina; and therefore (regard being paid to the
meaning of §), we must have a €0 € = —a. Let

cos §=cosacosy;
then

_ sina - sina 2
dgp= 1—cos?a cos?yr ¥ Sinfattanty o0 vy,

and therefore
tan ¢y =sin a tan (¢ —B),
so that

c0s (¢~ B) = s,

an integral equation of the characteristic curve. When this last equation is modified by
the introduction of point-coordinates, it becomes

zcosB+ysinB=ztana,
shewing that the curve lies in a plane through the centre of the sphere: that is, it is a great
circle.

The least and the greatest polar distances are given by ¢’ =0, that is, §=q and =g - a.
The meridian through the pole of this geodesic great circle has 8 for its longitude.
The Legendre test is satisfied ; for
1®F_ 1 &F _1®F sin%d

$2060 Gy 0757 (@4 sintd)l
is always positive; and therefore a great circle, along its range, admits & minimum,

The Jacobi test requires that the extent of the range, to admit a minimum, shall end
before the limiting position of the intersection of a consecutive characteristic (here, a con-
secutive great circle) through the initial point. This intersection is diametrically opposite
to this initial point; hence, for & minimum, the range must be less than half the great
circle.

In the figure, let ¥ be the North Pole; 4 P the geodesic great circle having 4 for its
point of highest latitude; and N4 the meridian through the pole
of NP, so that NAP is a right angle. Then N

NA=a, NP=0, PNA=¢—-B, AP=+;
the formulse
cosd=cosacosy, tanyr=tanatan(¢—pB), cos(¢—pB)tand=tana,
are the usual formul® of a right-angled triangle. Also, if s be the
arc measured from A4,

8
¥=_. P
Ez. 5. To find the geodesics on a surface of revolution.

We take the axis of revolution to be the axis of z; and the surface itself to be given by
the equation
a:‘“’+,1/2=2f(z),
where f is a given function of 2. Any point on the surface can be represented by rcos 6,
rsin 6, 2, where r2=2f; hence
ds?=dz? 4 dy? + dz?
=drt+7%d6% 4 dz?

= {(1 +J;—;i 72+ 2f61’} de2,
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J{sepeeana

is to be a minimum. (Obviously & maximum is excluded from consideration.) We have

Thus

F(8, 201, m)= {2f012 + (1 + 1;7’) zf}%.

Of the two characteristic equations, we select

oF d
%0 " dt 66

As 8 does not occur explicitly in F, we have

ﬂ' =constant,

@,
978,

{2fa, + (1+f f>

()
=or\er-a2) °
where @ is an arbitrary constant. Thus the primitive is
2 + % dz
which must be associated with the equation r’=2f, in order to provide the analytical
equations of the characteristic curve.

that is,

=constant;

and therefore

For the Legendre test, we have
12F -1 0%F _ 1%F

P= 3002 ™ 7,8,0,05, 87 0ot
of 477
-
{(1+ 5‘2) a2+ 2f812}

As 2f is necessarily positive (being the value of 7?), and as the positive sign is given to the
radical, this quantity P is always positive. Hence, if other necessary conditions are satis-
fied, the Legendre test admits a minimum.

For the Jacobi test, we have

08

5‘;—1

20 _ (2f+f")"*
aa (2f az)-g

If, then, we take the initial value of z to be z), the range of the curve is limited by the
conjugate (if any) given by a value z;, such that

fz' @+t
z (2f- az)f

or by the first of such values of z greater than z, if there be more than one.
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(A). Consider a cylinder given by r=c, a constant; thus 2f(z)=c? and f'=0. The
characteristic curve is given by

together with 7=c. The curve is a helix. For a real curve, ¢ must be less than ¢, say
a=ccosf; and then

0=n+§cotﬁ.

An analytical (but not geometrical) difficulty arises from this form of the equation. When
a and B8 are to be determined by the initial and final positions, the initial position given
by 6, (though determinate geometrically) is indeterminate, because 6; can be made subject
to any additive multiple of 27 ; and similarly for the final position given by 6,. Hence
there may be any number of helices on the cylinder through two assigned points: if
91, > 0 < 2, be the smallest value of 8, for the initial position, and if 9;,> 0 < 2, be the
smallest value of 8, for the final position, then

(i) if 3,>9;, while 2, and 2, are the initial and the final values of z, we have an un-

limited number of values of cot 8, given by

zzle (92— 9, +2pn),
where p is any positive or negative whole number; and

cot B=

(ii) if 9;<C9;, the values of cot 8 are given by
cotB=—c—(27r +393— 91+ 2pm),
-z
with the like significance for 2, 2z, p.

Each value of p gives a value to g, the inclination of the curve to the cross (circular)
section of the cylinder.

The Legendre test for a minimum is satisfied for all the forms of f, and so is satisfied
for the cylinder.

For the Jacobi test, we have
9_, 9___ =z .
0a - ’
the critical quantity %—:—g—:, beginning at a place given by z,, never resumes its initial
value along any helix : that is, along any selected helix, there is no limit. Each such helix
provides a minimum ; small variations of each helix provide an increase in the length of
the curve. There are minima, each corresponding to each value of p; these minima are
the numerical values of
=%
sing’
and the smallest of all the minima is provided by the largest numerical value of sin B,
among all the values of 8, that is, by

S~
cot B'=c Pt
with 0€8' S 3.
(B). Consider a sphere given by
224yt 4 2=c?
50 that 2f=c?- 22 The first integral of the characteristic equation
dé ac

dz  (c2—2®) (F—af- 2t ’



108 EXAMPLES OF [cn. 11

the integral of which can be expressed in the form
2 g2k sin (§—a)= ———
( (et~ Zz)’:
But ¢?—22=1%; and so this equation can be expressed in the form
(cﬂ—az)érsin (6—a)=az

or, if @=ccos B, this is
2=(ycos a—z sin a) tan 8.

The characteristic curve lies in a plane through the centre of the sphere: that is, it lies
along a great circle.
The Legendre test is always satisfied for any form of the function 7, and so is satisfied
for the sphere: that is, other conditions being satisfied, the great circle admits a geodesic.
There remains the Jacobi test. In the foregoing equation, a and B are arbitrary
constants, or a and @ are the arbitrary constants. The primitive of the characteristic
equation is

¢ — a2)b sin (9 - =%
- ( ) (6-a) (cz—zz)é’
80 k)
6 3
==L (c?-aZ)%cos(o-a)éa=_c-z_iz-;
Thus ( )
20
oa
a‘; : (62 3 tan (6= a);
da

and therefore the critical quantity, g—g + gg , resumes the value which it has at any initial

place ), first when @ acquires the value 6;+, that is, at the other extremity of the
diameter through the initial point. Thus, for a minimum, the range along a great circle is
limited to half the circumference.

The result can be obtained by drawing (§ 65) a consecutive characteristic, that is, a
consecutive great circle, through the initial point: the conjugate, being the next intersection
of the two great circles, is the diametrically opposite point.

Ez. 6. Use the foregoing analysis (p. 106) relating to geodesics on a surface of revolu-
tion, to obtain the result (§ 34, Ex. 8) for a paraboloid x2+3%= 2.

Ex. 7. Discuss the geodesics on a one-sheeted kyperboloid of revolution.

Ez. 8. Shew that geodesics (other than meridians) on an oblate spheroid undulate
between two parallels of latitude equidistant from the equator.

Shew that, if any point on the surface be denoted by z=c cos d, (22+ y2)§=a sin 4, the
conjugate 8; of a place 6, is given by the equation

E(ug— ug) = ¢ (w1 — 1) s (uy — )
17 " a2 cost a+-c?sina | snu snug

where a<0<w—a, amu;=6;, amu,=6,, the modulus of the elliptic functions is
a?— cz)‘} (a? cos? a4c?sin?a) ~ % cos a, and £ denotes the second elliptic integral.

Ez. 9. Prove that a geodesic on the spheroid

z2+g°

=z + b”=1



75] GEODESICS 109

can (in the notation of the Weierstrass elliptic functions) be represented by the equations

x+z:y=g ”(a+u) e”{‘?‘f(‘”‘*’")},

o (u)o(a)
e o (a—u) —u% {g—¢ (w+a)}
2z zy_gme =< (w+ ,

PR (0" +u) o (o0’ —u)
o2 (u) o (a) ’
where « and X are constants: and obtain equations sufficient to specify the constants of
the elliptic functions*,

Ez. 10. Shew that a geodesic upon a circular cone of semi-vertical angle a projects
orthogonally on a plane perpendicular to the axis into a curve
rsin{(§ - B)sina}=e¢,
where ¢ and 8 are arbitrary constants. Discuss the position of the conjugate of any point
on the geodesic.

£z.11. A fundawental property of geodesics on any surface—viz. the radius of circular
curvature at any point coincides, in direction, with the normal to the surface at any point
—can be deduced from the characteristic equations which express the minimum property.
(The property can be established by purely geometrical considerations, applied to the
position of equilibrium of a tight string on a smooth surface or to the path of a particle
moving on such a surface under no forces,)

Let the surface have the equation z=f(z, y); and denote, as usual, the partial first
derivatives of f(, ) by p and ¢, and its partial second derivatives by 7, s,and #. Denoting
the length of the elementary arc of the geodesic by do, we have

dr={(1+P) 2+ 2pgarn +(1+¢) g P de=F;
and we have to make / Fdt a minimum. The characteristic equations X=0 and ¥=0

determine the form of the curve.

The equation X=0 is

2r_d(ony
oz~ dt \ow, )~
We write
’ dz " d*x ’ d?/ 7 dZy
TTde? T T aE Y=g 7=
so that i
T u__-”' 9 ,_ﬁ
'”—0_17 alx_dt’ 3/—0_1: ”l.”/—d'
Now
aF 1 2 2 /2 , 2
T = gy OPr By (petgr) + Y gst =0 { prat+ (ps+gr) &Y + o5y ;
and
oF 1 . g ,
a = oy L) 21+ pgy} =(L+2) &'+ pgy/s
80 that :

d [oF , ,
T (;;l) = {(1+p°) 2" +pgy }+'2p (rar+ay1) +3' {g (rwr+sy0) +p (5214 131)}
=0 {(1+p%) 2" +pgy"}
1
+o {2pr 2.2 +(3ps+qr) z1y, + (g5 +p?) 112}

* For a full discussion of these forms; see Halphen, Fonctions elliptiques, t. ii, pp. 238-—243,
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Hence the characteristic equation X=0 becomes
14p2) 2" +pqy’ +pra’®+2psa’y’ +pty?=0.
But from 2=f(z, y), we have
' =pa’ +qy +ra’t+ 282y +ty'?;
and so the foregoing equation is

' +pd'=0.
Similarly, the equation ¥=0 becomes
¥’ +97'=0.
Consequently, we have
@ Y _ 7
p ¢ -U

along the geodesic—two equations, which are the analytical expression of the enunciated
property.
Two immediate inferences can be made:

(I) The orthogonal projection of the geodesic made upon the plane of z=0 is given by

the equa.tion
_:‘1’ —( —_ __y> 7'—281+t y .

(IT) A first integral of the characteristic equation of geodesics upon a surface of
revolution can always be obtained. For if the surface is 224y?=26G (2), where @ is any
appropriate function, we have

24+ G () p=0, y+G'(2)g=0.

Hence one geodesic equation becomes

@ _ Y.
z y’

and therefore we have a first integral given by
xy —yx'=A.
Note. The development of the properties of geodesics soon passes from the range of

application of the present calculus and becomes merged into the theory of differential
geometry. A full discussion will be found in Darboux’s Théorie générale des surfaces,
vol. ii, pp. 402—437, vol. iii, pp. 113—192.

As regards geodesics on surfaces of revolution, in particular on quadrics of revolution,
Halphen’s Fonctions elliptiques, t. ii, ch. vi, may be consulted ; whence it appears that the
integral expressions of geodesics on the central quadrics of revolution (other than a
cylinder or cone) involve elliptic functions. The integral expressions of geodesics on oblate
(terrene) spheroids have some analogy with the trigonometry of a right-angled spherical
triangle, with the substitution of elliptic functions for circular functions; and geodesics
on an ellipsoid are analytically expressible in terms of hyper-elliptic functions¥.

Weierstrass’s theorem that a range must terminate at the conjugate of its origin.
76. But one further proposition can be established, by way of imposing
the definite limit upon the range of integration.
Suppose that all the tests, necessary to secure a maximum or a minimum
for a given integral under weak variations, are satisfied: that is, the Euler
test, the Legendre test, and the Jacobi test. The last of these is satisfied

* Fuller references are given in the author’s Lectures on Differential Geometry, ch. v.
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when the range of the integral does not extend as far as the conjugate of the
initial place on the characteristic curve. It has been pointed out that, if the
range of integration extends as far as this conjugate, one set of non-zero
variations can be obtained which would allow the second variation to vanish,
even though that second variation would vanish for no others; and that, then,
1t is necessary to examine the third variation because, if this third variation
should not vanish for the particular set of variations, the integral would not
Ppossess a true maximum or a true minimum for weak variations*.

It was also indicated that, if the range were to extend beyond the con-
Jjugate, the same necessity would certainly arise, because weak variations
could be framed, non-zero up to the conjugate, and zero onwards, which
equally would make the second variation vanish. Further detailed considera-
tion of the latter possibility is unnecessary because of a theorem, due to
Weierstrass, that no mazimum or minimum can exist if the range of integra-
tion ewtends beyond the conjugate of the initial point: in other words, if the
range of integration includes within itself a complete range, bounded by two
conjugate points, and is not limited to that range. The theorem can be
established as follows.

77. 1t has been proved (§ 52) that the second variation can be expressed
in the form }«2l,, where

¢
I= f {P (ﬂl-“-’) + Gwe} dt,
t dt
where w= 2,9 —y,%; and the variation xw is to vanish at both limits of the

integral, account having been taken of behaviour at the limits in making the
first variation vanish. Now

dw\? dw d /. dw
and the terms at the limits vanish ; thust we can take 7, in the form
¢ d [, dw
L=[ wieu-% (P2l a

But, denoting any constant by ¢, the sign of ¢ being settled to be the same as
that of P and its (small) magnitude being settled later, we have

pef o (@) roramadf (G sufa
As before o
f;(P+ ¢) <%>2dt= [w(P+e)‘jl_“t"];_fw%{(P+e)z_@tu} “

* An example was given (§ 30, p. 33) ariging out of the catenoid.
1 See also § 58.
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The terms at the limits vanish; and so

[ w[0rom-fe ol la-] [T o

Thus far, all that is required of w is that it shall vanish at each limit of
the integral. Now let a displacement w, say %, be chosen which
(1) vanishes at each limit:
(i) everywhere along the curve satisfies the equation

d dw
@+9u-glP+o%) -0
and
(iii) is not zero everywhere.
Such a displacement would make I, consist solely of the second integral for
that variation and would make its sign, hitherto settled by the sign of the
unchanging quantity P, to be the same as that of — e, that is, by the opposite
sign.
The quantity % can be determined. The equation to be satisfied is
y d: w dP dw
T T @
When e is made zero, w becomes the integral of the old subsidiary
characteristic equation vanishing when ¢=4¢, and thus is the old quantity
Z(t, t,) of § 63, where
Z(t t) =0 (t) x () — x (&) @ (2).
It will be remembered that Z (¢, t,), continuous through the range, vanishes
at ¢, for the first time after having vanished at £,. Let
w=27Z(t t,)+e2+[€],
¢ being small, but as yet undetermined in magnitude:  is independent of e,
and is to vanish at f,: and [¢?] represents an aggregate of second and higher
powers of ¢, which will be negligible compared with eQ. The equation for  is
Q| dPdQ d°Z
wrtaa Ol
78. The complementary function in the integral of this equation is
Q =Ax (t) + B ().
To find the particular integral, we use the method of variation of parameters,
and therefore make 4 and B functions of . Then
dQ dy da)
=4 3t B

P+ —(G+e)w=0.

provided 4 and B are such that
dA dB
x(t)'az + w(t)m=0.
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When we substitute in the equation, we have
4 (PG ) B (PG G 5 - 00)
(G T )
But x (f) and w (¢) satisfy the subsidiary characteristic equation; hence
(&% %)%

-
Consequently
42
1 d4d_ 1 dB_1 e 1 d*Z
—w(t) dt x_(gﬁ__ dy dw_a( EE’)’
s "X de
where (§ 62) C is a non-vanishing speciﬁc constant. Hence

A=a—-é,f {Z(a to)—dmZ(ﬁ to)} (6) dé,

B=,8+—, {Z(G,to) dtsZ(o to)}x(e)de

where a and B are arbitrary constants, so far as this analysis is concerned.
Now
Ax (t) + Bo (t)
is to vanish when £=1¢,; that is,
ax (8) + Be (1)
must vanish when ¢=¢, Consequently ay (¢)+ Bw (t) is a mere multiple of

Z(t, t,), which can be absorbed into Z (¢, t,) by taking a constant multiple of
x () or () in place of the initial y (¢) or w (£). Hence

0=jo (t)ftv {Z(e, &) -a_ﬁ Z(, t,,)} X (6)d6
- %vx(t) (‘ {Z(g, ty) ag; Z (6, to)} w (8) do

=— lj Z(t, o){Z(e m—- Z(€ to)} aé,
a function of ¢ which vanishes when ¢ ={,.

79. As regards the range of the original integral we know that, when the
Euler test and the Legendre test are satisfied, it certainly possesses a maximum
or a minimum under weak variations, provided also the Jacobi test of not
extending to the conjugate of the initial point ¢, is satisfied. When the range
extends as far as this conjugate ¢, we have seen that further investigation is
wanted at once for the third variation ; and such investigation can be effected
in each particular instance. Now suppose that the range extends to a value
of ¢ greater than t,, say up to T, where T > t,.
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As Z (t, t,) vanishes at ¢,, consider two places ¢, — 7 and ¢, + 7, where 7 is
positive and ¢, +7< T'; and to arrange for even a small extension of the range
beyond ¢,, we take 7 small. We know (§ 66) that the characteristic, which is
consecutive to the central curve and passes through ¢, and ¢,, crosses that
central curve at each of these points. As ¢ is the first point of crossing after
t,, the quantities Z (t, —, t,) and Z (¢, + «T, ¢,), where « and T, are positive,
have the same sign; that i,

d d
GZC s |52
have opposite signs. Let the former be denoted by @; the latter (§ 67) is

—1%, where P, is the value of P at ¢, the sign of P being steady through
the range. Thus @ and C/P have the same sign. Hence
Wt —1)=—T1Q+eQ (t,—7)+[& 7],
Wh+1)= 1Q+eQ+7)+ [ L
Now choose 7 arbitrarily, keeping it small and making it positive. We
have chosen ¢ (our arbitrary constant, also small) of the same sign as P
throughout the range. Finally, choose e so small that, through a range of ¢
from ¢, — T to £, + 7,
|eQ )| <7|Q].
If © (¢,) is positive, then
when @ is positive, e (¢)—7() is negative in that range,
eQ (t) + 7Q is positive in that range: and
when Q is negative, eQ2 () + 7@ is negative in the range,
e () — 7Q is positive in the range.
If Q (t,) is negative, the same results hold. Hence, in every case,
—7Q+eQ(t,—7), TQ+eQ(+1T),
have opposite signs; that is, there is some place ¢t”, which lies between ¢, —
and ¢, + 7, where % () vanishes. This place ¢” may lie in the range between
t,— 7 and ¢,, or it may lie outside that range and between ¢, and ¢, + 7.

We therefore take the range of our integral from ¢, up to the place t”; and
to make certain of including ¢”, we assume that the original range of the in-
tegral extends beyond ¢, to 7.

A function w has now been chosen which
(i) vanishes at £,, the lower limit of the integral,

(iii) is not zero everywhere,
(iv) satisfies the equation (G +e€)w— % {(P +€) %} =0 everywhere

along the curve.
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We thus have an admissible variation, conforming to all the earlier conditions,
and satisfying * additional conditions; and, for this variation,

L=—c¢ f j {(‘%”)Z z_v} dt.

Hence this value of 7, is of a sign, opposite to that of ¢; and the sign of ¢ was
chosen the same as that of P; so that this value of I, is of a sign opposite to
that of P. But for all the other small variations that have been considered,
the sign of the corresponding second variation was of a sign the same as
that of P. Thus, in the circumstance that the range of integration of the
original integral extends beyond the conjugate of the lower limit, there are
variations, some of which give one sign to J, and others of which give the
reverse sign to I,, while for all of them the first variation vanishes. Hence
the integral does not possess a true maximum or minimum : that is, if the
range of the integral extends beyond a complete range, bounded by two
conjugates on the characteristic curve.

Consequently the Jacobian range is a strict limit for the integral.

80. The theorem is due to Weierstrasst. It proves that, if the range of
the integral certainly extends beyond the conjugate of the lower limit, the
integral does not possess a maximum or a minimum; but it provides no
decision on the issue, if the range merely extends as far as the conjugate.
A discussion of the question, when the integral ranges exactly between con-
jugates, will be found in a memoir by Osgoody.

* The non-zero value of % along the curve is due to the fact that the quantity
a2
Z (t, t,) T Z(t, ty)
is manifestly not zero everywhere along the curve.
t It is published in accounts of the subject, based upon notes taken at his Berlin lectures;
e.g., see Harris Hancock’s Calculus of Variations (the Weierstrassian Theory), 1904, Chapter X.
§ Trans. Amer. Math. Soc., vol. ii (1901), pp. 166—182.



CHAPTER IIIL

INTEGRALS INVOLVING DERIVATIVES OF THE SECOND ORDER : SPECIAL
WEAK VARIATIONS, BY THE METHOD OF JACOBI; GENERAL WEAK
VARIATIONS, BY THE METHOD OF WEIERSTRASS.

The chapter* is concerned with integrals which, in their simplest initial form, involve
one dependent variable together with its first and second derivatives. Some propositions
are stated for integrals, when derivatives up to the general order n occur. Many extensions
almost suggest themselves, so far as regards mere form ; and frequently the establishment
of these self-suggested extensions can be made by formal enlargement of the analysis
actually given. Thus the analysis, similar to that in §§ 88—96 and applicable to integrals
containing derivatives up to order », can be constructed without difficulty.

The first portion, comprising §§ 81—96, contains the discussion for the special weak
variations of the dependent variable alone. The method, used in Chapter I, is again used.

The second portion, comprising §§ 97—128, contains the discussion for the general weak
variations of the dependent variable and the independent variable simultaneously. The
method used in Chapter II originating with Weierstrass has been used, in a necessarily
amplified form.

Integrals involving second derivatives.

81. We now proceed to the determination of criteria for the possession
of maxima and minima of integrals, which involve the second derivative as
well as the first derivative of the single dependent variable. At this stage,
only those variations will be considered which are of the ‘ weak’ type. Also,
initially, the weak variations admitted will be those styled ‘special * being
variations that affect the dependent variable only, the independent variable
z being free from the imposed arbitrary variations. We thus, in the first
place, deal with an integral of the second order, defined as

I=JF(w, %Y,y ds,

where 3y and y” respectively denote the first derivative and the second
derivative of the dependent variable ¥.

The subject of integration F is assumed to remain continuous, so long as
its arguments @, ¥, ¥, ¥ are continuous. It need not be everywhere a
uniform function of its arguments, as it may (e.g9.) be a radical. But, if it is
not uniform, we shall take only such a range as will admit no branch-points:
that is, the selected radical will be uniform within the range, so that it may
be considered as expansible in regular power-series of appropriate variables.

* The substance of the chapter has already appeared in a memoir by the author, Proc. Roy.
Soc. Edin., vol. xlvi, part ii (1926), pp. 149—193. In connection with the first portion of the
chapter, the memoirs by Hesse and by Clebsch, already quoted (p. 5), may be consulted: these
memoirs dealing with integrals containing the derivative of general order.
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Variation of the integral.

82. As before, the special weak variation adopted consists in the sub-
stitution of y+ kv for y—with the corresponding substitutions for the
derivatives—where «, as usual, is so small that any power, which occurs,
is negligible compared with lower powers; and where v is a function of ,
which can be arbitrarily assigned subject to the requirement of being regular
(§9) within a given range of the variable =, supposed to increase con-
tinuously through that range. The limits of the integral may be fixed
definitely by assigned data, or they may be required merely to conform to
assigned conditions: in the latter event, their determination is part of the
problem. To take the wider possibility into account from the beginning, we
shall assume that, when the whole variation is imposed, the upper limit of
the integral becomes ,+ «£, instead of #,, and its lower limit becomes
x, + €, instead of #;,. Thus the new value of the integral is

Tatafs ’ , 77 ,r
’- Fa,y+ueo,y +uav,y" + xv")de
Sy tedy

|

2etxy
Now (as in § 32) the first integral f Fde differs from «£,F,, where F,
g

Z3+xéy &, +xky £ , ,
f —f +f }F(w,y+fcv,y+xv’,y'+xv")dw.
%

E2) Z

denotes the value of F(z, y, 3, y”) at a;, by quantities of the second degree
and higher degrees in «; we therefore take it as

«b, F+ K,
with the customary significance of K, as the aggregate of terms of the second
x+xf,
and higher degrees in «. Similarly, the second integral ‘f Fdz differs
E2%

from «£ F,, where F, denotes the value of F(z, ¥, ¥, y") at @, by quantities
of the second degree and higher degrees in «; we therefore take it as

«EF + Ky,
with the customary significance of K,”.

Hence the increment of the original integral is
k(&F, - EF)+ K/~ K’

£
+f {F o, y+uev,y +u,y +x0")~F (2,9, 9, y')} da.

But the last integral
=xf%(v?!,+v’@+v" or
oy oy oy”’
where K,” denotes an aggregate of terms involving the second and higher
powers of «. Writing K,= K/~ K,” + K,”, so that K, is the complete

) d$ + Kg’”,

L4
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aggregate of terms of the second and higher powers of « that occur in the
whole increment of the integral, we have that increment equal to

lc{ngz—lel +fx2(v?£,+ ,3F+v" %{:) dw}+K2,

o\ 0y Y a—yl
= ’C(E2F2_E1F1+Il)+Kz,
where
I,= {.Ia(vg+v’a£ +” E)
Iy T oy oy
The whole term in the increment, which involves the first power of «,
is called the first variation of the integral.

Vanishing of the first variation : characteristic equation.

83. If the first variation does not vanish, the quantity K, is relatively
unimportant in magnitude. In that event, we can make the increment of
the integral positive or negative at will, solely by changing the sign of «.
If the integral is to have a maximum or a minimum value, that increment
must have a persistent sign (negative for a maximum, positive for a minimum);
hence the hypothesis admitting the former possibility must be excluded,
that is, the first variation of the integral must vanish. We therefore proceed
to make the first variation vanish, for all variations which are possible:
that is, for arbitrary small variations xv of y throughout the range, and for
terminal small variations as arbitrary as the conditions permit.

Now, with the assumptions as to the function F, we have
i(v@)_vi(_@)_v' oF 4 il,,' oF _vi(@)}_vn aF_,,_di(E).
dx ayl dw ayr - ay/ b da:' ay// d.’l? ay// - ay/l d.'c2 ay// b

and therefore

e o ) e (i [ - (5 o )

where the integral extends over the range, and the terms outside the sign of
integration are to be taken at the limits. Hence the first variation of the
original integral is

oforley - G) s G

el - £ D)

and it is to vanish for all small variations, admissible within the range and at
the limits.

First, consider variations which vanish at the limits but otherwise are
arbitrary through the range. The terms at the limits then vanish, because
£ v, v vanish at each limit; and the integral must then vanish also for all
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such variations which remain arbitrary within the range. This result can
be attained only if the equation
oF d /o d: (oF
@=5 @ (o) * 25 (57) =

is satisfied everywhere along the range. Otherwise, if & were sometimes
positive and sometimes negative, a choice of v to have the same sign as @&
would make the integral positive, and a different choice of v so as to have its
sign different from that of & would make the integral negative: that is, the
integral could be made positive or negative at will, a possibility that is
precluded.

Next, consider variations which do not vanish at the limits. Now that
@& vanishes all along the range so that the integral in the first variation
vanishes, and because the first variation as a whole vanishes, the terms at the
limits must vanish ; hence we must have

oF d /oF , oF
e+ {57 - ()} +v )=

This requirement may be satisfied automatically by assigned duta. If not
thus satisfied, it must be satisfied by inferences conforming to assigned con-
ditions, affecting the limits only and determining the limits.

84. This critical equation (called the characteristic equation) & =0
usually is of the fourth order, and not linear in y and the derivatives of y. The
only term involving the highest derivative of y is

117 azF
ayl'2 b
a fact of importance in connection with the character of the primitive because

of the property to be imposed later (§95) that g;,—{; is never to vanish within

the range of the integral. The primitive is therefore of the form
y=y(x, 4,, 4,, 4,, 4,),
where A4,, 4,, A,, A, are four arbitrary independent constants. When the
form of the second variation (§ 88), as a function of v, ¥/, v”, is considered in
detail, this value of y (with the consequent values of y and y”) must be
substituted in the six coefficients aw, @, G, @i, @1z, @, Which then can be
regarded as functions of  alone.
E=x. 1. Prove that, if

F(x, y, 9, ¥)=y"f (= 9,9)+g (¥, ¥
the equation =0 is only of the second order in 9.
Ex. 2. Prove that, if the equation =0 is an actual identity and not a differential
equation, then #(z, , ¥, ") must be equal exactly to a quantity
. O oG 9@
¥y W +¥y W + g

where @ can be any function of x, y, y.
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Subsidiary characteristic equation : 1ts primitive.

85. The characteristic equation is satisfied by the foregoing value of y
for all values of the arbitrary constants 4,, 4,, 4;, 4,. It therefore still
will be satisfied, when we effect any small variation upon these constants by
substituting

A+ kay, Az + kay, Ay + kay, A, + xa,
for 4,, A,, 45, A, respectively, the new constants a,, a,, a5, @, themselves
being arbitrary and independent. The constant x is so small that second
and higher powers are negligible in value compared with the first power;
hence, if

T N

n= ala‘Al-*-aaéz;'l-asaIs'*"haTi‘y
the consequent value of y is y + «n + ..., where the unexpressed part involves
second and higher powers of x. Thus 7 can be regarded as a small variation
of y, the value of 5 being immediately derivable when the general value of y
is known.

As the fundamental change has originated in the arbitrary constants, for
any set of which the characteristic equation is satisfied, that equation must
remain invariable and characteristic, though individual parts are altered.

o oF OF
The new values =, =—, =~ are
oy’ oy’ oy
oF 00 oF 00 oF 0Q
@-]-Kgq;'l‘..., aT/+K'a‘;17+..., aTy—,,+Ka—1’7,+...,

where the unexpressed parts involve the second and higher powers of «, and

where
20 = awn* + 2007 + 2a07m” + @un® + 2a0'0" + ann™

Consequently the new value of & is

o0 d 00 dz /002
®+K{517_(1_@<5;’) +ﬁ’<37")} +...,
with the same significance as to unexpressed terms. The characteristic
equation still is satisfied; and therefore

K {é; T dz (a,,,,) +EE—“ <5ﬂ—,,)}+ =0.

Hence, as « becomes indefinitely small, this last equation is

200 d [oQ az [0Q
5?_32&(67)+dw?(ﬁ>=0

in the limit.

This new equation in #, the coefficients in which are @y, @y, G, @,
Qy9; Ay (all of them are functions of #), is linear and of the fourth order. Its
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primitive therefore involves four constants, arbitrary so far as the equation
is concerned. But we have seen that
”7=ala—a§/‘l+ae%‘yz+%;§?—s+a4%‘;

this expression for 4 involves four arbitrary independent constants, a,, a,, @, a,,
which do not occur in the equation. If therefore the four quantities
oy oy dy oy . . .

94, 34, Y REY Y are such, that no linear relation subsists between them
involving only constant coefficients, the foregoing expression for 5 provides
the primitive of the differential equation for . This property, of linear
independence among the four derivatives of y, will be established later
(§112) and will be assumed in the meanwhile.

Thus we have a new equation derived from the characteristic equation;
and its primitive can be derived from the primitive of the characteristic
equation. Accordingly, the equation in 7 is called the subsidiary character-
ustic equation, sometimes (more briefly) the subsidiary equation.

When the primitive of the characteristic equation is known, the primitive
of the subsidiary equation can be derived without further integration. If
however the primitive of the characteristic equation is not known, but only
some integral (perhaps a very special integral) is known which may lead to
a maximum or minimum, this special integral is to be substituted in the
six coefficients au, Gy, @m, @y, s, az; and the subsidiary characteristic
equation remains. Its primitive, which cannot now be obtained by the
former process, must be obtained by the customary processes of integration.

In fact, to complete the analysis up to this stage, it is always necessary
to integrate one of the two equations of the fourth order—the non-linear
characteristic equation or the linear subsidiary characteristic equation; for,
if the former has not been integrated in general and only a special integral
is known, the latter cannot be used in order to construct the primitive of the
subsidiary equation

Terminal conditions : four cases.

86. Next, it is necessary to consider the inferences to be derived from the
condition at the limits, as represented by the relation

i oF d o\ , oF
e fr-E G ]

to be satisfied in connection with all variations.

We can select one variation, which leaves one extremity unchanged :
that is, the position of the extremity and the direction of the extremity (given
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by the values of y and ¥') are fixed ; so £, v, v’ are zero there. Hence we must
have

oF d (oF oF
EF +v {By p (By )} Yoy =
at the other extremity.

Similarly, we can select another variation not rigidly settled at the first
extremity. For the second extremity, the condition just deduced is already
required. Hence the same condition, now still remaining at the first extremity,
is to be satisfied there.

Hence, as an initial (but not completely detailed) form of requirement,

the relation
oF d (oF , oF
-_— —_— P 0
e+ log = s ()| + ¥ oy

must be satisfied at each extremity.

Various detailed forms emerge, according to the variety of character in
the assigned terminal data. As the relation is to be satisfied at each extremity
by itself, without reference to the other extremity, the data (and the con-
sequent condition or conditions) are not necessarily the same for the two
extremities. The result, appropriate to the data at one extremity, must be
associated with the result appropriate to the other.

(i) Let fixed values be assigned to one extremity (the case really has
already been considered).

We then have £=0, v=0, v'=0 for that extremity; the relation is satisfied,
without leaving any residual analytical condition.

(ii) Let the terminal values be required to satisfy a given relation

Xy y)=0,
this relation being the only restriction at the extremity. Now, at that
extremity, we have supposed  varied into @+ «£; let the corresponding
values of y and ¥, connected with this relation, be changed into y +xn and
¥+ x7". Then the sole condition imposed upon &, 5, 7', because of the assigned
requirement, is
o, 4,
e oy oy 0

We have to obtain the relation between v and 7, and the relation between

v’ and %, each such relation possibly involving .

Now the relation between v and 7 can be obtained exactly as for the
simpler case discussed in § 33. We take the same figure as before. The curve
E PN represents a current relation between « and y; the dotted curve ... PQ...
represents a terminal relation between them. In that figure,

QN=xn, SP=QR=xv, PN =k,
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and we have
en=xv+vy . &,
that is,
v=9-y¢

The same diagram, with a different significance for ordinates, leads to the
relation between v and #. We now take ¥'=1y/, and regard the curve EPN
as a current relation between # and Y'; the dotted curve ...PQ... now is a
terminal relation between x and Y, that is, between z and y'. For this
representation,

QN =variation of Y along PQ = «7/,
SP = QR = variation of the curve EPN along the ordinate = xv/,

PN =g,
RN = PN tan RPN =«f. Y’ = «ty’;
and thus
wn'=QN = QR+ RN = v’ + uky’,
that is,

vl —_ 1,[ - yllE‘
With these values for v and ¢ in terms of 7, %’ E the terminal condition

EF+v {aF d( )} 'a" 0,

for the integral, becomes

(oF _d joF\) __,oF). (oF _d /3FY) . ,oF _
trv by 2 G-y i) G- G e

But the only condition, representing assigned requirements, is
ox.,0x . Ox ,
gt ay " oy = =0.

Hence we have, as inferences from the requirement at the extremity,

,(0F d (oF JOF _ 0x
P~y oy s o)} =¥ oy =2 2
oF _d @)_ ox

oy d=z (ay" Ty [
OF Oy
oy~ oy

together with the terminal condition

Xy y)=0,
that is, after the elimination of A, there are three equations associated with
the extremity of the range in question.

(iii) Let an extremity of the range be required to lie upon a given curve
h(z, y)=0,
and let the direction at the extremity be fixed.
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Because of the latter requirement, we have
y' = given constant,
so that ¥ =0 at the extremity: and the terminal condition becomes
oF d (BF )}
e s 2 7] = 0)
oy’ da\3y"/]

,(oF d (oF oF d soF\) _
el v -G -2 6o
The condition, representing assigned requirements, is now
oh | Oh .
g % +7 éi_y =0;

and therefore, as requirements at the extremity, we have
F-y {aﬁ:— A (E)}=M%
oy dxz\oy oz
oF d (oF\_ ok |
o~ o) =+
where p is merely a multiplier; together with the terminal conditions

EF +v {
that is,

h(z, y)=0, y =given constant.
(iv) Let an extremity of the range be required to lie upon a given curve
k(z, y)=0,
and let the direction at the extremity be unconditioned.

Then ¢ is arbitrary and variable. The conditions at the extremity are

Py E_d()
Y 0y dz\oy"/) P oz
o _d (oo
oy de\dy’) " Poy [
oF
i 0
together with the single terminal condition
k(z, y)=0.

87. In every special kind of terminal relation, but with forms that vary
from one kind to another, we have three conditions surviving at an extremity,
and therefore six surviving conditicns in all. As will be seen immediately,
the primitive of the equation € = 0 involves four arbitrary constants. When
any freedom is left to the position of an extremity of the range by the
character of the imposed conditions, both the initial limit #; and the final
limit «, have to be determined, as being quantities initially unknown. Thus,
when the greatest freedom is allowed by the assigned conditions, there are
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six constants to be determined. But we have six relations from the terminal
conditions; and thus all the quantities are potentially determinate.

When the assigned conditions are more precise and the limits «; and =,
are actually known from the beginning, the four constants in the primitive
are otherwise obtained (§ 111). And so for the various forms of condition that
oceur: either they impose limits, which initially are definitely fixed; or they
lead to relations, arising out of imposed demands and definitely determining
the limits as known.

Thus, in order to secure that the first variation of the original integral
shall vanish for all admissible variations, we obtain a critical equation & =0
and we have conditions which determine limits. These limits, henceforth to
be regarded as known and fixed, admit no variation. The way is thus cleared
for simplification in considering the second: variation of the original integral.

The corresponding results for an integral, which involves a derivative of
order higher than the second, are given in the following example.

Ezx. 1. Prove that, if an integral / Vdz of order n, where

V=F(2 4, %, ..., yt)

and g™ denotes g—x'—z, has a maximum or minimum, then y must satisfy the equation

oV d (oV a2 (oV dr [0V
=% ~ s |+ o g}~V i =0
and that this equation, usually of order 2n, is of order 2» —2 when
V"y(") ¢ (.1:, Y, y(l)’ ey y(n—l))_‘_‘l, (x) Y 3/(”, sevy .7/("-1))'

Writing
P oV d ( oV - dr-=r (O
"=y~ do () Tt U G
for r=1, ..., n, prove that, if an extremity of the integral lies on a curve # (#, ¥)=0 and

be displaced to a position #+«X, y+«¥ upon that curve, then the condition
{Py—y ) Py -y Ppe ...~y P} X
+P Y4+ P Y04, 4+ P, Y~ 1=0
must be satisfied at that extremity, where

oF oF
X+ Y@ =0,
RF | OF Gl R
farrm g (GG Tem-o

and so on.

Prove also that, if V is the exact differential coefficient of a function of z, ¥, yW, ...,
%™, then £=0 is the condition of integrability: and that, if V is the exact second
differential coefficient of a function of z, y, y), ..., y~3, the additional condition

% d (oV dz (oV e dr-1 (oV _
w‘gd‘é{aﬂ}”‘m{w}""-“‘” ‘d“.z»-l{ay—m}—"

must be satisfied.
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Ezx. 2. Prove (a) that, if the function V in the preceding example does not involve y
explicitly, a first integral of the characteristic equation is
P 1=Aa
where A is an arbitrary constant; (b) that, if it does not involve z explicitly, a first

integral is

V=B+yM P +y® Py+...+y™ Py,
where B is another arbitrary constant: and (c) that these two integrals are independent of
one another, so that they coexist, when ¥ does not involve # or y explicitly and does con-
tain derivatives of y higher than the first.

Is the latter statement correct, when ¥ contains only the derivative of the first order ?

The second variation, under spectal weak variations.

88. We proceed to the consideration of the second variation of the
original integral; but now it is necessary to comsider it only in the circum-
stances established by the vanishing of the first variation. In particular, the
limits of the integral are fixed (§87). Thus the variation of the integral is

22
L (Fo,y+ a0,y +e0,y" +o')—F(z,y, 9, y")} do
= %x’f:ﬂ:dw—l- KB’

where
IF = aw?® + 20000 + 28500 + 0402 + 20,000 + a5V,

in which the six coefficients ay, Gy, @n, @, Ce, A respectively denote
o°F o F o2F oF oF o°F

oy oyoy” Gyoy W oy By
and where K, denotes the aggregate of terms arising out of the third power
and higher powers of x in the expansion. The term involving the first
power of « does not appear; it is the first variation of the integral and

has been made to vanish.

The governing magnitude in this variation is the ‘second’ variation
12 f 4Fdz, unless it vanishes. We must, therefore, consider, in detail, the
integral

j fFd=:

and it will be noted that §f is the same function of v, ¢, v” as 20, connected
(§85) with the subsidiary equation, is of #, 7', 5”.

89. For this purpose, we take a quantity U, homogeneous and of the
second degree in v and ¢, choosing it (if possible) so that

Qg (:ﬂ: + %) = (agn?” + W' +mo)?,

where 7 and m are magnitudes also to be determined.
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In the earliest discussion (§§19, 21) of the second variation of integrals
originally involving derivatives of only the first order, the squared quantity
in the modified subject of integration in the critical integral was such that,
when v was made a constant multiple of the associated integral of the
subsidiary equation, the quantity vanished. By analogy, we are led to con-
sider the possibility that the two quantities ! and m should satisfy initially
the sole condition

axnn” +ln'+my =0,
where 7 is any integral of the subsidiary equation
0 _d o0y & o0y,
on  dz\on’/ da?\oy")
Other conditions, to render ! and m precise, will be imposed; they need not
be stated at this stage of the investigation.

On this possibility, we have
o2 ,
S = G+ Gua + G

=—0n'—¢n,
where 6 and ¢ are two quantities dependent upon I and m by the relations
l=a’12+0’ m=a02+¢’

that is, # and ¢ are not new unknown quantities, additional to  and m.
Next,

0 d 0 . w, @ 4,
%'_d_w(a?’)=““"’+““” +aun’ + 7 (O + ¢n)
=(au+0)"1”+(“u+9’+¢)"l’+("’m+¢')’l
l 17 7 4 _l_g U ,_lm
= oo G+ )+ (a0 + %)n +<a.,1+¢ @};
=—¢n' —ym,

B=ay(an+6+2¢), Im=an(an+¢ +v):

the former of these equations is a second relation (apparently) affecting
! and m, while the latter defines a new quantity ¥. And now

00  d [0 d: /00

o~ (o) *+ 2 5) )
=apn + Cun + ann” + dz (7' + ¥n)
=+ )"+ (an + ¢ + )0 + (@w+ V)7

w o, Imo, .
=mn = + (G + )7
22

if

m m?
= I l: ( / ) )
—(ann” +1n' +mn) + {@u+ ¥ —— |9
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As the left-hand side vanishes and as 5 is not zero, we have
M2 = Gy (Ap + ).
It therefore follows that, if # denote any integral of the subsidiary charac-
teristic equation, and if [, m, 6, ¢, yr are such that
pn” + I+ mn =0,
l=0,+0, m=anp+¢,
P=an(an+6 +2¢), Im=an(an+¢' +v9), m?*=amy(am+¥),
then
(At + W' + mv)
= 020" + 200 (@1 + 0) 0"V + 209, (@ + ) ¥V
+ Ao (A + O+ ) V% + 200 (@ + @'+ ) V'V + Gy (g + ) 0

dU
= (F+ )
where
U= 0v""+2¢vv’ + Y2

Determaination of two quantities, for the expression of the second variation.

90. Thus far, we have considered only a single integral 5 of the subsidiary
characteristic equation in connection with the two quantities / and m; and
no limitation has been imposed on the integral. We proceed to prove that
all the determining relations affecting I and m (and the quantities 6, ¢, ¥r)
are satisfied, when two distinet integrals of that equation are taken, subject
to a single condition connected with the subsidiary equation itself.

Let two such integrals be denoted by a and 3, so that we have

apd”’ +la' +ma=0, axB’+I8 +mB=0.
In order that I and m may be determinate, a8’ —«’8 must not be zero, a
requirement satisfied because a and 8 are two distinet integrals such that 3 is
not a mere constant multiple of a. In order that I may not be zero always,
we must have a8” —a”B not always zero, so that a8’ —a/8 must not be a
constant. And in order that m may not be zero always, we must have
o 3" — o’ not always zero, so that we do not have 8= ka + h, where % and %
are constants: in other words, the subsidiary equation must not admit any
single integral that is a mere constant. In connection with the equations for
! and m, it is convenient to write
ay—=20p— 0y =b, aw—ay +ayp’=c;

and then the subsidiary characteristic equation is

1

aﬂ” + 21122/')7/” + (anzz” — b) "7” - lnl + 677 — 0’
so that the exclusion of the possibility 8= ka + h, where a and B are two

integrals of this equation, merely requires that ¢ must not vanish, clearly not
a limitation of a general kind.
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91. First, as regards the indicated condition connected with the equation
itself. The equation, being linear in the dependent variable % and of the
fourth order, possesses four linearly independent integrals : and the primitive
is a linear combination of these four integrals with arbitrary constant
coefficients. Let a and 8 be any two of the four; and introduce new quantities
z and u by the definitions

Z=aB/—a’/3, /‘L___allgll__a/lﬂl-

&= o —a"B +p,

" =af"” — "B+ 2,

W=dB "R,

p=dB" a8 +a'B" — "B

One property, to be used immediately (p. 131), may be noted in passing. If ¢ denote
au u__amﬁ//’ we have

Then

o= allﬁlll - aI"B)I’
“/= a'BIII — al}lBl
b
' —p=aB” —a"8,
and therefore
o , d, B|=0,
W, o, f
‘ Z“ —p a 13
that is, T
so that TR =) p=0,

z(a//B"l__ al//B'/)=P'Z/ +/"2_ an‘
As a and B are integrals of the subsidiary characteristic equation,
%B,,I,+ 2awfﬂlll+ (azzll — b) B’I_ b/BI + CB = 0,
At + 200" + (A" —b)o’ — b'a’ + ca = 0.
Multiplying the first by a, the second by B, and subtracting, we have
azz(zlﬂ" 2[/) + 2(1/22/(2”—- ‘Lb)+ (algz”— b) 27— b/ =0.
Thus
d 4 [
(—i—t{a,”(z —2u) + ax'z’ — bz} =0,
and therefore
Oy (&7~ 21) + @y 2’ — bz = C,
where C is a constant, which manifestly is specific and not arbitrary, because
all the quantities on the left-hand side are specific.

92. We have taken a and 8 to be any two linearly independent inte-
grals, out of a complete set. We now proceed to prove that, if C be not
zero for any two initially selected integrals, two can be chosen so as to make
the specific constant zero. Let a and v be a pair with 2, u,, 0, as the values
of z, u, C; and let a and & be another pair (where § is distinct from « and is
not a linear combination of @ and v with constant coefficients), this second
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pair having z,, u,, C, as the values of z, g, C. (It is assumed that neither C,
nor O, is zero; for, if either were zero, the desired combination would be to

hand.) Then
Qe (27" = 2p) + @'z’ — b2y = C,

W (25" — 2) + Ao’z — bz, = C,.

B=Cw—6'13;

Let

then
z =0z - Ca2, ,

2 =C2/ —C,z.),

2= (02" — (2,

B = Czﬂ'l —Cipe,
and therefore

Gm (2" = 20) + a2’ — b2 =0.

But B, thus chosen as a linear combination of the two integrals ¢ and § with
constant coefficients, is itself an integral of the characteristic equation; and
it is distinet from a, because & is not a linear combination of a and .

Thus two integrals a and B can always be chosen, so that the specific
constant € is zero—which is the property in question. Moreover, the choice
manifestly is not unique.

93. We now proceed to shew that all the equations for I, m, 6, ¢, y» are
satisfied by the equations

and’ +lad +ma=0, a.B +I8+mB=0,
defining / and m in terms of the two integrals a and B with the property just
established. From these two equations, it follows that

z M
l=—qayn— M=y —.
222,: ZZZ

The other three equations are
P=an(ay+ 0 +2¢)=ax(b+1'+2m),
Im =G (G + ¢+ V) = Qo (G — @'+ m' + ¥),
M= tgn (000 + ¥').
When the values of [ and m are substituted in the first of these equations,
it becomes

‘2 " .
am*%=wﬂ (b+amzz—,2—amé—a22’§+ 2af_»zlz—l'),
which is satisfied because
O (7' — 2p) + @ 2 ~ bz = 0.
When the values of [ and m are substituted in the second of these equa-
tions, it determines a quantity yr in the form

1 ’
—‘["=aol—ao2,+2(azz,l-"+azzll');

that is, with this value for y, the second equation is satisfied.
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When the value of m and this value of Y are substituted in the third
equation, it becomes

2
© ‘
aoo—agg z—2=—'1ll‘

1 7 T Z/ ’
=ay' — 0"+ 5 (0"p + 204 + ap”) — 5 (@ + apt’),
that is,

2 1 ” 7 " Z' 7 r
o=an 5 42 (an"p+ 2000 + Cups )=~ S (@ap + agu).

Now, taking the two equations satisfied singly by 8 and « because they are
integrals of the subsidiary characteristic equation, multiplying the first by o,
the second by @, and subtracting, we have

aﬁ(alﬂ'lll_ al/ll l)+ 2a2“/(alBIII_ alIIBI)+(am/l_ b) (aIBII_aIIB') + c (alﬂ_ aB/)= O,
and therefore

a22 {”l/_ (aI/BI//_ aﬂlﬁ//)} + 2&22,’11,4‘ (am”_ b)/l: —Cz= 0'
Now

amz (aIIBIII - a//IBII) —_ am (M’z’+ #2 — MII),

always, whatever integrals « and 8 be chosen; and for the present choice,
O2" =20 p — @'z’ + bz ;
thus
Anz (a”ﬁm _ a/l/Bl/) - a‘zz,u.'z'+ am/llz— P (2%,‘ - am/zr + bz)
= o (12" — p®) + G 2’ — bz
Therefore
7, 1 7 ’ ’
oafi" =~ (0 (W'~ ) + 0y’ bz} + 200w+ (2"~ b) p— 02 = 0,

that is, on dividing by z,
u? 1 ” 70 ” 7 ’ ’
U 5+ - (Gt + 200 + 0" 11) ~ — (ampt'+ ') — 0= 0.

Thus the third of the three equations is satisfied; and the five quantities
1, m, 6, ¢, 4 are expressed in terms of a and B by the equations

’

z
=-a2‘2;;
"
m=a22;)
2
O=—ay,—a, z’

¢=_a02+a22%r

1 ’ s
‘l’= — Oy —a/m/_;(am/‘- + axnp’),
where
2= aB;__ a’B» © =a'Bu_ a"B',
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and where the condition
Ao (27— 2u) + a2’ — bz =0
is satisfied.
94. The preceding analysis can be modified and restated as follows. We
have
F=axv"+b0"+cv* + (% {2100 + 22000 4 (g — @) 7},

where, as before,
b=ay—ay —2ap, ¢=ay—0u + ay,"

Also
%(lv"“ + 2mov’ + no?)
= 20"y + 2mwv” + (I’ + 2m) v + (2m’ + 2n) w0’ + n'v?;
and therefore

d , , '
[ F - 5 (0= +2 (= m) 0+ (30— 0= )
= a2 4 200, W'V + 2amuv”
+ s (b + U+ 2m) v + 200 (W' + 1) 0 + @y (¢ + 1) ¥*

= (anv" + W'+ mo),

provided
P=ay(b+1'+2m),

Im = ayp (m'+n),
mP=ay (c+ 7).
This is the earlier form (§89) of the result, when we take
p—1l=0, ap—m=¢, ay—ay—n=1.
The remainder of the analysis, for the establishment of the equations
and +ld'+ma=0, axB’+18 +mB=0,

with the relation between a and 3, is unaltered.

Normal form of second variation : the Legendre test.
95. It follows that

Ao (;j} + %]) = (anv” + W' + mvy;

and therefore, on inserting the values of / and m,

au Ao _ v, v, v ?
F+ dz ~ (aff — dB) a’, a, a
I g8”, B, B

= an[],
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(a8’ — B =

v, v, vl
o« o, a
! BU’ BI: B

The quantity determining the second variation of the original integral

f F(y ¢, y)dais

f Fda.
But
‘jl_gdx =[U]=[00"+ 2w’ + yo7],

taken at the limits of the integral. As these limits have become fixed by the
inferences from the vanishing of the first variation, we have »=0 and o' =0
at each limit; and thus [U]=0. Hence the second variation

=31’ / FFd=
=ix ax[dz;
and the whole variation of the integral is
R f 0w O der + K,

where K is the aggregate of terms involving the third and higher powers
of .
Thus the integral /am(jdx is critical for the second variation. If it is

positive for all admissible variations v, all such variations make the increment
of the original integral an increase : subject to any other conditions that may
oceur, the original integral is a minimum. If it is negative for all admissible
variations, all such variations make the increment of the original integral a
decrease: subject to any other conditions that may occur, the original inte-

gral is a minimum. Hence fam[:]dw is to be regularly positive or regularly

negative for all arbitrary admissible variations.

Then @, must have a persistent sign throughout the range. For, if a,
were sometimes positive, sometimes negative, then by choosing v=0 when

@, is negative, we make f @ [1dz positive ; and by choosing v =0 when a,, is

positive, we make f ax []dz negative; that is, the integral in question can be

made positive or negative at will, if ax can change its sign through the range.
Hence we infer, as a necessary requirement, that the quantity @, must be
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~

2
monotonic: that is, g?ﬂ must have a constant sign throughout the range of the

integral along the characteristic curve. This test, an extension of the Legendre
test, for the former case, may be called the Legendre test.

The Jacobr test.

96. But the quantity [J must still be considered. Apparently, it is a
positive quantity. The magnitudes a and 8, which occur in its expression, are
linearly independent, so that no difficulty arises from the quantity a8’ — a8,
or from the (excluded) possibility that the second and third lines of the deter-
minant might effectively be the same. It vanishes of course when v=0: in
that event, there is no variation. It may however vanish if some variation v
is possible such that through the range

v=Aa+ BB,
where A and B are constants. The conditions now require that v shall vanish
at the limits of the range. If, therefore, the range is such as to allow constants
A and B to be chosen, so that
Aa+ BB
shall in general be distinet from zero, shall vanish at the lower limit, and
shall vanish also at the upper limit (or earlier), then the non-zero variation
v= Ao+ BB makes [] vanish. For that variation, the second variation of the

original integral f F(z,y, v, y”)dx vanishes: we cannot assert the existence

of a maximum or a minimum, without examining the quantity K.

If, however, the range of the integral along the characteristic curve,
beginning at a lower limit where a quantity Aa+ BB vanishes, does not
extend as far as the nearest place where that quantity again vanishes, then
the indicated variation cannot occur. There then is no non-zero variation v
which annihilates []; and the former argument now remains valid.

The further significance of this result will be indicated later (§§ 124-126),
when we come to consider the conjugate of the lower limit of the integral as
a point on the characteristic curve. Meanwhile, we have the initial form of
the Jacobi test limiting the range of the integral.

Summary of tests.
Summarising, we have three tests, thus far:

(i) the characteristic equation (the Buler test), leading to the character-

istic curve;
2

o°F
ay112
(iii) the limitation of the range (the Jacobi test).

(ii) the non-evanescence of along the range (the Legendre test);
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General weak variations : the Weierstrass method.

97. We now pass to the consideration of the more extensive type of
variation, still required to be ‘weak,” wherein both the dependent variable
and the independent variable are subject, separately or simultaneously, to
small unrelated changes.

To facilitate the representation and expression of such variations, it is
convenient, as before (§ 36), to make  and y functions of another variable ¢
which is parametric along the characteristic curve. Initially at least, this new
variable will not be restricted to represent any element of the curve so essen-
tially intrinsic as the length of the arc from a fixed point. The introduction of
the variable ¢ changes the expression of the integral itself and substantially
modifies the analysis; a reversion to the previous form can always be made,
so far as some results are concerned, by adopting z as the independent
variable ¢.

We write

o =" _dy
m=ggm e I g
for integer values of m and of u, while «, is # and y, is y. To express partial
differentiations of any function G involving #, @,, &, ..., ¥, Y1, o, ..., We write

G s

a_ymay7l - cmn’ amewn = 'ym"’

for m, n=0, 1, 2; so that there are six coefficients ¢ (because ¢ = Cpm),
and six coefficients y (because qm, = yum). Also we write
2
G =kmn,
0% 0Yn
for m=0, 1, 2. and n=0, 1, 2; so that (as &y, and k., are not the same, when
m and » are different) there are nine coefficients .

To transform the integral {F (=, 9,9, y") de, we have

V=5 y”=wlls(w1yz - )3
and we write
G2, 21, 3, y, o ) =0 F (2, 9, 9, §7)
= F (w, Y, i—g, 'zl‘%‘;j%) )
so that G is a function of the same character in its arguments as the original
function #. The integral becomes

"G (’1‘: xly w?) 3/, 3/1, yz)dt'
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We assume that ¢ increases steadily throughout the range from the lower
limit to the upper limit of the integral; thus #, does not become infinite.

The function F is a function of only four arguments, while G (as expressed)
is a function of six arguments. Thus G cannot be a quite general function of
those six, and therefore the limitations on generality must be indicated
explicitly. We have

8G=F_3ﬁa_ﬁ’+(2y2_3ylw,)g

oz, z 0y’ ' \a® 2’ Joy"’
06 _ OF _ =z OF

oY, oy w2y’

G _ _noF

or, 2oy’

oG _ 1 oF

. @ 0y

oF

By eliminating %: 3 and F, using the relation G =, F, we have two (and
only two) identical relations satisfied by G'; and these, which will be called

the fundamental identities, can be taken in the form*

oG oG oG oG

O—w?§+' %
= o, y'8y2

These two identities are the expression of the limitations upon G as a
function of its six arguments.

Variation of the integral : the ‘ first’ variation.
98. To obtain the conditions for a maximum or a minimum of the integral
J G dt, the variables # and y are subjected simultaneously to small variations

so that they become x 4+ xu and y + xv, where « is the usual small arbitrary
constant, while u and v are arbitrary functions of ¢, regular within the range

* For another mode of derivation, based upon the fact that the integral |G dt, which (as

in § 38) is an invariant for changes of ¢, is to be unaltered by infinitesimal changes in ¢,
see § 105 post.

It is to be noted that if, instead of regarding the two identities as relations satisfied by every
given function G arising as in the text, the two relations are regarded as simultaneous partial
differential equations satisfied by an unknown variable G, the most general primitive of those

two equations is
Y1 T1Ye— Y%
G=xF (x, Y, ' —51—3»~ ) ,
where, so far as concerns the two differential equations, F' denotes the most general arbitrary
function of its four arguments.
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admitted, and independent of one another along the range. The values of ¢,
which are the limits of the integral, are taken to be fixed, as in § 42.

The new value of the integral is

fG(a:+xu, B+ Ky, Ty + KUy, Y + K, Y+ KV, Yo + k0,) dE.

Hence the increment of the integral is

oL+ e [Gdt + K,
where
= [(5g gy, e+ 5o o ) s
where K, denotes the aggregate of terms mvolvmg the third power and
higher powers of «; and where @ is the combined aggregate of all the terms
of the second degree N U, U, Uy, v, V;, ¥y, Viz.
G = Cw?® + 20t + 20000, + €07 + 20500 + Cp?y?
+ Yoo U + 2y Uty + 2o, Uthy + Y1y Uy F Deyio Uy Up + Yoo Uy
+ 2kpuv + 2k uv, + 2kp,uv,
+ 2k w0 + 2y u vy + 2wy v,
+ e us v + 2k U vy + kg Uy v,

Proceeding as before in § 83, we have

(2o o) s o O~} o032].

oz, dt Bxg ulawe
oG oG oG oG d oG
[( B )dt— Ydt+[v{a% g ay }*”‘a—%]'
where

x-5-4 gg) i (aw)}

-5 -l i G))

and the terms outside the sign of integration are taken at the limits of the
range of the variable ¢.

The customary argument concerning the maximum or minimum of the
integral requires the total increment of the integral to have one uniform sign,
persistent through all the possible small variations which can be imposed
upon the variables # and y. Consequently the first increment I,, containing
only the first power of « which ean be changed at will, must vanish for all
such variations.
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The two characteristic equations.

99. Now I, consists of two parts: an integral, and a set of terms at the
limits.

Consider, first, the possible variations which, arbitrary along the range, are
chosen to be such that u, u,, v, v, are zero at each limit; thus, at each limit,
the position and the directions of # and y are kept fixed. For these variations,
the limit-terms vanish; and 7, reduces to the integral

f (uX +oY)ds.

Consequently, to achieve the purpose, this integral must vanish; and, in it,
the quantities » and v are arbitrary regular functions of #, independent of one
another. The only way, in which this requirement can be met, is by having
the two equations

X=0 Y=0,
satisfied everywhere along the range. Otherwise, by choosing u positive or
negative as X is positive or negative, and choosing v similarly positive or
negative as Y is positive or negative, we could make the integral positive:
and by choosing u negative or positive as X is positive or negative, and
choosing v similarly negative or positive as Y is positive or negative, we could
make the integral negative. These possibilities are to be excluded; hence
the two equations

X=0, Y=0,
must be satisfied. They are the characteristic equations. It will be noted that,
in their expression, the variable ¢ does not occur explicitly.

Condztions at the limats.

100. Assuming now that these necessary equations are satisfied, the
integral I, for all other variations reduces to the aggregates of terms at the
limits. But variations of # and y are possible, vanishing at either limit though
not at both. When these are taken for the limits in turn, we infer that the
magnitude

po_daey, o6, @0 doey o6
oz, dt\ow,/) = ox, 9y,  dt\oy. 10,
must vanish at each of the limits of the integral.

It is convenient to conclude, at once, the consideration of these conditions.
They require that the equation

oG d (0G oG oG d (0G oq
u{az—gt‘ (@)} +“‘a_x2+v {a—‘y]—d—t (a—yg)} +'U,a—y£;=0
shall be satisfied at each limit. As before (§ 86), various analytical conditions
emerge according to the character of the assigned data.



100] TERMINAL CONDITIONS 139

(i) Let the extremity be rigidly settled, so that z, y, 3’ are not subject to
variation. Then v=0, »=0; the variation in y’ is

Y+ Kty _h - T — iy
o+ K, x o (2, + xuy)’
so that, as this variation is to be zero at the limit, we there have
&, — 1y, =0,
In the foregoing equation, we take u = 0, v=0; the other terms are
oG oG
gy g ay
== (% — 1 u) -,
z ( 10— 1) a s

on account of the identity ;’G+y1 gG_O. The terminal equation is

satisfied without leaving any residual condition.

(i1) Let the quantities , y, ¥’ be subject to a condition
H(z,y4)=0
at a limit. Then the elements of the small variation at that limit are subject
to the single equation

ZEI iﬁ]—+—l~(m - 't)a—H—O
Yo Ty T o T 5y =0

keeping only terms of the first degree in «, as we are dealing with the first
variation. But the terminal condition for the integral is

-GG - G fen w0

and there is only the foregoing linear relation connecting the otherwise
arbitrary quantities , v, 2,9, — %%,. Hence there is some quantity A, such
that

G d (BG) oH

ox,  dt \oz, oz

G d /0@ oH

oy, dt (83/) ETR
220 _ 0
Y, oy’

together with the equation
-
H (w, ¥, x,) 0,

in effect, three equations when X is eliminated.



140 TERMINAL [cH. 11X

(iii) Let the extremity be required to lie upon a curve
h(z,y)=0
and be rigidly fixed in direction. Then, at the limit, we have

oh oh .
u%wva—y—o, 2 —yu;=0;

and so there exists a quantity u such that
oG d (BG) oh

o, di \oz,) = M3
33-1(@‘3)_ ok’
oy, di\oy)  Hoy

together with the equations
h(z, y)=0, y =given constant.
(iv) Let the extremity be required to lie upon a curve
k(z,y)=0

and be perfectly free in direction. Then the arbitrary quantities 4 and v are
subject to the single condition

while the arbitrary quantity #,v — y,4, remains unconditioned. Then

G d (BG) ok

0w, dt \owy) P Ba
0 _d o) _ ok
dy dt oy Py’
A
: : %s
together with the equation
k(z, y)=0.

In every type of boundary condition, except the first (where all the
variations are zero at the limits), we have three conditions at an extremity,
amounting to six in all. Their significance is the same as before : they serve
to determine the constants in the primitive and (by means of the values of )
the actual positions of the extremities. When these are thus settled, no
further variations at either extremity are possible; we then may regard
them as definitely settled by the first variation.

This settlement completed, we can consider the second variation of the
integral for all variations which are subject to fixed extremities, that is,
which are such that v, v, ,v,~ 3,4, are zero. It will be convenient to con-

sider a quantity
w= 3,0 — YU,
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alike for the current variation and for the terminal variation; as
dw
ar = hu T hth + 220 — YU,
it follows that, at any fixed extremity (and we now consider each extremity

as fixed), the quantities w and d—@tv vanish.

101. These results, and the results obtained (§; 86) for the special
variation, can be harmonised as follows. We have
G=aF(x,y.9,y"),

, 1
y-yiy 3/=w—3(w1ya—y1$a),

so that
oG _ 4 oF G _ 10F
s 2 oy’ ayg z, ay"’
and therefore
oG oF
“ow oy
Again,
oG _oF a, oF

(50~ (& 7)

1d (@) a, oF

@ dt \y") @ oy
_d (oF z, OF
= (o) ~ sy
and therefore
oG d 0G\ oF d /oF
ay. ~ @i o) =3y~ @ (5y7)

Next,
oG oG oG oG
+ 2, a + 2,% a—y«z

oG, 8G+2 , oF
1a ylay Y ay//-

Also, G=a,F; hence

aﬁ _ o % _ 2 7’ _@
ox, - Y 0y, ay
Again,
G __3o@__ 06
oz, @0y, v 0y’
and therefore
dt \oz,) = V& <3y2/ . Y

=y m(g@q)‘-’/aaf
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L {@g d (aa) y oF
Y oy " dt\og)| Y 3y

,(oF d (oF »oF
-F-r - ma)-v
When these equivalent values for combinations of derivatives of G' and com-

binations of derivatives of F are used, the two sets of terminal relations are
seen to agree for the corresponding types of terminal condition.

hence
oG _d (aG)
aw, dt aﬁz

Ezx. 1. The integral / Fz0, ¥y, ¥") do is transformed to an integral

fF(x, &1y X3, T3, Y Y15 Yo, Y3) At
by changing the current variable to ¢, so that both « and y are functions of # Prove that
the function ' satisfies the three identities

oF oF oF or oF oF
F= N om +‘7/‘8y +2x23x + 25, +3'”3§t + 3’3ay

oF or oF Blf’
0=z — A +y=— s +3,a:g¢a +3y. 33/3
oF oF
Q=2 ~— b +./1 s

Ez. 2. Prove that, if the preceding integral f F (2, 3y, %3, %3, Y, Y1, Y2, ¥3) AL is to be a

maximum or minimum, x and y as functions of ¢ must satisfy the two characteristic
equations

o _d(oFy, & 0F)_ @ OF)

oz dit\ox,) ' dt\ozy/ dB\ozms)

or_d 3_F.>+£ or _ a N)_O.

and verify, by means of the preceding identities, that these two equations are satisfied in
virtue of a single equation which is the equivalent of

¥_d §Z>+i‘_(_3f>_d3 C'f) -0
o do\by) T A \Gy") T da® <y '

Find the terminal condition (or conditions) to be satisfied at a free limit ; and identify
it (or them) with the result stated in Ex. 1, § 87.

Continuity of four magnitudes through a free discontinuity on the
characteristic curve.

102. One further inference (similar to the proposition in § 47) may be
derived from the consideration of the terms at the limits of the original
integral, as follows :

At a free place on the characteristic curve where, while the arc of the
curve is continuous, there is discontinuity of curvature or of direction or of
both curvature and direction, the quantities

0G d G\ oG 9@ d 3G\ 096G
zﬁ"«%(a@)’ dw,’ a_yx—zt(dy)’ oy,
are continuous i value.
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Let P be such a place®, given by a value 1" of . Let @” (for the value #”)
be a place immediately beyond P, and @ (for the value
t') be a place immediately behind P.

Consider a variation of the characteristic curve
AQ' PQ"B such that » and u, (as also v and v,) are zero
along AQ'; are zero along Q”B; and along Q' PQ",

u=@E—tPE" -t U®E), v=>0C-0)2F —-trV (),
where U (t) and V (t) are arbitrary regular functions of
t in the vicinity of 7. These functions U (¢) and V (¢)
are not zero, because the place P is supposed to be free
(that is, not rigidly settled by assigned data); also the two functions are
independent of one another.

For variations of this type, continuous along the whole range, the first
variation of the original integral along AQ’ is zero, and is also zero along
Q"B; because both u and v are steadily zero. The first variation along the
whole path is to be zero; and therefore the contribution by the portion
@' PQ" must be zero. Thus we must have the relation

T
f X +v7) dt
v
3G d 9G 3G . (0G d /3G pleaks
+[u{a;i;_o?t(@)}+%@+”{a_%—¢7t(5—%)}+”‘@],
t
+j (X +v¥)dt
T
[ {f’i@_i oGy ., 9G {?ﬁ_i %} L
+|_u or, dt (az')j +“‘amz+” oy, dt (83/2) +v‘6yg T—O.

Along Q' P, we have X =0 and ¥ =0,and likewise along PQ”. Hence the
integral in the first line vanishes, and likewise the integral in the third line.

For the particular variations selected, =0, u;,=0, v=0, ,=0 when
t=1, and also when ¢ =¢". Hence the terms at the lower limit in the second
line vanish, and the terms at the upper limit in the fourth line vanish. We
denote by 8. the value of a quantity 8 in the range @' P in the limit when ¢
approaches 7' from ¢’ along @'P; and we denote by 8, the value of the
quantity @ in the range PQ" as ¢ approaches T' from ¢’ along Q”P. The
foregoing requirement is

i GG G- g G (.

[ -G e, o -4 D) (2] o

* As in § 46, the characteristic curve generally is continuous in direction, curvature, and
other intrinsic properties, because the functions z (t) and y (t) satisfying the characteristic
equation are assumed to be analytic.
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and this requirement must be met for all forms of the functions » and v
specified, the quantities u, wu,, v, v, acquiring their values at the place 7.

First, let v be a persistenb zero through the range @'PQ”, so that V (¢) is
zero for all values of ¢ in the range; thus v = 0 and »,=0 for this selection.
At the same time, let the arbitrary function U (¢) be chosen, so that

Ut)y=A+B@E-T)+@t-Ty ¢ @),

where ¢ (f) is a regular function of ¢, and A, B are arbitrary constants at our
disposal ; thus, for this selection,

U(T)y=4, (U @®=r=8B.

Then, at T,
u=(T—=ty(E - TP A,
uy= (T = (" — T {A

and the condition gives

- 5E) -4 () ] o [62) -6 ) -

while 4 and B are arbitrary constants. When, as one choice, we take

2(¢" +¢ —27T)
B+ Ao —1="

the condition can only be satisfied if

o~ 2 o))~ B -2 G,

Thereafter, for any other choice of B, the condition can only be satisfied if

oG G
Ga)- = @),
Secondly, as the terms involving » and u, now disappear from the con-

dition whatever be the choice of u, the condition now involves v and »,
alone. By a corresponding choice for the function ¥ (¢) in the assumed form

of v, we have
a6 - -a@)h
oy, dt \oy, } 0y, dt \0y,
oG oG
CARICAR
Note. (a) If however the place 7, where the hypothetical discontinuity
may occur, is a definitely and rigidly fixed place, that is, fixed in position

and with assigned direction at the position, the inferences cannot be drawn.
For then we have

2(t" +t —2T) )
Tt

u=0, v=0, xv,—-yu=0,

at T; and the requirement is satisfied without any residual inference.
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(B) Again, if the place I, where the hypothetical discontinuity may
occur, is definitely fixed in position without any condition imposed on the
direction, at such a place

u=0, v=0,

while x,9, — y,%, is arbitrary. The requirement is

(@) G) = G2), + o ().

oG oG
Jvlé;;"'ylaE:O

But we have

along Q'P up to P, and so G oG
% (6a)_ 9 (5)

“((9),#0(2), =0

Thus the requirement becomes

al;] (@Y — ) {(g%)_ - (g-j;)J =0,

while #,v, — g4, at T is arbitrary. Hence

() =G,
()= G,

(y) But when the place T is completely free, all the four quantities
specified in the proposition are continuous.

0;

and similarly

and thence

The two characteristic equations of §99 are equivalent to a single equation.

103. Before the consideration of the second variation of the original
integral, we return to the two characteristic equations

X=0, Y=o

It is assumed that they determine  and y as analytic functions of the variable ¢.
When ¢ is eliminated between the equations giving the valties, we have a
relation between z and y which is the equation of the characteristic curve.
Now ¢ is a parametric variable, not essential so far as the curve is concerned ;
and therefore it may be expected that the elimination of ¢ would leave a
single characteristic equation. It is possible to prove that the two equations
are, in fact, equivalent to a single equation, though, for subsequent analysis
it is convenient to retain both of them.,
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Because @ is a function of «, @, ., ¥, %1, Y2, We have

$=m12—5+w,gg+xag—z+yl%§!+ yzg§:+ysg—g
iGe) TG ot
AR AL
=0 X+yY - di;(wlgg"' %

+ %(w,g—g +ylg—§l;+2wgg—z+2y,a—g-);
and therefore, owing to the two identities

oG oG oG oG
G—xlé;l+y15£+2x,a—%+2y,5—%

G oG
0=2 3?,+ .%@;

=a:1{X+

+y1{Y+

’

it follows that
zn X +y,Y=0.
Thus we can have
Y=2E, X=-ykFE,
and there is a single characteristic equation E =0, the explicit form of which
is obtained later (§105, p. 151). But, as already stated, the simultaneous
equations X = 0, ¥ =0, may prove more useful than the single equation E=0.

The identities (§ 97) satisfied by G : invariantive forms.

104. At the beginning of the investigation, a non-intrinsic new inde-
pendent variable ¢ was chosen, in terms of which « and y and their derivatives
were to be expressible; and there is a convenience in having some non-
intrinsic variable, so long as the characteristic curve is unknown. But when
once the curve can be regarded as known, and its properties are to be derived
from its known character, advantage may accrue from the choice of the arc-
length (that is, the length of the arc measured along the curve from some
fixed point) as the independent variable. The forms, that result from the
choice of s, may be regarded as canonical.

Meanwhile, let another variable 8 be taken; we write

«il:@:"wr‘it‘-——'m“’u 371=@=my1,
de dé do

~ T dm _ _dy dm
Ty= g =m0y M By Y= gmp="Yt+m g Y
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where _dt
T de’
The forms of F (w Y i dxz) dz, after the respective changes, are
G(w’ y) wl) yh w%) yﬂ) dos G (w’ % wl, 3/1, xﬂ) ?/2) dtr
which are necessarily equal to one another; hence

G (.’B, Y, Z;, 371, Ty, 372)=MG (JL’, Y, &1, Y, X, yz);
and therefore

@ (a:, Y, mxy, my,, M, + m‘%"x,, miy, + m%—;}y,) =mG (2, y, z, 1, @, Ya)-

Here ¢ and @ are arbitrary variables; by appropriate selections some
useful inferences can be derived.

(a) Let m=—1; then

G (2, 9, — 21, — Y1, @0, Yo) = — G (2, Y, @1, Y1, To, o),
a result that will be useful when strong variations are considered.

(b) Let m=1+¢, where € is a small arbitrary variable quantity such

that g is a small quantity of the same order of magnitude as e. Then

G(w, Y, @+ €my, Yo + €y, w2+2ewg+w13—: ,y,+2eys+yxgt )

= (1 + G) G(w) :'/) wli {%, wz: y‘a’)y
where the unexpressed terms on the left-hand side are of the second order of
small quantities. Expanding in powers of the arbitrary small quantity e and

of 3—:, and equating the coefficients of € and of de on the two sides, we have

dt
oG oG oq oG
G= ﬁxa +y 1ay+2 23 +~2ay2
G | oG '
0= Xy 5— aw + W5 ay2

the fundamental identities satisfied by G. Thus the two fundamental
identities are a partial expression of the invariance of the differential element

G! (xr :‘/: $1, yly x,?r yz) dt
for all changes of the independent variable ¢, |

(¢) When the characteristic curve is such that the independent variable
may be taken to be the length s of the arc measured from a fixed point, and
we write

dz ., dy , d= dy Y
&= 4=V o= ge=v"
we have
G@y oy, o y)=t'G(z,y, 2, th, 2 1) ;
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and the fundamental identities are
oG oG . 0G » aG
G= za,+ya,+2 a,,+2‘/ 5y

,0G ,0G
0=z 3% ,+yay

together with
24+ yi=1, &7 +yy’ =

Ez. Let _
0=G (2,9, Z1, 1, Tay 7), T=G(x, ¥, 21, %, 2, yﬁ)y
so that
e=nT;
prove that

3_9_1(?2)+£(391)_m{a_?_1 Ty, & 57')
o~ a6 \&z,) T ag \5z) =" o= dt(axl "’%2(372}’

25500~ (-2 5 )
d ~dé\3) T d6°\, T ACT A ays

Thus X and ¥ are invariantive under change of the independent variable.

Relations among the second derivatives of G.

105. We now proceed to consider the integral f @5 dt in the second varia-

tion of the original integral. The variational quantities u and v, which occur
in @, are arbitrary regular functions of ¢ As the limits of the integral are
completely specified by the enforced vanishing of the first variation, » and v
(as well as their derivatives) vanish at the limits. Let (] denote any homo-
geneous quadratic function of %, v, u;, u, so that [] must vanish at each
limit. The integral in the second variation, which can be expressed in the

form
f(&- ) aeicy

is equal to the integral ( dD) dt. The quantity ] will be chosen so as

to simplify the expression under the integral sign, though it does not affect
the complete value of the second variation.

In securing this modification to a normal simplified form, special account
must be taken of the coefficients of the combinations of u, v, /, v/, u', v”
which occur in €. These coefficients (as defined in § 97) are not independent
of one another; certain relations subsist among them, owing to the two
identities satisfied by the function @&. As in §51, a knowledge of these
relations is a convenient preliminary to the reduction of the second variation.

(i) From the identity

&y gG + ."/1 aG =0,
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partially differentiated with respect to @, and y, successively, we have
ZyYee + ylkse =0, zky+ Y1C= 0.
We therefore may take a quantity @, such that
Cop = %’Q. kp=— Y Q, Yz = ‘%'Q°
It is easy to verify that
x, 5Q = @
1 = ayu’ .
Thus, as x, does not vanish or become infinite in the range, because « in the
original form and ¢ in the present form increase continuously, @ reverts to
the quantity as (of § 88) when z is made the independent variable.
(i) When the same identity is differentiated partially with respect to z,
and y; successively, we have
oG oG
a—wz + &7, + :’/1]"12= 0, ‘—}E"‘wlkn + Y16 = 0.
When the other identity
oG oa oG oG
G—w;az+yla—y:+2%a+2y95§;
is differentiated partially with respect to &, and g, successively, we have

2G
0=5" + @11+ Yikin + 2027 + 2ok,
2

oG
= e + @ik + Y1Cip + 203K + 2505
Combining the two first equations of these two sets, we have

3 (b — korg) + 23 (223, Q ~ ,%.Q) =0,

ko + 22,Y, Q = ke, + 22,9, Q.
The same result follows from combining the two second equations of the two
sets. Accordingly, new quantities L, M, N are taken, such that
Y=L +2y,9,Q
ky=M— 2-”1:92Q
by = M — 24,2,Q
G =N +25,2,Q
With these definitions of Z, M, N, we retain the two relations
L$1+M%=-g—wqg, Mz, + Ny, = — 87625
and then full account is taken of the four derived equations.
(iii) When the identity

oG oG oG Q@
G=-”xa*$—l+yx e +2$’870;+2%3—y,

that is,
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is differentiated partially with respect to @, and y, successively, we have
0 = @y + thlen + 22,950 + 2yskss
=, (0 — 442Q) + v, (b + 40,%,Q) + 2L, + 2My,,
0 =2, (ky + 42,9,Q) + 41 (01 — 42°Q) + 2Mw, + 2Ny,
We introduce quantities R, S, T, defined by the relations
=R +4y:Q
k=8 — d42,9,Q
cn =T +4x2Q
these new derived equations become
Rz, + Sy, + 2La, + 2My, =0, Sz + Ty, + 2Max, + 2Ny, = 0.

(iv) When the identity

El

oG +1 oG _ 0
& a-’l’g Jl a :’/2 -
is differentiated partially with respect to # and y successively, we have
ZyY0n + Yikoe =0, @ koo + Y1Cos = 0.

We introduce quantities C and D, defined by the equations

Ye= H%C ky=—yD

k= —a,C Co= oD
but sometimes it will prove preferable to revert to the actual coefficients
YVors Koy ks Coae

b

(v) Differentiating, completely with regard to #, the relation

Lw1+Myl=—;—)g

oz,
obtained in (ii) above, we have
—(@L+y M +axL +y,M)=% (gg)
2
= &y 9y0g + Y1 lro + Tay1o + Yolon + Taymr + Yok
=m0 — 42D + @ L+ y. M + 3, (155 — 2173) @
that is, on the substitution of — (Rz; + Sy,) for 2z, L + 2y, M from (iii),
# (R=L'=3(C—ysQ}+ 5 {S— M+ 3 (D - 2Q)} =0.
Proceeding similarly from the relation

. oG
Ma"] + A = — -—a—y; ,
also obtained in (ii) above, we find

78— M +2,(C-y:;Q} +y {T— N' =2 (D - %Q)} =0.
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The two relations, thus deduced, shew that a quantity J can be taken such
that

B-LI =- 2 + 2y, (C— y:Q)
S -M-= zphd = 2, (C-y:Q)— 1 (D—2,Q)
T—N'=-— 23 + 22, (D — 2,Q) !

(vi) Differentiating, partially with regard to y, the identity

oG oG G oG
G= m,a +y,a +2””*a +2y’ay

we have
0
8_G= 2k + Y1Co1 + 22,k + 2430
Y
Also
d 190G
4 (ay ) 1oy + Y10y + ok, + YaCu + Lok + Y301z,
oG
dti( y ) dt (wlkoe+ylco‘2+m2k13+ygclg+ $uk‘ + ysc?z)

Hence, Wntlng k = k' and similarly for the other quantities, we have

oG d BG‘ a2
Y=~ aiay) + ap (a?)
=21 (ko — kOI + k') + 2, (20 — Fon + Koy + For ) + 5 (ko + g+ k) + 2ihog
+ Y160 + Y2 (200 — € + 0 + €20 ) + Y0’ + YuCaa-
When substitution is made for the various coefficients ¢, and %, in terms
of the quantities that have been introduced, we find
Y=aF,
where
E=I, —kol‘l'koz/—km,
+ (@Y= 2 — BaYs + XY) Q + (1Y — 2yy) @ + (1Y — @a9) J.
Proceeding in the same way to a similar expression for X, denoting
oG d {BG) d? (iﬁ)
oz di\dz, d,t2 0z,/)°
we find
=—y L.

We thus verify the result, already (§ 103) established, that the two equa-
tions X =0 and ¥'=0 are satisfied in virtue of a single equation, in virtue
of the identities satisfied by G. This single equation is

E=0;
it is the characteristic equation (constituting the Kuler test). Its primitive
gives, in effect, the characteristic curve.

The characteristic equation can be expressed in the form

ko — ko — Q (219, — #:ys) — Q2,ys— Jx,ye
=k — ku'— Q (%1% — %a73) — Q125 — Jy2,.
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We therefore may take a quantity T, such that
ko —Fkw'=T +Q (2,9, — 2.95) + Q@ mys + Joy,
by — k' =T + Q (Y12, — Yo5) + Q11105 + Jy,a:,} ’
the equivalence of the two values of T' representing the characteristic equation.
(vii) Lastly, proceeding from the relation

G
g? = wl’klo “+ ylco, + 21'3’0m + 2y20w

derived at the beginning of (vi), and differentiating both sides completely
with regard to ¢, we have

@y koo + Y1Cop + ko + Y2l + Zyhego + YsCos

=x,ky’ + 2o kery + Y10’ + YaCor + 2k + 23k + 2Y2Cos’ + 243 Coc
Hence
Zy (koo =k + kgo”) +% (coo —cu' + 002”)
=@y ko + 23kn + Zakon + Y1Cod” + 2Y2Crp + YsCor

d2
=ap (@1 ke + Y1) = 0.
Proceeding similarly from the relation
oG
3 = 2o + Yiku + 22270 + 2yskom,

obtained by differentiating the identity

oG , oG oG oa
G=w’a_%+y1@1+2x25—w;+2y"8—y2

partially with respect to «, we find
Z (Yoo — Yo'+ Ye") + Y1 (koo — Kooy’ + o) = 0.

We thus can take two quantities U and V, such that

Yoo — 'Yol/ + 'Yos” =W U» koo — k' + koa” =—azU,

ko —Fky +Ey =—yV, cp—0a +c’ =z V.
Equating the two values of k,, we have

%V" 2 U=l — ko' — kot + ke’
=— (&g, — xp) J' —(Zys — @) J
= Q @ys — zn) — 2Q (2y,— ay,) — Q" (2ys — 2y,),

by means of the characteristic equation F=0; thus

d a d d
{75 @) - @) = o {U-F 0 - 00}
Hence a quantity A exists, such that

V= A+£(¢J)+fl—2(wQ) U= A+i( J)+£( Q);
=, a > ae \Bs%) =% dt Y2 die Ys ?
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and therefore, when these values of U and V are used, we have

ool A d( J) dz( Qh
Co—Cn +Ca = &M +“‘” g +‘%§ Ty )j’
ko= + i’ == oA + & @)+ % (2,Q)
00 10 Y i ai\% de '\

14 124 d dz
koo - kox + "708 =—o {%A + Et (yﬁ']) + d—t’ (ySQ)}'

’ ” d (i2
Yo— Yo Y2 = ¥ {I’/xA + d_t(sz)'*_Ef’(ysQ)},

These various equations constitute the aggregate of relations among the
coefficients wmy, mns Cmn, to be used in the transformation of the second
variation.

First normal form of the ‘ second’ variation.

106. In order to modify the expression for €, which occurs in that second
variation, we introduce the former linear combination % of u and v, defined
by the relation

W=20 — t;
so that w is a measure of the deviation* along the normal to the curve caused
by the small variation «u and «v. (On this account, the quantity w will
occasionally be called the deviation.) We have

w =xv — N + 2V — YU,

W' = @y — Yty + 2 (2,0, — Yoth) + 0 — Ysu,
and similarly for higher derivatives of w. As the limits can now be regarded
as fixed, either from the express original data or by inferences deduced from
original conditions satisfied in the process of making the first variation vanish,

the quantities » and v (as well as their derivatives) vanish at each of the
limits.

The expression for ¢, as already indicated in § 105, is to be modified by

using the relation
feﬁdt=f( - ‘l’%) dt + (],

where [7] is an aggregate of terms homogeneous and of the second degree in
d

u, ¥, %, 9 (but not u, nor v,), chosen so as to reduce ¢ — d—? to what seems

the simplest form for our purpose. This form is linear in w2, w w?; that

is, it is devoid of terms in w”w’, w”w, w'w; it involves no combinations of «

* If the independent variable ¢t were the arc s of the curve measured along the curve from a
fixed point, xw would be the actual deviation along the normal; but, as already stated, it is econ-
venient to use a free independent variable such as ¢, distinct from s.
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and v, and their derivatives, other than those which occur in w”, w’, w. But
this characteristic simplicity of form does not apply to []; it is a combination
of u, v, w, v not expressible solely in terms of w and w'. As, however, after

the transformation of the expression & — %EI— , the quantity [] arises in our

analysis solely at the limits, at each of which it vanishes, this lack of expres-
sibility in terms of w and w' is of no significance*.
107. The quantity [] is taken to be
O = av? + 28w, % + yu + p® + 20uv + Tu?
+ 20vv, + 2dvu, + 2Yun, + 2yuu,,
where the coefficients &, 8, ..., ¥, ¥ do not involve u, v, u,, v, and are
functions of ¢ at our disposal. In €k, the values of x and y (and their deriva-

tives), given as functions of ¢ by the primitive of the characteristic equations,
are supposed substituted in all the coefficients ryyun, ks, Cmn. We write G as

the equivalent of € — dd—[?, which (for brevity) will be called the earlier form.
We proceed to shew that, by choice of the coefficients a, 8, ..., ¥, x, it is
possible to have the expression
G = Qu" + Iw" + Ku?,
which (for brevity) will be called the later form ; here, I and K are functions
that do not involve u, v, u,, v,.
To effect the equivalence of the two forms, we make the terms, in selected
sets, the same in the forms, as follows:
(a) The terms in %2, u,v,, v* in the earlier form are
= e + 2k Us Vs + Cp
= Q (@ — Y1 Uz )*:
that is, they are the same as the corresponding set of terms in the later form.
(b) The terms in w,u,, u;%,, %%z, 9,7, in the earlier form are
= 2735 Uy U + 2h13Uy ¥z + 2o Us Dy + 20150,V
— {20 uy + 28 (uy v + Up 1) + 200, 9.}
=2 {(L — P muy+ (M — B) (mv, + w0) + (N —a) 'Ulva}
+4Q (2,95 — Y1 %) (201 — Yo tsy).
These are the same as the corresponding set of terms in the later form,

provided
y=L, B=M, a=N:

which, accordingly, will be taken as the values of a, 8, .
* Had it been of significance, we should have introduced the quantity I', ==z,u+y,v (of § 52,
Note). As we shall establish the reduced form of G —-d—gin a shape which is independent of T,

and as [J vanishes at each limit, this quantity T remains latent and devoid of explicit influence.
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(¢) The terms in wu,, uv,, vu,, vv, in the earlier form are
= 2ryo ttly + 2o, + 2y + 200000,
— (20vv, + 2¢pvu, + 24ruv, + 2yuu,).
The corresponding terms in the later form are
2Qz, 239, — 2Qu: @5 vuy — 2Q@, Yy uv, + 2Qy, ya vy,
These two sets of terms are the same if
Qrzs=cp —0 = x,D—0,
—Qnas=ky—¢ =-yD-¢,
—Quys=kn—V=—2,0—+,
leys='702 -X= 3/10 - X

0= o (D-mQ)=cp —2,2,Q
¢=—yn(D‘st)=kzo+y1$sQ‘;.

that is, if

Vv=—2.(C ~yQ)=kn+xy,Q
x= Nn(C-%Q=9e-%y0Q
which, accordingly, will be taken as the values of 6, ¢, ¥, x.
(d) The terms in w2, u,v, v? in the earlier form are
= m® + 2k u, v, + 00,2
—{(& +260) 2+ (28'+ 26 + 29) wyo, + (¥ + 2x) .
The corresponding terms in the later form are
4Q (21, — Youy)* + I (20, — yyu,)2
Equating the coefficients of v,% we have
en— o — 20 =—22J + 4x,2Q,
on substituting the expressions obtained for ¢, a, #; and similarly for the
coefficients of u,v,, u,>. The two sets of terms are the same if
I=-J,
which, accordingly, will be taken as the value of I.
(¢) The terms in wuu,, uv,, vu,, vy, in the earlier form are
= Dy utty + kg uvy, + 2k uv + 2¢,, v,
—{(26' + 2p) vv, + (2¥ + 20) uvy + (29" + 20) u,v + (2x’ + 27) uu,).
The corresponding terms in the later form are
4Q (v, — Youn) (w30 — Ysu) + 2J (230 ~ yu) (2,9, — Yy Uy).
These two sets of terms are the same if
tn—0 —p= 2Qu,z,—Jz,2,,
ky— @ — o =—2Qxy, + Jmyy,
kg — Y — 6=~ 2Qu,y; + Jx, Y,
Yo — X’ —T= 2Q.%?/x - J(%Z/z,
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that is, if

p=cu— 0y + Q (1,5, — %, %) + Q'm 2y + Juy 1,

o=ky— k' — Q@th — 23%) — Qw53 — Jmu

o=ky—lky —Q (wlyd - “'2.%) - Q,wl Ys — Jﬁlyz ’

T="u—%s + Q%Y —%ys) + Qyys+ Iy

The two expressions for o are equivalent to one another, on account of the
single characteristic equation £=0; and each is equal to I. Accordingly,
these relations will be taken as defining the values of p, o, 7.

(f) The terms in »? uv, v* in the earlier form are
(Co—p )2+ 2 (koo — 6") uv + (y — ') U2
The corresponding terms in the later form are
Q (230 — yyu) — J (2,0 — you)® + K (20 — yu)

In order that the two sets of terms may be the same, we must have

Cog =~ P/ = Qx? — Ju? + Kap?,

by~ o' =— Qwa?/a + sz?/z - leyl,

Yo—T = Qy —Jy? + Ky’
When the foregoing value of p is substituted in the first of these relations, as
well as the value of ¢y — ¢y + Co”, 1t is satisfied if

K=A,

The same condition allows the second relation to be satisfied when the prior
value of o is substituted as well as the value of ky, — k) + k3, : and also to be
satisfied when the later value of o is substituted as well as the value of
ko — k' + ko’ And the same condition allows the third relation to be satis-

fied when the value of 7 is substituted as well as the value of g — o, + 40"

Accordingly, we take
K=A,

as giving the value of K in the expression for G.
Summarising these results, we have
O = Lu? + 2Mu, v, + Nv? + pt? + 20uv + Tu?
+ 2 {(or ~ %195 Q) wtts + (K + 2195 Q) Uty + (hino + 2311 Q) vty + (Coo — T 23 Q) v21},

o sz_Et] =G = Qu" — Jy"* + Aur.

Other forms can be given to []; as [] vanishes at the limits, these alterna-
tives cease to be significant.

The first modified form of the integral in the second variation is

f Gdt.



108] SUBSIDIARY CHARACTERISTIC EQUATION 157

Subsidiary characteristic equation.

108. The critical expression, for the second variation of an integral
involving derivatives of the first order in Chapter II, was constructed by
reference to the subsidiary characteristic equation—that is, the equation
obtained for a small variation of a characteristic curve which leaves it a
characteristic curve. The eritical expression for the second variation of the
integral now under consideration can be constructed by reference to the
analogous equation for the present case.

The equation £ =0 is a differential equation for the determination of the
characteristic curve, as representing the relation between z and y. The two
equations X =0 and ¥ =0 are differential equations for the determination of
# and y as analytic functions of an independent variable ¢ ; and the elimination
of ¢ between the equations, expressing these functional forms, leads to the
characteristic curve. In either form, whether £ =0 be adopted, or X =0 and
¥ =0 be adopted, the primitive contains four essertial arbitrary independent
constants; and the differential equation, or the differential equations, must
be satisfied whatever be the values of these constants.

Now it is possible to pass from a characteristic curve to another (and
adjacent) characteristic curve by means of a small variation. Let this be such
that the point (%, y) on the former is displaced to the position (= +k&, y+ xn)
on the latter, where £ and 7 are such that the characteristic equations are
satisfied by 2 + &£, y + #y. To express this requirement concerning the small
variation represented by x£ and «7, let 200 denote the same function of £ and
7 as @ is of w and v, so that

20 = cun®+ 2eqnm + 20, + cant+ 2321 7 + Coay?
+70E + 290 EE 4 2yu bl + b+ 2ynEi b+ ym bR
+ 2k éEn + 2knEn + 2k En,
+ 2ky Em + 2ky, Em+ 21013{:1")2
+ 2k £ + 2k Eomy + 2knEama.
As z and y are subjected to small variations, the quantities X, ¥, & will

undergo consequent variations; let them become X + X, ¥ + <Y, E + «kB
respectively.

In consequence of these variations, 3—5 changes to

G ¥¢ , @ G . @6 ra

*q o .
30+ 3t ¥ ¥ oapw, 6+ e, ot Gy ¥ g, M g

thus

oG oG oQ
% becomes o + K P
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Similarly
i becomes oG + xa»!},
o z,  0F
oa «’f_G_Hag
By o, 3,

[cH. 11

Hence X, which is G
oG d /o oG
oz dt ( ) NPT de (am,)
o d o0\  d? o0
2o (-2 * B GE)
But X becomes X + «X; so we have
o0 d /o0 dz (o)
X= %’dﬁ(&,)*d‘ﬂ(@)'
In the same way, we find
o0 d o0\ doQ
=3—77—Et(5;7_1)+d_t’(3_1k)'

Now the characteristic equations, which originally are X =0 and ¥'=0,
have still to be satisfied. We therefore must have

X+44X=0, Y4+£¥Y=0;

becomes

hence
X=0, Y=0,

that is, the variations «£ and «n, which change a given characteristic curve
into an adjacent characteristic curve, satisfy (and are determined by) the

equations
2
x- %~ o) - 3e(GE) =

00 d 0\ o 80) ol
Y=o d—t<6m) +ae (am =9
As these equations are derived from the characteristic equations by means

solely of small variations that leave them still satisfied, the new equations
X =0 and Y =0 are called the subsidiary characteristic equations.

Single subsidiary equation, having the ‘ deviation’ as variable.

109. It was proved that
X=—-ykE, Y=akFE

Hence
X+«X=

Y4+«Y =

— (@ + k) (B + «E),
(#, + k&) (E + £B);
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or as, in taking «X and «Y as the variations of X and ¥ consequent upon
small variations «£ and «7 of # and y, the second and higher powers of x have
to be neglected, we have

X=—pB—yB Y=(E+zE
=—ylE, =le;

when we regard the equation E=0. Thus if we deal with the single
characteristic equation £=0, the subsidiary equation E=0 should be deducible
from X =0 and from Y=0: the deduction is as follows.

From the expression for 2, we have

%);_gt(%i)=— nEs — (ke + ks — k) E2 4 (b — ke — b)) &1+ (b — ko) €

— CuMs + Cxy' Mo + (6 — Cop — €)M+ (Ca — €)1 3
and therefore

90 d o0\ | d? o0
o dt (aTJ +ap (W)
= kmfo + (2"723' + by — kn) &+ (kmu‘i' 2ere’ — Fon” + Koo+ Forg ~ kn) &,
+ (klo - kol + 2’0@' - I"'u' + kn”) E 1+ (koo b "701' + koa") E
+ Gy + 200'ns + (csa’ + 200+ €1z — Cn) e

+ (200 — 1" + €13”) M+ (€0 — Cor” + Cos) 7.
Let the expressions, which have been obtained for the coefficients ¢, and
kmn, be substituted in the right-hand side: then

(i) the terms in £, and 7, are
2,0 (@1me— %E.) s
(ii) the terms in E, and 7, are
4, Q (2ams — 4:£s) + 20, @ (@105 — K2 &);
(iii) the terms in &, and 7, are
62,Q (wsns — Ys&s) + 62, Q (eme— Ybo) + 2 Q" (1 — hé)
+aJ (@ — 9 £);
(iv) the terms in &, and 7, are
4z, Q (@ — Z'Ict‘l) + 6z, Q' (g + Ys fn) +22,Q" (w21, — Ya£1)
+ 22,J (@ — %£)) + 2 T (mn, — né);
(v) the terms in £ and » are
2,Q (x5 — Y &) + 22, Q (Tn — Y E) + 2, Q" (#3m — 9 £)
+ @ J (@3 — %, ) + @’ (2n — 4. 8) + @, A (2, — . £).
Just as, in connection with the general variation xu and «v, it proved con-
venient (§ 106) to introduce a quantity w such that

w=m39— Y,
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so, in connection with the characteristic variation «£ and «7, it proves con-
venient to introduce a quantity ¢ such that
E=mn—yék
With this significance for ¢, we have
0Q  d a0y d* /00
¥ =0 = e om) + a6 o)
=w1 {QC'/’/ + 2Q7§/1/+ (QII + J) cl/ + Jlédl + Ag}.
Proceeding in the same way for X, we find
o0 de0), & oy
T 0 dt\0E/ ' de\og,
= _yl {QC///, + 2Q/§//’+ (Q// + J) Cl’ + J/C’ + AC}.

But we have seen that
Y=$1E, X=—y1E’

and that X=0, ¥ =0; hence
E — Q;a/l// + 2QI§//I + (Q// + J) C" + J!cf + A§= O.
We call E =0 the subsidiary characteristic equation.

Final normal form of the < second’ variation.
110. We now can proceed at once to the final reduced form of the second
variation.
The earlier analysis (in §§ 88, 89, 93) now applies with a mere change of
symbols, and leads to the formal result. We have

Q {G +Edi (' + 2muww’ + nw’)}
= Q"+ 2Q lw'w” + 2Qmuww’”’ + Q (— J + 1’ + 2m) w”
+2Q (n+m)ww' + Q (A +n')w?
=(Qu" + lw' + mw)?,
provided /, m, n are such that
BP=Q(—J+U+2m)
Im=Q (n+m) }
m?=Q (A +n')
Let a and 8 be two linearly independent integrals of the equation E =0 such
that, if 2z denote a8’ — o'8, then 2z is not a constant quantity and the quantity

Q' + Q2 +Jz—2Q (B —d'B),
which is always constant for any two integrals, is made zero by choice of a
and B, a choice that always is possible. Then
Qo' + ldd +ma=0
QB"+lB'+m/3=0}
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define the values of ! and m, so that

1=-%
2m=1Qs + Q7 +J9=1 {a‘% @) + Jz} [ .
2= - {5 @)+ S0} =1 L0 s ~ap)

With these values
G+ dilt ("™ + 2mww’ + nuw?) =% (Qu” + ' + mw)2,

Now
[lw + 2mww’ + nw?]=0

when taken at the limits of the integral, because, as the limits are now rigidly
fixed, w and w’ vanish at each limit. Hence, finally,

i f Gdt=}u? f % (Qu" + ' + mwy dt
, Q w”, W, w *dt
= x‘f———# ’
! <aﬁ—aﬁ>2‘ & d,
|8 B B
where a and B are two integrals of the subsidiary characteristic equation
E =0 possessing the specified properties.

The right-hand side is the critical normal form of the second variation of
the original integral.

The central characteristic equations : their primitive.

111. The original characteristic equation (§ 84) is of the fourth order
in y, provided the original function F(, y, ¥/, y”) is not linear in y”. When
F is linear in y”, the characteristic equation actually is only of the second
order in y, because the quantities ¥ and g do not occur; but in that

2
event, the quantity 6875’ and therefore @, would be a permanent zero, a
possibility excluded for an entirely different reason (§ 95). We therefore
omit the contingency from further consideration.

In the original characteristic equation E =0, the only term involving
the highest derivative of y is
7 az‘F
In the characteristic equations X =0 and ¥ =0, the terms involving the
highest derivatives of # and y are

—9.Q By — yw,) and 2,Q (@Y, — y12,)
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respectively. It is clear from the expression just obtained for the second
variation of the integral—we shall return to its fuller consideration here-
after—that, if a maximum or a minimum is to be possessed, the quantity @

2
here (like the quantity 887{:; in the earlier discussion) must not vanish

within the range. The character of the primitive* is then simple. That
primitive contains four arbitrary independent constants. These are made
determinate, by the assignment of four arbitrary independent magnitudes as
the values of y, ¥, ¥, ¥ for any assigned initial value a of # within the
range.

The same result ensues, when we take # and y as functions of an inde-
pendent variable t&. The primitive of the equations X =0 and ¥ =01is of
the form

z=¢ (¢t 4y, 4o, 45, 4y, y=v(, 4, 45, 4,5, 4,),
where 4,, 4,, 4;, A, are the essential independent arbitrary constants to be
made determinate, by the assignment of initial values for #, y and for their
derivatives at some initial value ¢, of ¢. Thus we should have equations of

the form

a = ¢ (to: 4,, 4, 4, A(); b= ‘\If’(to; A,, 4., 4, A4))
¥ (%)
¢’(t°) '

){¢ (t) ¥ (&) = ¥ (80) 4" (t0)},

m=

k= ¢'=*(t
[¢' () (¢ (t) ¥ (t) — ¥ () 6" ()}
— 39" (ta) {¢' (t) ¥ (8) — ¥ (t) ¢” (80)} ]
When ¢, is eliminated, we have relations of the form
b=>b (Al, A2s As» 4))
m=m(4,, 4, 4,, 4)1
k=Fk (4, 4,, 4,, 4)‘
I =1 (4,, 4,, 4,, A4))
expressing the one set of independent arbitrary constants b, m, k, ! in terms

of the other set of independent arbitrary constants 4,, 4., 4;, 4,; and
conversely. Thus neither of the Jacobians

b: m)k;l Al) AZ) Aa, -44
Nayaodnz) I (C5mwr )

¢"‘ (&)

can vanish,

* 8o far as concerns the differential equation alone, without regard to other requirements,
02F
aynn
my Theory of Differential Equations, vol. iv, § 31.

might have isolated zeros of limited degree and the primitive still be relatively simple: see
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112. Moreover, when 4,, 4,, 4, 4,, and ¢,, as well as ¢, are eliminated
among the preceding equations combined with

r= ¢(t; Al’ AQ) As: A4); .?/= 1P(t; AI) AQ, AS’ A‘),
we have a relation
y=y(z b m k1),
which is the equation of the characteristic curve when the initially assigned
quantities b, m, k, I are forced into evidence. Conversely, when the value
z=¢{, A, 4s, 4,, A,), as well as the values of b, m, k, [ are inserted in
this equation of the curve, the result is to give the equation
y= ""(t: 4,, 4., A4, A«i)-

Owing to the significance of b, m, k, I as the values of y, 3/, y’, " for an
initial value @ of # within the range, we have the expression of y in the
vicinity of @ given by

y=b+m(w—a,)+%/c(x—a)’+3l!l(x—a)5+(x—a)‘R(w—a, b, m, k 1),

where R is a regular function of its arguments, this relation being the
expression of the theorem as to the existence of the unique uniform primitive
satisfying the initial conditions. Thus

% _ oR
% = 1+ (@=argp
oy _ ) OR
EE— .p—a+(w—a) a-*,

o 1 oR
a—‘Z =2—1(~”—“)2+(-2'—a)487 )

0 1 oR
ail/ =3-!(m—-a,)3+(_m-a)‘ﬁ.

Manifestly, no identical linear relation

0 0 01
712’%'*’728714'736—24'74%:0)

where 4, 7., s, s are non-zero constants, can exist among the four derivatives

oy 9y oy oy

ob’ om’ %k’ o

Primitive of the subsidiary equation.

113. The characteristic equation E'=0 is satisfied whatever be the
arbitrary constants A4,, 4,, 4y, A,; it therefore remains satisGed when
these are changed into 4,+ ka,(r=1, 2, 3, 4) respectively, the constants
t, Gy, @5, a, themselves being arbitrary. The effect of this modification is
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to change # and y into # + s£ and y + x7 respectively where, on the hypothesis
that « is very small,

E= a1 (8) + @y s (£) + asbs () + ups (t)}

7=, ¥(t) + @ e (t) + asP(f) + auu(?)
in which, for r =1, 2, 3, 4,

a¢ (t) Al) Aﬂ» AS) AG) a"’ (tr Al) Aﬂ! -A31 Ad)

&, (t) = oA » Y (@)= 4,
Hence these quantities £ and # satisfy the equations
X=0, Y=0.
We had to deal with a quantity & defined by the relation
E=mn—u&;

hence, writing
o¢ oy ) ’
6:0=2v.0)-F 6, O=¢ O% O - ¥ O $.®),
for r=1, 2, 8, 4, the value of { is given by
t=a,0,(2) + a:0: () + 256 () + 2,0, (2).
Thus ¢ satisfies the equation
E=Q§IVII+2Q/§II’ + (Ql' +J) §II+J’§I+A§=O’
and its expression as a function of ¢ contains four arbitrary constants
@y, Ga, @3, 0 linearly. If therefore the four functioms @, (t), 8. (t), 6;(¢), 6.(%)
are linearly independent of one another, the foregoing value of ¢ provides
the primitive of E=0. This linear independence can be established as
follows.
When we take the form of the characteristic primitive to be
y=y (@b mk,1),
and the equivalent forms to be
x= ¢(t: Al: AB: A8: Al)’ (’/ = ‘!"(ty Al) Az, As; A4);

together with the equations connecting the set of arbitrary constants b, m, &, !
and the set of arbitrary constants A4,, 4., 4,, A,, we have

ay _dyde oy b Oy om 3y ok +8y al
=334, T3 34, om o4, ol 94,
that is, b o
¥ (b 9y y om oy ok 3y ol
V0= PO+ 35 54, + om 54, T ok o4, T ol 34,

and therefore
6,(t)=¢" (&) Y- (&) — ¥ (t) $-(2)

oy ob oy om oy ok oy ol
’¢(t){abaA omaA,J’a/caA*éZaTa‘,}’
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for »=1, 2, 8, 4. If, then, a permanent linear relation could exist among
the four functions 6, (), 8, (¢), 6; (t), 6, (£) with constant coefficients in the form
01 (8) + 26, () + 2505 (2) + 6, () = 0,
where g, ws, ps, p, are constant, we should have
4 4 4 4
o 2 o B o B e o B a0
because ¢’ (£) is not zero. It has been proved (§ 112) that no such linear

. . . . 0y Oy 9y dy
relation with constant coefficients among the four quantities 3 3m’ 3% 3l

can subsist. Hence the four coefficients in the preceding relation must
vanish ; and therefore
ok

4 ob om k) 4
2 ko= oa,~% Zrog=0 2 mag =0

The determinant of the coefficients of u,, u,, #s, 4 in these four equations is

the Jacobian
J( bm k1
Aly AS: As: -A4) !

which does not vanish ; consequently, the equations are only satisfied by

4
0, = oy
r=1

m=0, u=0, p,=0, p,=0.
Therefore the four functions 6, (t), 6, (£), 6, (£), 6.(t) are linearly independent.
The constants a,, a,, as, a, are arbitrary independent constants. Hence the
primitive of the subsidiary characteristic equation B = 0 is given by

§=010, () + 226, (t) + a50; (t) + 2,0, ().

Properties of the integrals of the subsidiary equation.
114. Next, these functions 6,(t), 6,(t), 6,(t), 6, (t) are separate and
distinet integrals of the subsidiary equation E =0, so that
Q8" +2Q0,”" +(Q +J)8," +J'6, + Af,=0,
for r=1, 2, 3, 4. Therefore
Q|6 , 6, 6 , 6 |+2Q(6,, 6,, 6,, 6, |=o0,

’ ’ ’ ’ ’ ’ ’
6’ , 6 , 6/, 6, 6, 6, 6/, 6,
” ’ ’” ’” ’, 12 " "
01 > 02 ’ 63 ’ 04 01,) 62 ’ 03 > 94
011111’ 0’"!/’ 031// !’ 040/1 01’ n, 021/1’ 031//’ 04”’

so that
QB 91, 02: 0,, 04 =B:

’ ’
01 > 02 » 08’ ’ 04'
4 ” ’ ’
0] 3 2 03, ’ 01 '
01,”, egtu, gslu’ o‘m
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where B is a constant. On the one hand, B may not vanish: because the
determinant does not vanish, owing to the property that no linear relation
with constant coefficients subsists among the functions 6,, 6,, 6;, 6,: and
because, as appears from other considerations, ¢ does not vanish within the
range. On the other hand, B is not an arbitrary constant ; for @, 6;, 6,, g, 0,
are specific functions. Thus B is a specific non-zero constant.

Owing to the fact that B is not zero, it follows that

(@) The functions 6,, 8,, 8,, 6, cannot vanish simultaneously for any value
of ¢ within the range:

(b) The set of their first derivatives cannot vanish simultaneously, nor
can any set of their derivatives of the same order vanish simul-
taneously :

(c) Owing to the invariantive character of the determinant, any set of
four linearly independent integrals as a fundamental system can
take the place of the set 6,, 8,, 65, 6,; the only effect of such a
change is to change the specific constant B.

Denoting the determinant by W (£), we have
Q@) W(¢)=B;

LAV,
W)~ @@’

where ¢, and £ are any two values in the range.

and therefore

115. Again, as we have
Q0" +2Q 6, +(Q"+J)8," +J'6, + A6, =0,

Qeﬁl'// +2Q/02’// +(QII+J) 0211 +J/02l + A02=0’
it follows that

Q (01 02II/I - 0201”'1) + 2Q[ (0102111 — 0201’17) + QII (0103II —_ 0201")
+J (6,8, —0.0,") + J’ (6,8, — 6,0,")=0,
that is,
d 1 e ’ ” 7 " / 14 rr ’ s
(—l_t {Q(eles - 0201 e 01 02 + oz 01 ) + Q (0102 - 0291 )+J(0102 - oﬂel )} ’—"0’
and therefore
Q(e] 02/11 —_ 020111/ —_ 0l’eall + 02, elll) + QI (019211 — 0201//) + J(el 021 — 02011) _ A’

where A is a constant, not arbitrary because J, @, 6,, 6, are specitic quantities ;
and A may be zero.

When A4 is not zero, we combine #; and 6, in the same way as 8, and 6,
have just been combined ; and we find

Q (01 osm - 03 91”, - 01,03” + 08’ 1”) + Q, (01 03” - 03 01") + J(el 03’ - 03 01') = 0’

where C is a constant, again not arbitrary because J, Q, 8,, 6, are specific
quantities; and €' may be zero.
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If neither 4 nor C is zero, we take
S ()= C6:(t) — A6, (t),
so that, as 6,(t), 6,(¢), 6,(t) are linearly independent, & (t) is distinct from
6,(t); but, as it is a linear combination of 6,(t) and 8, (¢), it is an integral of
the equation £=0. We now have

QA" ~90"" -0/ + % 6,")+ @ (6, —30,") + J (6, — 36,) = 0.

If 4 is zero, we have a combination 6, and 6, which makes the specific
consfant zero.

If C is zero, we have a combination 6, and 8, which makes the specific
constant zero.

If A4 is not zero, and if C also is not zero, we have a combination 6, and &
which makes the specific constant zero.

Thus we can always obtain two integrals of the equation B =0 which
will make the specific constant zero. Denoting these by a and 8, we have

Q@B” —a"B~aB" — ")+ Q (48" —a'B) +J (af —dB)=0.
Manifestly the choice is not unique.

Moreover, we can at once tell whether the specific constant is zero or not
zero, for any selected combination whatever. We need only substitute the
values of the selected integrals at any point in the range (frequently, it is
convenient to choose the initial point); the specific constant is the value of
the quantity at that point.

Consecutive characteristic curve.

116. The original characteristic curve is uniquely determined by the
assignment of initial arbitrary values of ¥, ¥, ¥, ¥’”; and another character-
istic curve in the immediate vicinity is also uniquely determined by the
values of £ and 7 (and therefore of {) at the initial place. This neighbouring
characteristic curve will be called consecutive when, passing through an initial
point on the original (or central) characteristic, it has the same tangent, the
same curvature, but not the same arc-rate of curvature, at that initial point
as the original curve. As the arc-rates of curvature are distinct, the two
characteristics are distinct.

Let the deviation of the consecutive characteristic from the central curve
be «¢, so that

&=1c.0, (1) + ¢,0,(8) + ¢;05(2) + ¢, 0, (1),
where the coefficients ¢ (save as to an unessential common factor which
merely affects the scale of the deviation) are determined by the initial
conditions. Let the initial value of ¢ for the central curve be £,, and for the
consecutive curve be £, 4 x7,: then

Eo =T 95' () + ¢, 951 (to) +c; ¢2 (to) + Cshs (to) +c, ¢4 (to),
N =T "I’" (t) +c V¥ () + CaVre (6) + ¢5 ¥ () + RV (%),
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and therefore
Lo=¢' (t)m— ¥ (t) &
=660, (t) + €2 0: (4) + €505 (4) + ¢, 0, (£,).
The consecutive curve is to pass through the initial point; hence =0,
1, =0. Consequently & =0; when we retain ¢, =0 as an initial equation,
either of the equations £,=0, 7,=0, determines 7, for which, however, there
is no further explicit use. Accordingly, the coincidence of the initial points
of the two curves requires the condition
€10, (o) + ¢a8: (to) + €305 (1) + ¢,0,(2,) = 0.
The tangents to the two curves are to coincide at the common initial
point. Hence, at that point,
htem Y,

x +kE @
and therefore

omm—1p&E=0
at the point. But, there, £=0 and n=0; and so
E @) =[mm— &+ zn— yzf]t=to =0,
that is, the coincidence of the tangents to the two curves at the common
initial point requires the condition

60y (o) + 6.0 (%) + ¢:.05 (8) + .0 () = 0.
(In passing, it should be noted that

21=§1 —
% @’

p;
at the initial point.)
The curvature of the two curves is to be the same at the common initial
point. Consequently, the magnitude
(zf+ 3/12)_% (#1Y2 — 2291)
must have a zero increment, when the small variations «£ and «7 are effected
on # and y. Under this variation, the new value of (2,2 + yl’)"‘gr is
2 2 —%(1_3 mlfl+ylnl)
(wl +3/1 ) 42 w12+y12
up to the first power of « inclusive, that is, it is
(@ +32) " (1 30p).
The new value of @,y — zy, is

&Yy — 20 + £ (217 — &+ Yoy — 2amy).
But

=P @Y — 2aY) = B — Yok
and so the new value of the expression for the curvature is

@ +yd" ¥ [y, — 2y, + & {wl’h &+ 2(@mmn—v:E)}]
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As the increment is to be zero at the initial point, we have
@y ns — Y1 &+ 2 (@ — 4:61) =0,
at the initial point; and therefore
& () =[m1ma~— &+ 2 (@ — Yo&1) + @3m — Y5 EJe=r, = 0,
that is, the equality of the curvatures of the two curves at the common
initial point requires the condition
6.8y" (6) + 265" (8,) + ¢85 (t,) + ¢,8,” (%) = 0.
The three specified conditions determine the ratios of the coefficients

€1, C3, Cs, Gy, Which oceur in the expression for ¢ (£), where «¢ (t) is the deviation
of the consecutive characteristic from the original curve, Manifestly, we have

£@)=8 161, 61, 6®) , 60 |,
b)), G@), 6:(t), bi(%)
| 0, Ok, 6)(t), 6/
L0 (%), 6 (k), 6 (t), 6 ()
where & is a non-vanishing quantity independent of £,

But the arc-rate of curvature must not be the same for the consecutive
characteristic as for the original characteristic at the common initial point.
A measure of the difference is «¢’” (f,), that is, it is

8| 6" (%), 6" (&), 6,"(), 6., |.
6i(t) , 6:(t) ., 65(t) , O.(%)
6/t , 0/(t), 6/(t), 6/(t)
6" (), 6, (%), 6 (t), 6.(t)

- Kqu_z (to);

which does not vanish; thus the distinctness of the consecutive characteristic
from the original characteristic is secured.

This quantity is

Conjugate of initial point.

117. The consecutive characteristic may or may not cut the original
characteristic in a point distinct from the initial point. Possibly, they may
intersect in a number of such points. Let the first of such points (for in-
creasing values of ¢), or the actual point if there be only one, be given by the
value £, so that ¢, >#,. Then ¢, is the smallest value of ¢ greater than ¢, such
that §(t) vanishes there: or, if we write {(f, £) in place of £(%), it is the
smallest value of ¢,, > ¢, such that

L, 8)=8 | (8, 6.(t), 6,(t), 6.(t) |=0.
bi(t) , 6:(t), 6,(t), 6.(%)
O/, 0/(t), 6/(t), 6.(t)
07 (), 6" (), 67 (t), 6 (%)
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Here & is a mere non-zero unessential constant, independent of ¢, and ¢,.
The point on the characteristic curve, determined by this value of #,, is called
the conjugate of the point determined by the value of .

As the determinant in the expression for ¢ (%, t,) is invariantive under
the linear transformations to which a fundamental set of integrals of the
equation E =0 is subject, manifestly any four linearly independent integrals
of E suffice for the construction of the equation § (%, ¢,)=0. Thus the settle-
ment of the conjugate of the initial point ¢, is not affected by the particular
choice of fundamental integrals 6,, 8,, 6, 6, of the subsidiary characteristic.
Also, the position of ¢, is independent of 8, which affects only the scale of the
deviation of the consecutive from the original characteristic.

Finally, & (%, t) is a regular function of f. After vanishing when ¢=1,, it
does not again vanish for increasing values of ¢, until ¢=¢,; that is, for values
of ¢ such that £, <t < ¢, the function ¢ (%, t) keeps its sign unaltered.

Property of the characteristic range between conjugates.

118, Before passing to consider the relation between the second variation
of the integral and the range of integration from an initial point up to the
conjugate, it is convenient to establish the proposition :

The range along a characteristic from a point to s conjugate cannot include
a stmalar range.

Let €’ be the conjugate of a point C on a characteristic curve ...0CDP("...;
we are to prove that the conjugate of a

point D lying between € and C” (but not at /,”
C nor at C’) lies without the range. PO

The consecutive characteristic through
C is given by its deviation «¢ (%, ), where
£t t)=810.(t) , 6:.(2) , 6:(2) » 0u(D)
6:(%) 5 Oa(te) » O5(k) 5 Ou(to)
0/ (t). 0, (t), 05 (%), 6/ (t)
(), 05" (B, B (t), 6 ()| P

= 0,0, () + €20, () + 0305 (6) + c.0, (&) <~

First, consider a point D within the range CC’, lying very near C and given
by a value ¢, + €T, of ¢, where € and 7}, are positive and e is sma,ll. Then

E(to, to+eTo)=%e8 | 6" (&), 6,7 (L), 6" (L), 6.7 (t) |+ ...,
0:(t) , O:(%) , Os(t) , O.(t)
6, (%), 05(t), O/ (), 6.(%)
(&), 0" (t), 65 (%), 6. (%)
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where the unexpressed terms involve the fourth and higher powers of the
small quantity e: hence, effectively,

E(t, to+eTy)=—} 8T W (t).
Also W (%,), never vanishing within any range of the characteristic curve we
are considering, has the same sign whatever initial value £, be chosen for &.

Next, consider a point P within the range CC’, lying very near C" and
given by a value ¢, — T, where n and T, are positive and 7 is small. Then
E(to, b—nT)=—28T, | 6/ (%), 6, (t), 6/(t), 6/ &) | +-.
al (to) ’ 08 (to) H 08 (to) ] 0( (to)
0 (t), 05 (t), 65 (), 0. ()
01” (to)’ 2', (t'))’ 3" (to), 0‘" (to)
==\ M +...,

where M denotes the determinant, and the unexpressed terms involve the
second and higher powers of the small quantity 7. Hence, effectively,

C(to; th— "IT1)= - ‘178T1M.

But &(%, t) has the same sign at P as it has at D, because it does not vanish
between C' and (. Hence, as M is not zero, it has the same sign as W (%,).
But W (%) has a persistent sign whatever initial point ¢, be chosen ; hence M
also has a persistent sign, for any choice of initial point ¢, and the consequent
conjugate .

Now take the point D as the initial point for another range of the charac-
teristic curve, the value of ¢ at D being ¢, + €7),; and let D’ be the conjugate
of D. If e were zero, so that D would coincide with C, then D’ would coincide
with C”; hence, when ¢ is not zero but still small, so that D is merely very
near C, then I must be near C’. But IV cannot coincide with C”: if it could,
we should have

t(to + GT{I: tl) = 0;

STy | 6,(t) , 6.(t) , 65(t) , 6.(t) |+...=0,
0.(t) . O:(t) , O(%) , bu(%)
6/ (t), 6y (t), 65(t), 6/(t)
6, (b), 65" (), 65" (ts), 6. (t)

where the unexpressed terms involve the second and higher powers of e
From the equations

60, (8) +¢:0,(8) +cs05(t) +¢.0,(%) =0,
0191 (to) + 0,0, (to) + ¢ (to) +c.0, (to) =0,
XN () + 6, ) + 6y (to) +c, o/ (t)=0,

that is,
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we have
—C

G
8:%), 6,(), 6i(%) | |6, 6u(%), 6i(%)
0,(t), 8;(t), 0,(t) 0;(t), 6.(t), 6,()
6, (to), 0,'(t0), 0/ (to) l 0y (to): 6/ (to)» 01'(t0)i
Cs — —C4
0,5, 0:(%), 6:(%) | [6:(2), 6:(t), ()
0,(ts), 6:(t), (k) 6:(ts), 6:(ts), G:(to)
0/ (t), 6)'(%), 65 (%) 6/ (ts), 65 (L), 65 (t)
where P is a finite non-vanishing quantity. If the foregoing equation were
satisfied, it would require the relation

Ty
P
We know (§ 114) that the quantity
60, (8) + 620, (o) + 65" (8) + €a60," (o)
=P |6/ (t) 0" (t), 6" (), 6.(%)
6 (ts) » O:(to) , Go(to) , Oi(to)
6/ (t) , 6/ (t), 65(), 6.(k)
6" (t), 6.°(t), 6"(t), 64 (%)
=—PW(,),
and therefore cannot vanish. The foregoing equation cannot be satisfied ; and
therefore the quantity

b

(66, () + o (t) + a0 (80) + ¢,8." (t)} + .. =O.

E(to+ €Ty, t)

cannot vanish. Hence I’ cannot coincide with C".

119. Thus, when ¢ is very small, D" is very slightly distant from ¢” and
distinet from it. Let the value of ¢ at D" be f, + €@, where D’ is beyond or
behind O’ according as ® is positive or negative. As D' is the conjugate of D,
we have

¢ty + €Ty, t,+€0)=0,
that is,

Lt +er, Bty @B t) o,

where the unexpressed terms are of the second and higher degrees in e. Also
¢ (ty, t,) =0, because € and C’ are conjugate ; hence, effectively

(e, t)) | 08 (t, ) _
T, ot, +0 ot 0.
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By the preceding analysis,
o8 (%, tx)=8 6:(t) . O:(t) , 65(t) , O.(t)
o, 6t , 6u(t) , 6u(t) , Ou(te)

6/ (&), 04 (t), 65'(%), 6/(t)
6, (to), 05" (t), 65" (), 6, (to)

= —% {cl N (t) + .0, (t) + ¢s 65" (to) +c, A’II(to)}
)

=P W (t);
and
a{ (to 1) tl) — .
= 3M;
consequently
7, & L exr-o,
and therefore
®__ W)l
T, M P

Now W(t) and M have the same sign; and P is a finite non-vanishing
quantity. Thus ® does not vanish.

If it were possible that ® could be negative, then D’ would lie within CC’,
the arc ("D’ being of the same order of magnitude
as CD: and DD’ would be a complete range.

But at D, the quantity W (t) is of the same sign
as it is at C and it does not vanish ; the quantity
M at D' is of the same sign as W (£) at D. Hence
taking a point & within the range DD’ near C, we
should have a complete range EE’' within DD/,
where the arc D' B’ is of the same order of magnitude
as DE. And so on, from complete range to com-
plete range: each would be included within the
preceding range, and the diminutions at the two extremities of any range
would be of the same order of magnitude.

We should then be able to diminish the finite range to any extent, and
attain a complete range between a place ¢’ and a place ¢, = ¢ + ¢7", where 7" is
finite. But we have seen that

EE,t'+eT")=—}S8T*W () +...,
where W (¢') is of the same sign as W (¢,) and cannot vanish; the fundamental
property, defining the complete range—viz. that ¢(t', ¢”)=0, where ' and ¢”
mark the boundaries, of the complete range—would be violated for such a
range.
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Hence @ cannot be negative. It isnot zero. Therefore it must be positive.
That is, the point D”, the conjugate of D, lies

/

beyond €’ when D lies within CC" and near C; . ',':,”
and the arc 0'D” is of the same order of magni- /(: ?

tude as CD.

Again, take a point E, lying within DD” and
near D; its conjugate B’ on the characteristic
lies beyond D”, the arc D"E" being of the same
order of magnitude as DE. A
And so on in succession. We infer the result .-G °
that no complete range can be included within ~
any other complete range: the conjugate of any point within a complete

range lies outside that range.

Note 1. The quantity P, defined in connection with the coefficients c, is
such that
=P oﬂ(tl)’ 03(t1), 04(t1) 5

ez(to), 03(t0)r 04(%)
o)y (to), 93, (to): 04'(t0)

and so for the other coefficients ¢,, ¢s, .. But, in the expression for ¢ (£, t),
we have

=386 (to) ) A (to) , b, (to)
02, (to) > €SI (t()) ’ 04, (to)
)" (), 05" (), 6. (t)

we

and therefore
P O,(t), 6(t), 6.(t) |=8|6(t), 6:(t), O.(t) |»
b5 (1), 6:(t), 0.(%) 65 (), 65 (%), 0. (%)
0 (%), 65 (), 6. (%) 6" (), 05" (%), 6. (%)
together with three similar expressions arising out of the different expression
for ¢, for ¢,, and for c,.
It is easy to verify that the four values of P, given by these relations, are
equal to one another because of the equation
E(t, &) =0,
defining the conjugate of the initial point on the characteristic range.
Note 2. Further, the preceding argument shews that P, there defined, is

a negative quantity; for ® and 7, these must have the same sign, and in the
equation

& _ Wl
=" "M P

M and W (%,) have the same sign.
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Adjacent characteristic curves : sub-consecutive curve.

120. We say that a characteristic curve is adjacent (instead of consecutive)
to an original (or central) characteristic curve, when it touches the latter at
an initial common point but has not the same curvature at that point. Let
915 92, gs, 94 be the constants for an adjacent curve through an initial point ¢,
determined by the assignment of «p, as a measure of the change from the
curvature of the original character at ¢,; then, if this adjacent curve is
given by

£=010,(t) + 9.0: (£) + 9,65 () + 9.6, (8),
0=g:6,(t) + 9205 (t) + 95 0, (%) + 946, (%),
0=0.0/(t,) + 9. 0y () + 9, 6/’ (to) + 9. o/ (%),
Po=0G (2 (to) +g: 6,” (to) +9s 6," (to) + 9 0, (to)-

As p, is not zero, the adjacent curve is not a consecutive curve.

we have

This adjacent curve may cut the original characteristic in one point, or in
more than one point, after the initial point—that is, for values of ¢ increasing
from £,. Let the first of these be given by the value ¢, of ¢, where #,>¢,, so
that we have

0=g.6,(,)+ 9201 () + 9s 0, ) +9. 0, t);

the adjacent characteristic is represented by the equation
£@) | 67 @) 67 (k) 67 (%), 07 (t) |=po| 6:(t) , Balt), 65(t) , Bi(2)

6:(t), 6:(t) , 65(to) , 6.(t) 0:(ts), O:(t), O5(ts), O4(to)
07 (%), 05 (t), 65 (t), 6/ () 6 (t), 6y’ (), 65 (%), 6. ()
01 (tB) ’ 02 (tﬁ) ’ 03 (t,) > 04 (tz) 01 (tz)) 02 (tz), 03 (t2)> 04 (tz)

So far, the place ¢, can be chosen at will; because one arbitrary element in
£(t) has been left, a survival after the assignment of the three initial
conditions, as regards position and tangency (both unchanged) and curvature
(changed). Among these adjacent curves, let that one be selected which
touches the original curve at the next point of meeting after f,, Denoting this

value of ¢ for this point still by #,, we have %:O when t=¢,; that is,

the equation
A (to: te) ={ 6, (to) , 6, (to) P 03 (to) , 0, (to) =0

0/ (t), 65 (%), 65 (%), 6/ (t)
6:(t), 6:(t), 65(t), 6.(t)
0/ (t), 6/(t), 65(t), 6.(t)
is satisfied. It may be that A (%, &)=0, as an equation to determine ¢,, has

more than a single root >?,; if so, we shall assume &, to be the smallest of
such roots.
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A characteristic curve, touching an original characteristic curve in two
distinct points ¢, and #, instead of osculating it at ¢, and merely meeting it
again in a distinet point ¢, will be called a sub-consecutive characteristic.

Equation of sub-consecutive characteristic.

121. The analytical expression of a sub-consecutive characteristic, when
explicit account is taken initially of the fact that it touches the characteristic
at t,, is

(=G| 6:(t), 6:(8), 6:(), 6.0 |3
01 (to) ’ 02 (to) ’ 93 (to) ’ 04 (to)
01’ (to), eﬁ’ (to)i 03' (to)’ 64/ (to)
6,(t), G:(t), 65(%), 6i(%)
and the relation, securing tangency to the characteristic at £,, is
A(ty, ) =0.

When explicit account is taken initially of the fact, that the sub-consecutive
characteristic touches the characteristic at ?,, the analytical expression of the
sub-consecutive curve is

tty=H| 6.(t), 6:t), &), 6.0 |
O:(ts), 6:(t), O(t), Ou(t)
0.(t), 6i(t), 6:(%), 6.(t)
0/ (t), 05 (t), 6 (t), 6/(t)
together with the same relation
A (b, t)=0,
which now secures the tangency to the characteristic #.

As the two expressions for ¢ (¢) represent the sub-consecutive curve, each
taken in conjunction with the equation A (f, £) =0, it is to be expected that
the two expressions will agree. To secure full agreement of the two expressions
along the whole curve, it is necessary that the coefficients of 6, (?) in the two
expressions must be the same: and likewise for the two coefficients of 6, (%),
of 6, (t), and of 8, (), respectively. Consequently, there must be four relations
of the form

G| 6, (to) , 05 (), 0,(t) |= H ‘ A ), 0, (to) , 6, ) |5
0, (ta), 65 (t), 6. (%) ‘ 0:(t,), Os(t), 6.(2)
B, 6@, 6@ | |6, 6@, 6

and they must be consistent with one another, in virtue of the relation
A (t,, t,) = 0 connecting the variables ¢, and ¢,.
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Let

| 61(%), 6a(ts), Os(to), 6.(t) “=012» Cis, Cuy Cosy Casy Cass
| 6.@), 6@, 6@, 4@

‘ 6 (), 65 (%), 605 (t), 6/ (t)
| 6 (%), 65(%), 65 (t), 6.(t)
Then, if

= %2> Y13y Y Yoz Your Vase

G6,/ )+ HSb, (t,)=K,,
for r =1, 2, 8, 4, the foregoing relation becomes

Kicy+ Kico+ Ky =0.
There are three other such relations. One of them is

Kicy+ Kyon + Ky, =0.
Eliminating K, between these two modified expressions of relation, and using
the identity

CaCos + €2l + Ci3Cre =0,

we find
K cw + Kyes, + Ky0,=0.

In a similar way, we deduce from those two relations
Kicou+ Ko+ Ky, =0.
Again, eliminating the ratio G : H between the two relations

Koy + Koo+ Kics =0, Kico+ Kicq+ K,0,=0,

we have
{60 (%) esa+ 65 (8) e + 6, (t) s} {0, (8) Cou + 65 () ca + 6, (L) ¢1s}
= {01, (to) cu+ 0y (to) ca+0) (to) 013} {02, (tz) y+ 05 (te) Co+ 6, (tz) cz;} ,

that is,

Cas (V12034 + Ves Cus + Vo1 Coq + Yo Ciz + Y140 + YasCq1) = 0,

— Cos (b, £,) =0,

which is satisfied. Thus the four relations, which express the equivalence of
the two forms for §(f), are consistent with one another. All of them, when
account is taken of the equation A (§, £,)=0, are satisfied, if G and H are
connected by a single one of them, such as

K6+ Ky + Kycp = 0.

or

122, Take a point on the sub-consecutive curve between #, and ¢,, and
very near to ,. Then from the G-expression for { we have, effectively,

EO=3¢-trG| 6."(t), 6 &), 6" ), 6.7 |,
O(t) » O:(t) , Os(ty), 6ulte)
07 (t), 65 (to), 05(t), 6/(t)
0.(t) , O (), G(t), Ou(%)
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and from the H-expression for { we have, effectively,
EO=%C¢—-trH| 6"(), 6 (), 6"), 6.
6:(t) , G:(t), 6:(t), 0Oi(to) l
!

’

01 (ta) ’ ei(tﬂ) ) 03 (tz) ) 64 (t2)

0/ (), 6/(t), 6,(t), 6/(t)
the coefficient of ¢ —{, in the H-expression for ¢ being the vanishing quantity
A(t, t,). The two expressions for {(t) in the near vicinity of £, agree.

Similarly, for a place in the range in the near vicinity of £, we have
£ =1%(t— £y G| 6" (%), 6, (t.), 65" (&), 6, ()
O.(t), 6:(t), 6s(t), 6.(t)
0/ (%), 6(k), 65(%), 6/(t)
Oi(t), G:(ts), Os(t), 6.i(t)

=4(L—tPH| 6" t), 6,7(@), 6"), 6. (t)
0,(t), 6:;(), 6i(t), 0.(t)
0:(), O:(t), Oi(t), 6.(t)
01, (tﬂ) » 01’ (tﬁ) > 63’ (t?) H 04, (t2)
from the two expressions respectively, the coefficient of £, — ¢ in the G-expression

for ¢ being the vanishing quantity — A (%, %.). These two expressions for (%)
in the near vicinity of ¢, agree.

-

and

Manifestly a sub-consecutive characteristic does not cross the characteristic
curve with which it is associated.

Property concerning a consecutive characteristic.

123. One other proposition, connected with characteristic curves, will be
established here; it is required, later,

in the discussion of small variations N
that are not weak. s, 7
Let APR... be a characteristic Q R

curve on which 4’ is the conjugate of

A; and let P be any point on the

curve within the range A4’ Take

any point @, off the curve, and con-

tiguous to P; then one, and only one, A

consecutive characteristic curve can be

drawn from the same initial point 4 so as to pass through €.

If possible, let the consecutive characteristic curve be represented by
=16, (8) + k0, () + ks 05 () + k6, (£) ;
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because it is consecutive to A PR..., we have

0=F6, (to) +k,0, (o) + 4 0, () + k.6, (to);

0="F:0) (t) + a0, (b) + K65 (o) + k.0 (%),

0="1,0," (t) + k20," (t) + k505" (8) + .0, (4o),
where t, is the value of ¢ at A. At P, let ¢’ be the value of £ on the original
curve, and ¢’ + «7"” its value at @ on the hypothetical consecutive character-

istic. If « and y be the coordinates of P, those of @ can be represented by
z+«X and y+«Y’; thus

X'=¢" )T + ki, (&) +kacps (') + hyps (') + kipy (),

Y= @)T + ks (¢) + koo @) + lsfrs (0) + B o (),
and therefore

VY = ()X =k 0, (¥) + 50, (&) + s 05 () + £, 6, (F).
Resolving the four equations for &y, k,, ks, k,, we have
Eto, )k, ={¢" ()Y —4'(t) X'} oy,
for r=1, 2, 8, 4, where c¢,, ¢,, ¢;, ¢, are the coefficients in the expression of
the consecutive characteristic curve in § 118, and §(¢, t) is the former
expression for the deviation in that consecutive curve.
As A’, given by t=1,, is the conjugate of A, so that ¢, is the first value of

t, (> t,) satisfying the equation { (%, ¢) =0, and as ¢’ is intermediate in value
between ¢, and ¢,, the quantity &(Z, t") does not vanish; hence k,, &, ks, k,
are finite and definite. The consecutive characteristic can be drawn as
required.

Ez. Let B be a point on the characteristic in the range 4P, and let ¢ be a point
contiguous to B. Prove that it is possible to draw a characteristic curve through ¢ and @,
when the difference between the directions of the tangents at B and C, and the difference
between the curvatures at B and C, are of the same order of magnitude as the small
variation displacing Bto C and P to §.

Discussion of the final normal form of the ¢ second’ variation.
.124. We now come to the normal reduced form for the second variation
of the original integral, which has been proved (§110) to be
Q | w”, w, w ‘*dt.
2 -—
3 J-(aﬁl—alﬁ)g ', &, a
B B, B|

Here, a and 8 are two linearly independent integrals of the subsidiary
characteristic equation E =0 such that the quantity

QG@R" —a"B—df" +a'B)+Q (48" — ') +J (4 = o),

known to be a constant for any two integrals, is made equal to zero by the
choice of a and 8. For the discussion, we shall need the properties of adjacent
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(but not sub-consecutive) characteristics and, ultimately, the properties of
the consecutive characteristic.

The first variation of the original integral has been made to vanish. In
vanishing, it secured fixed limits for the integral from assigned conditions, if
these were not already fixed by the preliminary assigned data. Thus all the
variations, which now may be considered, must be such as to vanish, at the
lower limit of the integral and also at the upper limit of the integral.

Consider, first, the lower limit of the integral, being the value ¢, of ¢ for
the initial point of the range on the characteristic. We take a couple of
independent adjacent curves, represented by small variations xa and «8. If
the coefficients for a be m,, m,, m,, m,, and those for 8 be n,, n,, ng, n,, then

m, 0, (L) +my 0, () +ms 0 (8) + m, 0, (4,) =0,

m, 6, (to) +my 6y (to) + my 05 (to) +m, 6, (to) =0,
because the characteristic represented by the deviation xa is adjacent to the
central curve ; and

m 6y (o) + 136, (o) + 1365 (8) +n,6, (¢)=0,

1,0 (%) + 1,05 (8) + 1305 () +n, 0, (£,) =0,
because the characteristic represented by the deviation x8 is adjacent to the
central curve. The two former relations give & =0 and «' =0 at ¢,, and the
two latter relations give 8 =0 and 8'=0 at ¢,; hence the quantity

Q(aBIII_ aIIIB_ aIBII + a//B/) + Q' (aB” _aIIB)+J(aBI_a'B)

is zero at t=1,, and so (because it is a constant along the range) it is equal
to zero for all values of ¢&. Thus the two selected integrals « and 8 of the
equation E =0 satisfy the prescribed demand; and the second variation is
expressible in the foregoing form.,

125. For the adjacent curve represented by a, let p, and o, be the values
of o” and " at the initial point; and for the adjacent curve represented by
B, let p; and o be the values of 8” and 8 at the initial point: then

= m, 6," () + m. 6.” (to) + ms6,” (to) +m.6," (to)}

o =m0 (to) + my 6, (to) + my 0" (to) +m, 6, (t)

P2 =Ty 6,” (to) + ng6,” (to) + 1,04 (to) + n, 6, (to)}

=10, (t) + 126, (&) + 165" (&) + 0,0, (t,)
The determinant of the coefficients in the four linear equations, in which
My, Mg, Mg, My oceur, is —W (%,), a non-vanishing quantity; and likewise for
the four linear equations in which n,, n,, ns, n, occur. The coefficients m, and
the coefficients n, are thus uniquely determinate ; they determine two adjacent

curves given by
o = m, 6, (£) + M2 6, (2) + ms 05(2) + m, 6,(2),

B= mb,(t)+ n6,(t) + nses(t)"' 7405 ().
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Now consider a characteristic curve, represented by the combination

P2 =~ O1 B.
The coefficients for this characteristic are p,m, — pyn, (for r=1, 2, 3, 4). These
four coefficients satisfy the relations

4
0= rgl (Pe’mr — P nr) 0, (to)x

0=

M

(P2 My — P1 nr) e’ (to),

r=1

0=

Ma

1(,02 iy — py1) 6,7 (8)-

<
It

‘We must not have
4
% (pame— panr) 6, (1)

a vanishing quantity. Otherwise, as the determinant of the coefficients of the
four quantities pym,— p;n, is W (,) which is not a vanishing quantity, we
should have

PaMy — 1N = 0,
for r=1, 2, 8, 4; and then p,a— p,8 would be zero for all values of ¢, so that
a and 8 would not be linearly independent. Hence

P201— P10

must not be zero. And now, the combination p,a — p; 8, instead of being a zero
combination, gives a consecutive characteristic curve.

The Jacobr test.

126. Now the first value of ¢, greater than f,, for which a consecutive
characteristic meets the original characteristic, is the value denoted by ¢,. If
therefore the range of the integral, beginning at ¢,, should extend as far as ¢,,
we could have a non-zero variation p,a—p,8 of the characteristic. That
variation vanishes at #,, because a and B represent adjacent curves; it
vanishes at #;, because p,a — p, 8 represents a consecutive characteristic; and
it is not zero in the coursé of the range between %, and ¢,. In these circum-
stances, we could take

w=p,a—pfB;
such an assumption would meet the requirements of vanishing at each ex-
tremity of the range, and of being distinct from zero throughout the whole of
the range save at the extremities. But p, and p, are constants ; and therefore,
for such a value of w, the magnitude
w’, w, w
d, o, a

g, B, B
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vanishes, while a8’ —a’8 is not zero because a and 8 are linearly independent.
Should this occur—that is, by selecting a particular non-zero variation of the
characteristic curve—the second variation vanishes.

But if a maximum or a minimum is to be possessed by an integral, it
must arise for a stationary conformation settled by the characteristic curve.
The maximum or minimum is certainly possessed, if no admissible small
variation can occur which makes the second variation vanish. (It might be
that admissible small variations could occur, of the type just indicated, for
which the second variation vanishes. In that eventuality, the third variation
would have to vanish for those variations if the maximum or minimum is to
be possessed; and the fourth variation must not vanish for them. The case is not
sufficiently general to justify discussion here; when it arises in any particular
instance—as in Ex. 1, § 30, p. 33—it can be considered by a special discus-
sion. It will therefore be omitted from further consideration in the present
general argument.) We therefore exclude the possibility which renders small
variations of the foregoing type admissible : that is, p,a — p, 8 which vanishes
at the beginning of the range must not again vanish within the range and,
as has been proved, it cannot vanish earlier than at the conjugate of the
initial point. Consequently

the range of the integral must not extend as far as the conjugate of the
wnitial point on the characteristic curve.

We thus obtain the range-test (the Jacobi test), limiting the range.

The Legendre test.

127. There still remains the quantity @ for consideration, as it occurs in
the subject of integration in the integral expressing the second variation.

If @ could be sometimes positive and sometimes negative, then, by taking
w zero over a range where  is negative and distinct from zero over a range
where @ is positive, the second variation could be made positive; and, by
taking w zero over a range where @ is positive and distinct from zero over a
range where @ is negative, the second variation could be made negative. But
the second variation must have a persistent sign, if the integral is to possess
a maximum or a minimum. The possibility, just indicated, invalidates the
existence of either, and must therefore be precluded from occurrence in con-
nection with a favourable issue for the problem. Thus @ must be either
always positive through the range (and then a minimum can exist, subject
to the other conditions) or it must be always negative through the range (and
then a maximum can exist, subject to the other conditions).

We thus obtain the test (the Legendre test):

The quantity Q (t) must have a uniform sign throughout the whole range
of the integral.
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Summary of conditions for weak variations.

128. We thus have established the following three tests for the existence
of a maximum or of a minimum of an integral when its variable quantities
are subject to weak variations:

(A) The curve, along which the integration takes place, must satisfy
the characteristic equations.

(This test may be called the Euler test, as Euler was the first to
obtain the critical differential equation in virtue of which the
characteristic equations are satisfied. Sometimes it is called the
Lagrange test, because of his more extended investigations at a
date later than Euler’s first investigation.)

Moreover, either the terminal data explicitly, or inferences from
terminal descriptive conditions onstructively, determine the
limits of the integral as known quantities which, once known,
are immune from variation,

(B) The range of the integral along a characteristic curve must not
extend as far as the conjugate of the initial point of the range.

(This is the Jacobi test. In any exceptional instance when the
range is extended up to the conjugate, the second variation of
the integral can be made to vanish for a particular type of small
variation of the variables; the higher variations of the integral,
for that type of variation of the variables, must then be investi-
gated before a declaration can be made in favour of the existence
of a maximum or of a minimum.)

(C) The quantity, which has been denoted by Q or @ (¢), must not vanish
nor become infinite throughout the range of integration: it must
keep a uniform sign throughout.

(This is the Legendre test. It is conceivable that, at isolated points,
Q may vanish; but the zero then must be of even order, and that
order must not exceed four, in the present case: also, in that
event, there would be limitations on the quantities J and A. It
is simpler to set these special possibilities aside, examining them
only when they arise in particular instances.)

The three conditions are necessary conditions, arising out of the discus-
sion of the integral under weak variations.

When satisfied, the conditions are sufficient to secure a maximum or a
minimum for weak variations. For the first condition (the Euler test, when
satisfied), together with the accompanying inferences as regards the terminals,
secures that the first variation of the integral vanishes for weak variations.
The third condition (the Legendre test) and the second condition (the Jacobi
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test), when they are taken together and are satisfied, secure that the second
variation of the integral is either definitely positive in all circumstances, or
definitely negative in all circumstances, for weak variations. When the
definite sign is positive, the integral possesses a minimum: when the definite
sign is negative, the integral possesses a maximum.

129. An example follows, in which the tests for weak variations are
satisfied, yet for which a real minimum does not exist.

Ex. Pind the curve (if any) such that the area, comprised between (i) any are, (ii) the
radii of curvature at the extremities of the arc, and (iii) its evolute, is @ minimum.

tfoar

=5/(1—+§€ﬁfdz

The area in question is

so that we may take
2)2
ICY YA ."/’)=(1;':ly’ ) )

(I) As f does not involve y explicitly, a first integral of the characteristic equation is
4 - a (%f,) =constant,

o "z

that is,
4_':/(l+3/2) d l+ﬂ/2> =B
v ta\y) T

But

0%{(I+y’2)2}=4y'(l+y’2)—(l+z)

yl

) (1+y")2
- dx{ Ak

Q+yD_ g,
2 e A+By':

and therefore

that is, changing the arbitrary constants 4 and B to 2a and 25,
gt a by
A S 3
v Ay ey

or
E—acosn[r+b sin y,

where, as usual, we have

Thus

¥ =tan .

gg—,=(acos Y+ bsin ) cos , ZW—(a cosyr+bsiny)siny;
and therefore
4 (z~hk)=2ay+asin 24 — b cos 2y
4(y - k)=2by —a cos 2y —b sin 24,}’
where %, k are arbitrary constants. We thus have a primitive, in which the four essential
arbitrary constants are a, b, A, k.
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(IT) If xX and xY denote the displacements at the limit, the equation

[l & G -r e -E @) a0

must be satisfied there. We shall assume that the required curve is to join two fixed
points, so that each extremity is fixed in position ; we thus have

X=0, Y=0,
at the extremity, and therefore the condition becomes

¥ o0
at that extremity.
(1) If the direction at the extremity be fized, as well as the position, ¥'=0: no further

condition emerges from the limiting term, and the value of Y is then known as a given
datum.

(ii) If the direction at the extremity is free, so that there is a condition to be satisfied
for all directions there, then
of _ 0
'

%"
that is, (142)?2y"~2 is zero there, and the radius of curvature is zero, that is, the
extremity is a cusp, or, reverting to the current equation

=a cosy+bsin
we should have P v ¥
acosy+bsiny=0
at an extremity, when it is fixed in position and free in direction.

(iii) Let one extremity be the point (z,, o), and let ¥, be the value of v there: the
other, the point (2, 31), and ¥, the value of v there : where ¥, and v, may be regarded as
known, if initial directions are given: or, otherwise, are subject to the foregoing external
condition.

In the former case, the four constants a, b, &, % are determined by the conditions
4 (2 — k) =2a\;+a sin 2y — b cos 2yp)
4(y,— E)=2byry— a cos 2y, — b sin 2y,
4 (z1—h)=2a\r 4@ sin 2y, — & cos 2y,
4 (51— k)=2by — a cos 2y — b sin 2y
and, in these four equations, ¥, and ¥, are known.
In the latter case, we have the same four formal equations of condition, where now Yo
and y, are not initially given. But now we also have the two terminal conditions
acosYr+bsiny,=0, acosy;+bsinyy=0,
arising out of the evanescence of the first variation of the integral. The results a=0, =0,
deducible from these last two conditions, are out of the question ; and so we have
sin (Y1 ~ ) =0,
that is, we can take (as the simplest case) ¢y —yo=m, or (a8 a more general case)
Y1 =Vo="mam, where m is an integer.
We at once have

Y1-% _
xl_xota.nvlzo+l 0

which, with the condition ¥, — o=, shews that the tangents to the curve at the fixed
points are perpendicular to the line joining the fixed extremities, When we write
a=csinyy, b=~—ccos ¥y,
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the equations of the curve are
4 (z ~h)=c cos (2¢ — o)+ 2cy sin v,
4 (y —k)=csin (24— ;) — 2cyr cos
and the terminal conditions give
4 (my—h)=ccos Yrg+ 2, sin
4 (yo—k)=rc sin Yy — 2cyroco8 Yo
4 (2 —h)=c cos Yo+ 2c (7 -+ ¥,) sin ¢,
4 (31 —k)=csin Yo — 2 (7 +yo) cos
The curve is a cycloid having the line joining the fixed points for base ; and the fixed
points are cusps.
If m is greater than unity, the curve is made up of m equal cycloids, all along that base
and having all the cusps along the base.
(III) As regards the Legendre test, we have
PN +1/’2)2

and, naturally, the area is to be taken posntlve, 80 we may take y” positive®. Now
oY _ L4y
A
a positive quantity ; hence, if other tests are satisfied, the Legendre test will allow the
integral to possess a minimum,

(IV) To apply the Jacobi test, we must construct the equation which is to settle the
conjugate (say y,) of an initial value of y (say v,). Merely changing the arbitrary
constants @ and b, we have the primitive of the characteristic equation in the form

z=h+a(2y+sin 2¢)~ b cos 2y,
y=k+b (2y — sin 2¢) - & cos 2¢.

We have
6% _oyox
=8¢ 0h oy ok
= —4 (acosy+bsiny)cos = — T cosvy,
=2 Oy 0=
=5y ok~ oy ok
= 4(acosy+bsiny)sin = Tsiny,
_Ox oy dyow - .
o222 = - T(cos p+2¢siny),
_rdy oy ox i e
94_:?,,6‘1»“3‘4787; = — T (sin y» — 2y cos ),
where
=4 (a cosy+bsin ).

The critical equation is
61 (o), 02 (Yo), 65 (Vo) 64 (Yo) |=0.
8y (Vo)y 6 (Vo) 85 (Vo) 64 (Yr)
6" (o) 62" (Vo) 65" (Vo) 64" (¥o)
0 (Y1), 6 (Y1)y 63 (Y1), 6s (Y1)

* Were y” negative, the radius of curvature would be taken equal to —(1 +y’2)er — for the

purpose of making }pds to be positive: and the Legendre test would then be satxsﬁed as in
the test. '
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Substituting, and reducing, we have the left-hand side equal to

512 (@ cos Yo-+bsin ¥,)* (@ cos Y+ sin Y1) sin (Y1 — o) {(¥1 — Vo) cot (Y1 — o) — 1}.
‘We have to consider the roots of this equation. The factors, which give rise to

acos yo+bsin =0, acosy;+bsiny,=0,

as in the case where the end directions are free, and as connected with the equations
dx . dy . .
d—‘l'=4(acos¢+bsm\b)cos¢. dTI/=4(a cosy+bsin ) siny,

indicate cusps of the cycloid. Thus the equation precludes a range which actually includes
a cusp.

The equation
(& = o) cot (Y — ) —1=0,

for a range w4y, =¥ > ¥, has only one real root, viz. ¥ =1, merely giving the initial
point of one complete branch of the cycloid ; the factor

(¥1= o) cot (Y1 = ¢ro) -1
provides no conjugate in the range.

The equation .
sin (Y1 ~ ) =0

gives Y=+, as the first value of ¥, greater than Yo and satisfying the equation ; the
factor therefore, in the extreme case, merely indicates a cusp as the conjugate of a pre-
ceding cusp.

Tt thus appears, when account is taken of all the equations into which the critical
equation can be resolved, that the range of the cycloid must not include a cusp. The
inference therefore would be that, if a curve is to be drawn joining two fixed points with
fixed directions at each point, we take a cycloid through those points so that no cusp of
the curve shall occur within the range : while, if the directions at the extreme points are
not fixed, we obtain a minimum area though the Jacobi condition is just not satisfied.

Note. In the latter case, it would follow that, for one special type of variation, the
second variation of the integral vanishes; as an immediate preliminary, it would be
necessary to consider the third variation of the integral,

(V) Other considerations shew that, for even the most generally satisfactory case
where the Euler test, the Legendre test, and the Jacobi test are satisfied, there is no real
minimum.

The fact is that only weak variations have been taken into account. The characteristic
curve, thence derived through the Euler test, is a cycloidal arc 4CB: B
to simplify the discussion, we may regard the directions at 4 and B
as fixed at the cusp.

Take any point G near A in the line 4B; and draw a small
cycloid on A@ as base. Also draw a cycloid on GB as base. The
two cycloids on AG, GB lie within ACB ; they constitute a small
variation of ACB. The area, associated with the double cycloidal arc
from 4 to @ and from @ to B, is less than the area associated with
the arc ACB. c

But the variation from 4CB to AG, while small in the magnitude A
of the displacement of corresponding points, is not a weak variation;
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the changes in the direction of the tangent and in the curvature are violent. Thus a
strong variation has led to a reduction in the minimum.

We can see otherwise that the area produced by the cycloidal arc can be reduced.
Divide 4B into # equal parts, one of which is A@; on each such part as diameter, let a
semi-circle be drawn. The total area, under the requirements of the problem, and provided

b) the # semi-cir CIes’ 18

which, with increase of , can be reduced indefinitely.




CHAPTER 1V,

INTEGRALS INVOLVING TWO DEPENDENT VARIABLES AND THEIR
FIRST DERIVATIVES: SPECIAL WEAK VARIATIONS.

Integrals of the first order in two dependent variables.

130. We now proceed to deal with integrals which involve two dependent
variables and one independent variable, denoted by v, z, and respectively.
We begin with the simplest problem; only the first derivatives of the
dependent variables (viz. Y, = %; and 2, = gf;) will be supposed to oceur.
It will be convenient to associate a geometrical interpretation with the
analysis for all such problems; manifestly, skew curves offer the natural
medium. In the geometry of such curves there is less tendency, than in
plane curves, to a preferential selection of one variable (such as x), over the
other two, to rank as the independent variable; and so there will be added
reason for ultimately considering #, y, z as functions of a new independent
variable. Such an ultimate selection will, as before, allow the small variations
to be made in all the variables, instead of merely special variations to be
made upon the initially selected dependent variable. Then (as in the pre-
ceding chapters) possible discontinuities, as of direction, may be discussed.
Moreover, the selection simplifies the expression of properties of tangency
and curvature,

As, however, certain results, fandamental in character, are derivable from
the analytically simpler supposition, which makes y and z functions of z, and
subjects y and z to small variations, without regard to small variations of «,
it is advantageous to derive the corresponding results at once. They will
indicate the type of test required for the general weak variations.

We accordingly consider an integral

I= f f(® 9, 9,2 2)ds,

the limits of which may be definitely fixed or are to be deducible from
assigned data. The problem is to determine the conditions to be satisfied
in order that I may possess a maximum or a minimum.
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Variation of the integral under special variations.

131. We begin with special weak variations. We therefore assume y + «v
as a varied value of y, and 2+ «w as a varied value of z. Here « is an
arbitrary constant quantity, of sign that can be taken at will, and of magni-
tude sufficiently small to render any power negligible in comparison with
every lower power. The quantities v and w are arbitrary regular functions
of z; and we assume that «v’ and xw are small quantities. If the limits are
fixed, they remain unaffected for variations made upon I. If the limits are
to be deduced from assigned data—thus, if the extremities of the curve,
representing y and z as functions of «, are to lie upon a given curve or
curves, or upon a given surface or surfaces—the varied upper limit may be
taken with @,+ X, as the varied value of ;, and the varied lower limit
may be taken with z,+ «X, as the varied value of ,. In this event, X, and
the values of v and of w at o, must conform to the data at the upper limit,
while X, and the values of v and of w at «, must conform to the data at the
lower limit. Further, the function f(z, ¥+ xv, ¥ + v, z + xw, 2’ + xw') is
assumed to be expansible in a series proceeding in powers of . Then, if J
denote the integral arising from the complete variation of Z, we have

zyteX, ’ ,
J-I= [z, y+cv, ¥ + v, 24 kw, 2+ ew') da

Zo+x X,
T2 7 J
-], f(@, 9y, 2 7)ds
= [ f@ g+ y 4, st w, S+ ) = f (5,99, 5 2} do
” ZTo+x X,
+f (@, y+ 0,y + v, 2+ kw, 2 + ') dz

To+eXy
—f F(@, y+ &0,y +xv, 24 xw, 2 + xw') da.

The integral in the first line of the right-hand side is

_ . [™ 8f  of of , . of
—xf%('vay v twd )da:+K_xI+K,,,

where K, is the aggregate of terms involving second and higher powers of «.
Now of o >
Zy Zy 1‘2 d
X o= o L 2 (L)
[ s [” 9y]zo " (ay)

Zy ,al _ af Z:‘J’@n a af .
f% w 27 dz = l:'w a—z,] " “ w dz <a—z,> dz ;
and therefore

(AT T B
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Let £, and f; denote the respective values of f(z, ¥, ¥/, 2, #) at z, and z,; then
(as in § 32)

+xX,
f% S(@y+en,y + v, 24 kw, 2 + cw')de = £ X, f, + K,
e

o+ x X,
f f(a:,g/+xv,y'+rcv',z+xw,z’+mu’)dw=xXofo+K,",
o

where K" and K,” denote aggregates of quantities involving the second and
higher powers of «.

132. We have to bring «X, «v, xw into relations with one another in
connection with the curve or the surface upon which a displaced limit
stands: and the necessary relations must be estab-
lished for each limit. In the figure, P is the point of a C
curve at the limit which is subjected to a displacement
taking it to Q. Through P, we draw PA, PB, PC, -7 Q
parallel to the axes of , y, 2. Through Q we draw | ST ,~ /]R
planes QDA and QDB, parallel to the planes Oyz and Q A
Ozz. The curve which is being varied is ...PR... N
cutting the plane QDA in R; so that, if the arc PR=o B D

and if A denote (1 +y + z’”)é, we have
=1 Y -7
PA—Km AN—KQ NR—Am

The curve along which the limiting point P is compelled to move is PQ, the
dotted curve: or, if the limiting point P is compelled to move on a given
surface, then ...PQ... is some curve (and, indeed, may be any curve) on that
surface. As @ is the displaced position of P on this hypothesis, let the
coordinates of @ relative to P be kX, kY, kZ, so that relations (or a relation)
will exist between kX, kY, %Z, determined by the equations of the curve
...PQ... (or the equation of the surface on which ...PQ... lies). The small
variation v and «w, to which P is subjected by variation of the curve that
is to provide the maximum or minimum, takes P to S, where S is in the
plane BPC. Up to small quantities of the first order, QR is parallel and
equal to PS; and therefore the coordinates of Q relative to R are equal
to the coordinates of S relative to P. Thus

wv=AD— AN, xw=QD—RN.
But PA =kX, PB=kY = AD, PC=kZ=QD; also

AN=¥,-KyX, NR=%o=RsX;
and therefore
wv=xkY ~kyX, kxw=xZ-kzX,
that is, at an extremity of the integral,
v=Y-yX, w=Z-7X.
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Note. These results can also be established as follows. When P is taken
temporarily as origin, the coordinates of @ are «X, «Y,«Z; and the equations

of the tangent at @ are
E—KX="—,KY=C—,KZ,
y z
where £, 7, £ are current coordinates along the tangent, the equations being
accurate up to the first power of « inclusive. Now § is a point on this
tangent, to the same order of accuracy; and its coordinates are 0, «v, kw.

Hence

v=Y-yX, w=%Z-7X.

133. Gathering together the results, we now have

AT
+x[:X (f—y'%—z’gf—,)+Y%+Z%::‘:+Rz,

where R,=K,+K, + K,', being the aggregate of all the parts of J—71
which involve terms of the second and higher powers of « arising from the
expansion. In this expression, xv and »w in the integral are the arbitrary
small variations of the points on the curve, while «X, «¥, «Z represent the
displacement of a limit upon the terminal curve or the terminal surface:
and variations of every type are admissible and must be taken into account,
arbitrary, independent of one another, subject to the conditions (i), that
v and w are regular functions of «; (ii), that X, Y, Z are consistent with the
maintenance of a terminal position ; and (iii), continuity between v and w, and
X, Y, Z at the terminal positions.

The two characteristic equations, and the terminal conditions.

134. By the usual argument relating to the possession of a maximum or
minimum, the ¢ first’ variation in J — I must vanish ; and it must vanish for
all small variations of the curve.

Consider, first, a small variation xv and xw for y and z, with real

EN

variations at the extremities. The terms included in the expression [ ]
%o

vanish for such variations, because X, Y, Z are zero at each limit. Hence

-2 @ rwll-it @) a0

for all arbitrary regular functions v and w independent of one another. The
conditions, necessary and sufficient to meet this requirement, are that the
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equations g
=2~ (3) ="
z-l -5 () -

shall be satisfied everywhere along the curve. Were it not so, by choice of v
where 3D is not zero, and of w where % is not zero, the integral could be
made positive or negative at will, contrary to the necessity that it shall
vanish. The two equations are the characteristic equations. Their primitive,
being the complete simultaneous integral of the two equations, determines
y and z as functions of «; it thus determines a curve in space, which is
called the characteristic curve.

We shall now suppose that we are dealing with such a curve, so that
the characteristic equations are satisfied. Consider, next, a small variation,
which is zero at the lower limit of the integral and not zero at the upper
limit. Because the curve is now restricted to be a characteristic curve, the
portion of J — I depending upon the integral vanishes. The requirement,
that the first variation shall completely vanish, can now be met only if the

relation
X(r-yZ-¢Z)+vLr2Z-0

is satisfied at the upper limit.

Similarly, by considering a small variation not zero at the lower limit, we
infer that the same relation must be satisfied at that limit.

Consequently, in order that the first variation in J — I shall vanish, it is
necessary and sufficient (i), that the characteristic equations shall be satisfied,
thus determining the characteristic curve : and (ii), that the condition

LAY S Y
X(f Y o= az')+ Y2 +2=0
shall be satisfied at each limit separately, in accordance with some terminal
property or properties for the characteristic curve,

Hamilton form of the characteristic equations.

135. The characteristic equations for the present problem, when f does
not explicitly involve the independent variable, as also for many such problems
involving more than two dependent variables, can be expressed in the
Hamilton form which is used in theoretical dynamics. We write

of _ af
a—y/_n’ Cx
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taking # and ¢ as new variables, being of course dependent variables; then
the characteristic equations are

R ARG

Thus y, ¥/, 2, 2’ are expressible in terms of 5, 7, §, {. We now introduce a
new function H, by the definition
H=y f'+z f -f

=yn+2¢ —f-
As f does not now explicitly involve z, we have
dH =(y'dn +ndy) + (2'df + £d2')
(afd +afdy+afdz '+ 2 a)

o7
=ydn+2di—n dy— ¢'de.
Let the function H, initially defined with reference to f and the arguments
in f; be transformed by the equations

af 3f
oy =™ =
s0 as to become a function of y, 2z, 5, & In this form,
dH_aHd "’a‘?da— ay+°2 gz,
The two forms, obtained for dH , are equivalent for all variations. Hence
oH_, oH_, oH__ . 0H__,
Pt A T A PR

and therefore
dy dz _ d'l[ dé’ =da,
8H "8H~ _oH _oH
on ot oy oz

which is the Hamilton form.

Nature of the primitive of the two characteristic equations.

136. If we are to obtain the most general solution of the problem, we
must obtain the primitive of the characteristic equations. (It might happen
that a particular solution of the problem could be provided by a special
integral of those equations.) Now the equations are

azf 1/ f //
ayfzy W +g(w’y’:'/ z:z) 0,

82f an 1 y ’ N _
ayazy +8z”z +h(z, 9 9,2 2)=0,
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leading to equations

0y’ =Q(x,9,2,y,7), 0:'=H(zy,z7v,?7),
provided the quantity 6, where
o )

- oy 92 by oz’
does not vanish. Then the elimination of z and its derivatives leads to an

ordinary differential equation of the fourth order in y; and the new equation
has a primitive of the form

y=¢(ﬂv, 4,, 4,, 4,, A)),
where 4,, 4,, A;, A, are arbitrary constants. When this value of y, once
known, is substituted in the two equations

" w_0G °@ , 3G , 0GG@ 0GH
y'=6 ¥'=%5 tay? +5z+8y0+55’7’
and 7’ is then eliminated between these two equations, we have
2= (z, A,, 4,, 4,, A)).
The primitive of the characteristic equations manifestly is
y=¢ (x, 4,, 4,, 4;, 4,)
2=+ (z, 4., 4;, 4;, A‘)} >
which, accordingly, are the equations of the characteristic curve.

Note. Later, it will be proved that, for the possession of a maximum or a

minimum, the quantity

orar_ (2 Y

oy’ 02" (83/02’
must usually be positive and must never be negative; but, in exceptional
circumstances and subject to further conditions attaching to the function f

it may vanish. If it should happen that §=0, the two initial characteristic
equations are equivalent to

Of py OF S A
ay !/ ayl— ,Z +9(w, y,y,z:z)—O,

k(z, y, 9,2 2)=0.
Differentiating the second equation and combining the result with the first,
we obtain equations
Y'+P(2,9,y,22)=0, 2"+Q (29,92 2)=0,
simultaneously with % (#,y, ', 2, 2/) =0. A differentiation of y” + P =0, leads
to a relation

¥ +R(x,y, 9, 2 2)=0;
and we then have, on the elimination of z and 2, an ordinary differential
equation of the third order in y. The primitive of the characteristic equations
becomes .
y=x (= C,, C, ), z=w (2, C,, C,, Cy),

which then constitute the equations of the characteristic curve.
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As however the occurrence is exceptional when a maximum or a minimum
could be possessed, the detailed examination may be left for any problem
when it actually arises.

We shall therefore assume that 8 is always positive.

Ez. Prove that each of the characteristic equations is only of the first order when
(2,9, ¥, 2 ) is of the form

YF(z, 9, 2)+2G (2,9, )+ H (=, 9, 2) ;
and conversely.

Find the form of f(z, g, ¥, 7, 2), when the characteristic equations are satisfied
identically.

137. As regards the determination of the four arbitrary constants that
occur in the primitive, various cases may arise.

(1) Two fixed extremities may be given: that is, we have y =y, and z=2,
when z=ux,, and y =y, and z=2, when 2 =2,. Thus

Yo= ¢ (%, 4,, 45, A5, A))

2= (my, 4, As, 45, A))

Vo= (22, 4, 4y, 45, 4))

z, =Y (25, 4, 4,, 45, 4,)
equations potentially sufficient to determine 4,, 4,, 4, 4,.

(ii) An extremity may be fixed in position and direction: that is, the
values of ¥, 2, ¥, 2/ are given when #=u,. Again, there are four equations to
determine the constants.

(iii) One extremity may be fixed in position, and the other be required

to lie on a given curve
y=F(z), z=G(z).

At that extremity, say « = a, where z, is not known beforehand, we have
Y=F(2)X, Z=G(x)X,
so that, from the terminal condition at a mobile extremity, we have
f-vZ-2Tar@lre@Z-o
when 2 = z,. With
F(z)= ¢ (2, 4, 4, 4,5, 4)),
G (@) =¥ (2, 4y, 4,, 4,5, 4)),
we have three equations. Also
Yo= (%, 41, A5, 45, 4)),
2o =" (@, 4., 45, 45, 4,),
making five equations in all, potentially sufficient to determine

@y, Ay, 4, 4, A,
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(iv) One extremity may be fixed in position, and the other be required
to lie on a given surface

S (z, y, 2)=0.
Let the extremity be ,, y,, 2, so that
8 {7, ¢ (@), ¥ (@)} =
Also, at z,,
85’ BS Y+BS Z=0,
oy

while the terminal condiblon at a mobile extremity is

(f yaf af)+lfaf+z‘,;’ji—o
for all variations X, ¥, Z along the surface S=0. Hence, at x,,

fyaf '

“ o7 _oy _of
CE
ox oy Oz

which, with §=0, are three equations. At the fixed extremity,
Yo=¢ (2, 4,, 4,, 4,, 4,),
2, =Y (@, 4,, 4,, 4;, 4)).
Thus there are five equations in all, potentially sufficient to determine
@y, 4,, 4,, 4,, A,.
(v) Similarly for other cases, when both extremities are mobile separately,
upon a curve or upon a surface.

Forms when a general first integral can be obtained.
138. There are some forms, not unimportant, for which a first stage
toward the integration of the characteristic equations can be attained.

(a) Let fnot explicitly involve y, or not explicitly involve z, or explicitly
involve neither of them.

For the first of these, we have

o _
oy =5,
as a first integral ; for the second, we have
o _
o7’ =G
as a first integral ; for the third, we have
 _p ¥_
a y B, a—z/ = C:

as two first integrals.
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(b) Let f not explicitly involve 2. Then

aof _of o W o, T
dx—ayy+537y +a—zz'+é—z~,z’

_ (., dof ” ij} d rof )
from the characteristic equations; and therefore we have
of L
=Y oy =% =4
as a first integral.

(¢) Butif f does not explicitly involve z or y or z, we do not acquire three
first integrals by combining the two cases of (a) with the case (b); the three
constants 4, B, C, each arbitrary, are not independent, the relation between
them being obtained by the elimination of 3’ and 2, the only quantities which
now occur, between the three equations. Thus, if

= +y"+ 27,
we have A%+ B2+ (C2=1.

(d) The simplest (and perhaps the most important) case of all occurs,
when £ is of the form

f=p(@y )1 +y* +z”)‘}
~u(+yr+ o8,

where p is a function of z, y, z Then the equations are

ou . by d »y
YSERT e S N -
ay( Y2 +27%) d,x{(1+y”+z’2)%}

Q"_“(l+y'z+z’2)§_i{~___’,f_z/,_, }=0.
0z de (1 + 9"+ oL
When the length of the arc is made the variable, so that

ds ey
=y,

i)
= ()0

--4%)

these equations are

I

0,

Let
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Maltiolvi . . de .. . dy
ultiplying this equation by a the two characteristic equations by 4. ond

gf respectively, and adding, we have

g-5R-204) 2040 50 205)

_ude dudy, dpds_dp
T Oxds Oyds ozds ds’
because p s
da\? | rdy\* | rdz\? dedie dydy deds_
(Es) (@) +(@) = TE+aEraa-o
us
dz
UJ.S‘_:O’
and therefore
U=0.

We thus have three equations, symmetric in z, y, z: they will be discussed
later*. »

Ez.1. Shew that the shortest curve from one fixed curve (or surface) to another fixed
curve (or surface) in space is a straight line which, at each extremity, is normal to the
curve (or surface).

Prove that the shortest distance between the circle #2+y?=a?, z=0, and the hyperbola

R-yi=c £=0, is (3 +}at)}.

Ez. 2. Find the integral equations of the curve, joining two points not lying in a plane
with the axis of #, such that its moment about the axis of # is a minimum.

(I) We are to minimise the integral
[ @+ 14y} do.
The characteristic equations are

gyt d { ¥ @+t }_0,

@+t do 14yl
s(1+y2+22h _d { 7 (2422 }_
@+t dr (tyr4omh
Because f, the subject of integration, does not involve & explicitly, there is a first integral
of 0
f —y’ Wf_ z é=c’

where ¢ is an arbitrary constant: that is,
(‘1/2_{_22)}: e(l +y/z+/2)i,

When this integral is used, the characteristic equations become

%y z a2

Loeqw=0 - Tm

¢ dat?

* They will appear (§ 175) as the characteristic equations when z, y, z are simultaneously
affected by small variations.

=0.
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Hence
y=a cosh §+b sinh 'g

z=a cosh Z4+¥ sinh Z
¢ ¢
where a, b, @, b’ are arbitrary constants. Substitution in the integral
@2+ A =c(14+y2+22)8

leads to the relation
-0+ a?-b%=c?

80 that there are four independent arbitrary constants, the five arbitrary constants being
connected by this single relation.

When new constants a, 3, y are introduced®, such that

a=ccosacosh§—, ad=c sillacosh:/c,

b=ccosasinhc'§, b =csin asinh;’—;,
which satisfy the relation and now leave ¢, a, 8, y as the four independent arbitrary con-
stants, the equations of the curve are

y=ccos acoshx-:ﬁ, z=csinacosh'”—:-'y.

Manifestly the curve is not a plane curve unless 8=+v: when =4, the curve lies in the
particular plane ysin a —z cos a=0 through the axis of z.

The projection on any plane through the axis of # is, in that plane, an orthogonal pro-
jection of a catenary. In the foregoing case B=1y, the curve, in the plane y sina—zcosa=0,
+8

is the catenary ycosa+tzsina= =ccosh Z - The projection on a plane, perpendicular to

the axis of &, is the hyperbola
8-
c

2y2 8in a cos a cosh

Y _ g% sin?a 22 cos? a=c?sin?a cos® a sinh? B_:‘y
which, in the foregoing particular case, becomes the repeated line y sin a—zcos a=0.

(II) We thus have the characteristic curve. To complete the discussion, so far as weak
variations are concerned, we anticipate the establishment of the further tests.

For the Legendre test (§ 148), we have

o9 _ (g2 +2%)} 1427 ,
oy (1+y2+ 22t
') =(yz+zz)§_jf_ s
o2 (1+g2+22)F
P9 _ (g2 +22)} _=¥7 ,
oy’ (1+y2+72)%

% d%g 0% 0%
hence 5 3/2 >0, 52 >0, 3 ;; 8zz> (6 y’g z’) and therefore (so far as the Legendre test is

concerned) the solution admits a minimum.

* On the assumption that no one of the constants a, b, a’, ¥’ is zero, such as may happen in
a particular case.



138] EXAMPLE 201

To apply the Jacobi test (§ 149), the conjugate (say ;) of the initial point (say ,) is
required. It can be obtained as the limiting position of the intersection of the character-
istic curve with a consecutive characteristic. Using, first, the form

y=acosh §+ bsinhg, z=a cosh‘g+b’sinh§ R
with the relation
a?— b4 a2 -b%=c?

we apply a small variation to the constants by taking a+«4, b+«B, a'+«d’, ¥ +«B,
¢+xC; and we denote the consequently varied values of y and 2 by y+«Y¥ and z+«Z.
Then

Y=AcoshZ+BsinhZ = ‘z~; ¢ (a sinh Z 4+ cosh f)
c c ¢ ¢ c
z LTz
=4 cosh s + B sinh P Cy,
Z=A’cosh ‘f.;..B’ sinh Z_Zo.
¢ ¢c ¢
But for the initial value x, of 2, we have ¥=0 and Z=0; and for the conjugate value z;,

the intersection of the consecutive characteristic with the original curve, we again have
Y =0 and Z=0. Thus, because ¥Y'==0 at the two places,

B pinh® P oy
A cosh . + B sinh Pt Cy/ =0,
A cosh‘%’+B sinh '%0 - '{? Cyy’ =0,
and therefore
1
A N B e °
oy sinh —xc—l — 2y, sinh %“ 21y, cosh %0 — zyy, cosh ‘% sinh ﬁ%ﬂ
Similarly, because Z=0 at the two places,
1
A - B i
- L=y’

o2y 8inh '% — &, 2, sinh {—0 212 cosh ‘%’ — 42y cosh ‘%‘ sinh

‘When these are substituted in the relation
ad—-bB+a'Ad' —bB =cC
arising out of the relation among the five arbitrary constants by varying these constants,
we have
ey Py ! ey Poap !t 2 o Xy — &1
Zoyo'cYy’ — #1 Y1 Yy + %o Zo'cz) — 212 czg +¢? sinh 0 =0,
that is,
Zo— %1

(o= 21) (Yo y1' + 20’2 ) +¢ sinh —= 0,

an equation for determining #, in terms of .
When the later expressions for the constants are used, we have

y'=cosasinh3#, z’=sinasinh£:—1;
and so the equation determining the conjugate is

‘f°—:fl {cosz asinh 'ﬁgﬁsinh 1%-3-+ sin? a sinh @j—‘y sinh ﬂ:—_‘y} +sinh %%”-1=0.



202 EXAMPLES [cH. 1v

This can also be taken in the form

Zoy— cos?q + sin?a +1=0,
. ?
¢ coth & :B - coth .‘vo:—ﬁ coth a,,;l--y_ coth &‘o;l-y

or
Xy~ Xy &y — &y
[ . c

+sin?a {1 - =0.

coth —’r‘cis —coth %—@ coth %" - coth 'f"ciy

cos? a Il—

In the particular case when 8=y, the curve becomes the plane curve

n=y cos a+2sin a=c cosh ﬂ:—'— s
the plane of the curve passing through the axis of #; the necessary boundary con-
dition is

and the relation giving the conjugate is
P~ %o coth :'B —coth .zo:-B ,

in effect, the old relation (§ 30, Ex. 1, p. 31) which determines the complete range upon
the characteristic catenary.

L. 3. From a given point, in one of two parallel planes, a curve of given length
is drawn to some point in the other plane. From every point on the curve a perpendicular
is drawn to the first plane, these perpendiculars forming a cylindrical surface. The area of
the intercepted portion of this surface is to be a maximum.

Prove that the curve must be a circle; and find the relation between the circular arc
and the planes, at each of the extremities.

Ez. 4. Find the equations of a curve joining two points, such that the moment of
inertia of the curve about the axis of » is a minimum, when the points do not lie in one
plane with the axis of 2.

The integral to be minimised is

/ @+ (1 +y242)da
the characteristic equations are

2y(1+3/2+z’2)%——a—l- {M}=o,
dz \(1+y2 4221
a { 2 (y?+22) }
dz \(1+y2422)

As f, the subject of integration, does not involve x explicitly, there is a first integral

% (1+y24+2203 -

=y ?—/: -7 g—g =constant=aq?,

%y

that is,
-—yﬁ + 22 —?
(L+y2+4H}

When this integral is used, the characteristic equations become

d% dz
2_1/(y’+z3)—a4%2=0, 2z(gz+z”)—a4d72=0.
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Of these equations, there is an integral
dy dz

Y B

where ¢ is an arbitrary constant.
For further integration, take a new variable « given by
y2+2=ay,

so that the actual value of » is (1 +y’”+z”)§, that is, Z—i ; but, at this stage, there is no
-advantage in the specific use of the variable s. Then

yy +ad =%a*u.

242 (3 + 20 =(y +22)+ (Y - 9707

a?u (ut-1)=}a*w'*+c%

But
and therefore
Write
4c?
@ =9,
so that g may be taken as a new constant instead of ¢: then

2
a? (%) =4ud-4u—g,

the differential equation of Weierstrass elliptic functions with 4 and g for invariants.

Thus
u=§ (w ;x(.) )

or, if we write

2=xo+ at,
we have
u=§ (¢).
Again, let
y=rsiné, z=rcos 8,
. dy dz
where r?=a%: ; then from the equation z < —y =% We have
I £= ¢,
that is, g &
c ¢
df= = T m .

Let 7 be a value of ¢ such that @ (£)=0, so that

P O=(-gt=2;
then

S
S TORTOME

2 (8- B)=2t¢(r)—log o (¢ +7)+log @ (t—7),

and therefore

that is,

4(0—8) — o2t ()"(i"_),
€2 e (7] (tFm)
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Thus the primitive of the characteristic equations is
r=xo+at
y=rsinf, z=rcosd
ri=a® (1)
=a*{P () @(f)} {
ReE
cr(t T)

o (t+1)
The four arbitrary constants are z,, a, 8, w1th either ¢ or r (which are equivalent to
one another).

As in the last example but one, the equations of the characteristic curve have been
obtained. The tests, as to whether it provides an actual minimum, must be deferred;
their formation constitutes an exercise in elliptic functions.

ee=p= it T

Subsidiary characteristic equations, and their primitive.

139. The characteristic equations are

o d<af> 0 ¥ d(Bl‘)=0;

oy dz\oy' 0z dz \d7

and their primitive is of the form
y =¢ (x7 Al) AZ) A3) A4)’ z =‘P‘ ($, Al) A-2’ AS’ AA),
where 4,, 4,, 4,, A, are arbitrary constants.

When variations of integrals involving only one dependent variable with
one independent variable were discussed, it was found convenient to consider
a ‘consecutive’ characteristic curve: and advantage arose for two issues, one
determining the limit (if any) to the range of the integral for the conserva-
tion of a maximuwm or minimum property, the other leading to the construc-
tion of a critical normal form for the second variation of the integral. The
same advantages can accrue in this investigation.

Accordingly, we consider a small variation of the foregoing primitive, so
that it shall still satisfy the characteristic equations. We submit the arbitrary
constants 4,, 4,, 4,, A, to small arbitrary variations by changing them into
A, + kay, Ay+ ka,, A+ xas, A,+ xa,, where a,, a;, a;, a, are themselves
independent arbitrary constants, « being the usual small arbitrary constant.
When the changed values of ¥ and z are denoted by y+ «7 and 2 + <, we

have
o¢ L) o ¢
Ky Ty R y W Ty )
oy o oy

f=agr+agy +“*aA Ty

while the new values y + «n and 2z + «{ still satisfy the original characteristic
equations.
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7

The function f involves five arguments «, y, ¥, 2, 2. Derivatives with
regard to these will be denoted by subscripts 0, 2, 3, 4, 5 respectively, attached
to f, the notation being used here only for second derivatives as given by the
definitions

af o _ 3f_
fas, dyaz’ fsa, azfg fb.’n f22:

and so on. We need the modified form of the equa.tlon, under the change of
y and z into ¥+ ky and z + «{, subject to the restriction that the equation
of of of of
oy’ oy’ 0z’ 97’

% T e (fun +fat +Fub +fonl) oo

remains the same. The modified forms of are

%’* e (foon + S’ +Sul+ ful) £ oo,

g’é+x(fuﬂ+fuﬂ,+fq§+f“§,)+-..,

g—ﬁw(f%n ' +ful Sl + o
respectively : or, if
20 =faur® + 2funl +ful”
+2(fam’ + fonl + fun'§ + full)
+Jan?+ 2’ + [
the four modified forms are
PR, T Ly

where, in every instance, the unexpressed terms constitute aggregates of

terms in the second and higher powers of x. But the characteristic equations
are to remain unaltered. Hence

af a(of
™ a,'7+ "dw(a'+"a'+ ) 0,
that is, in the limlt when « tends to zero,

9Q d 0

on  d= (3?7 ) 0;

00 d (00

¢ da (aé' ') =0
In attaining this result, we have supposed that the original characteristic

equations are satisfied, and that therefore the quantities y and z (with their
derivatives) are given by the primitive which expresses the characteristic

+ K

and similarly
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curve ; hence all the coefficients f,., are to be regarded as functions of . Thus
the two equations just obtained, viz.,

o0 d /00 o0 d 0 _

o~ ) =% 3% @ lop) =0
or, in full,
fss"?”“"‘fssé‘”:(fm—fss,)ﬂ _f88"7, +(f24_f34,) §+(fﬁ —f“—f“') C’}
fss")ll'*'fssg”-"-(fm—f;a,)’7+(f34—fw"f35,)"7’+(f«"f45’){_f&';/ ’

are two linear equations in % and ¢ with vartable coefficients. On the
assumption (§136, Note) of a non-vanishing quantity fi fis —fs?, their form
shews that the primitive involves four arbitrary constants. But we have
obtained values

0 0 o¢ o¢p
n=a1£i+aga—i’+asm+a4ézl

L N L L }
f—axa‘zl'f'azm'*'asa s+a48—1‘14
where a,, a,, a;, a, are independent arbitrary constants. Hence these two

equations, when combined, can constitute the primitive of

0_dom_, m daen
on dz\oy) 9o dx\ot)

The quantities y + «n and z + #¢ determine a consecutive characteristic curve.

Accordingly, as before, these new equations, satisfied by Q, are called the

subsidiary characteristic equations.

Note. The primitive of the subsidiary equations has been derived from
the primitive of the original equations. If however that original primitive is
not known, but only a special integral is known and has to be tested, the
special integral is substituted in the form of the subsidiary equations as they
stand; and these equations must then be integrated, without assistance from
the special integral except in so far as it may contain some arbitrary elements *.

Lemma necessary for the establishment of the primitive
of the subsidiary equations.

140. In declaring that the values of 5 and ¢ can constitute the primitive
of the subsidiary equations, it is tacitly assumed that the four quantities

o

4, (r=1, 2, 8, 4) are linearly independent, and that the four quantities

* In the most restricted instance, the special integral will contain no arbitrary element ; no
assistance towards the construction of the primitive of the subsidiary equations can thence be
derived. In other instances, a special integral may contain some arbitrary elements, though not
enough of them to make it the primitive; in that event, some assistance towards the construction
of the primitive could then be derived, of a range limited by the amount of generality of the
special integral.
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8\[/ (r 1,2, 3, 4) also are linearly independent. The assumption must be

Justlﬁed.
We have seen that the elimination of z between the two fundamental
equations leads to an equation of the fourth order, deduced through
0y =G (x,9,9,27), 02'=H(z, 9,1y, 2 2),
and arising from the elimination of z and 2’ between
0y =G (29,9, 27),
Oy =K(z,y, 9, 2 7),
Oy =L (2,979, z22),
where K and L are similar in form to @ and H, and where 6 denotes
JuJs— for. Thus the equation will be of the form
Cy"' =M=y, 9,9, y")
where 6 is always positive. Then the customary existence-theorem* provides
a unique integral of this equation defined by the initial data that, for an

assumed value z = a, the quantities ¥, ¥/, y”, y” respectively assume arbitrarily
assigned values B,, B,, B, B,, independent of one another, provided that
the function M is finite for these values and is regular in their immediate

vicinity. This unique integral is consequently of the form
y=B\+By(z—a)+}Bs(z—a)+}B,(z—af+(z—a) R(z—a, B, B, B,, B,),
where R is a regular function of #—a. Thus, as
y=¢ (2, By, B,, B;, B),

we have 2
0 0
m- l+G-arlp,
¢ _ oR
aBs z—a+(z— a,)‘aB ,

= t@-ort -2

o6 =% (z —a,)’+(x—a)‘a—B‘.
Clearly no linear and homogeneous relation of the type

) 8¢ )
b‘aB +bogp +bgp +bigp =0

exists among the four quantities, the coefficients b being constants; and con-
sequently the expression for 7 is satisfactory as containing four (and not fewer
than four) independent arbitrary constants,

* See my Theory of Differential Equations, vol. iii, ch. xi, ch. xiii.
y Y q
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Similarly, when we eliminate y between the two fundamental equations,
we obtain an equation of the fourth order in z. Of this equation there exists
a unique integral, defined in the same manner as the foregoing integral y, by

means of arbitrarily assigned initial values for z, 2/, 2", 2”; the integral is
regular in the vicinity of #; and it has the form

2=C+ Oz(m_a)+%03(w_a)2+%04 (z—a)3+(a:—a)4S(a:-—a, 0, Gy, G, 04);

where S is a regular function of # —a. As before, there exists no linear and
homogeneous relation of the type

oy o oV oy
“ oC, G 00, G oC; G oC, 0,
where the coefficients ¢ are constants.

In order that the value of y and the value of z thus obtained may be
simultaneous integrals of the equations

Oy'=G(z,y,y,27), 0"=H (99,2 2),

the four independent constants B,, B,, B,, B, and the four independent
constants C,, C,, C;, 0, must be brought into relations with one another,
so as to leave only four independent constants in all. To indicate these
relations, we can proceed as follows. The equations can be written in the
forms

y=p 7=q
epl= G(:Z‘, Y, p % q)) qu’:H(‘c, Y, D, %, 9)§
a set of four equations of the first order. Here, § never vanishes within the
range allowed to the variable «; and the functions G and H are regular, for
values of #, ¥, p, 2, ¢, in the vicinity of @, B,, B,, (i, C, respectively. By the
existence-theorem applying to such equations, there exists a unique set of
regular integrals

y=B,+B,(z— a)+}Bs(z—a)y+}B,(z—ayf+(x—a) R (z ~a, B, B;, By, B)),
2=0,+0C,(x—a)+}Cs(z—a)+}Ci(x—ayp+(x—a)y S(z—a, Oy, C, C;, C),
p=B,+B;(x-a)+...,
=0+ Cs(z—a)+...,

where the independent constants B; and B, are functions of By, B, Cy, C,,
and the independent constants C; and C, also are functions of By, B,, C,, C,.
To compare with the general theorem, we take

1=A1, -Bz=Az, C1=As; 02=A4,

so that the primitive of the two characteristic equations will be regarded as
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determined by independent arbitrary initially assigned values of v Y, 22
for an initial value of 2. Thus

aa);/ 1+’faA( - )2+%8A (@=aP+(e— “)‘( gggﬁ, 8311; gﬁ)
a%y——w at3 2B (a: ay+i s ‘(w ap +(o— a)4(aR gg;ﬁi Sﬁgﬁ)
'a%= *ao( "")“r*a(* (@—ay+(z— “)4( oA jg;gg Sﬁgg)
= Aggemar+iSge—ars oy (3 + SR OB OR OB

If a linear relation

oy oy ay
7\.152—1+M3A2+7tsac+>\.4 =0

o0,
could exist with constant coefficients A, we clearly must have
0B, 0B, 0B, 0B,
=0, A=0, A7 3C, +7\480 =0, 7&330 +h‘60 =0.

The relatlon
oB; 0B, 0B, 9B,

ac, 3, ~ a0, a0, ~°
cannot be satisfied ; for it would imply that, between the equations
B, = function of 4,, 4,, C,, C,, B, = function of 4,, 4,, C,, C,,
C: and C, can be eliminated simultaneously, and so secure a relation
9(“11’ A,, B, B4)
contrary to the hypothesis, that B, (= 4,), B, (— A,), By, B, are mdependent
of one another. Hence we must have A, =0, A, =0; and there is no linear
%y oy oy oy
0d,’ 04;’ oC,’ aC,’
0z 0z 0z 0z

Similarly, there is no linear relation between 54, 34," 5C,’ 30, and

therefore the expressions, obtained in §189 for  and & stand as the primitive
of the subsidiary equation.

relation between

Property of a pair of integral-sets of the subsidiary equation.

141. Discussion of the geometrical properties and possibilities of the
primitive of the original characteristic equations, especially in connection
with the primitive of the subsidiary characteristic equations, will be deferred
until the general (Weierstrass) weak variations of z, y, 2 simultaneously have
been considered.

There is, however, one analytical property of the integrals of the sub81d1ary
equations which should be established at once, because it will be useful in the
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reduction of the second variation of I to a normal form. The property is as
follows :

If n, and &, 7. and &, be a couple of independent® integral-sets of the
subsidiary equations, then the quantity

(e’ — ’71"72’)f83 + (& — Gimd + & N —"htzl)f;s + ({,’, Ex' -& gzl)fss
+ ("71 &— "h{x) (fzs —fu)

is always constant, whatever independent solutions be chosen ; and 1t is always
possible to select+ two integral-sets such that the constant 1s zero.

We denote the quantity by @: the verification is direct. We form gg,

remembering that the coefficients f,., are functions of z alone. The terms
involving n,", &, n", & are

= ("72"]1” - ﬂl'?z’,)fas + ("lzgln - §1 "72” + t:s"h” -7 2”)f35 + (C‘n’é‘l” -& 2”)f55
= 1o (foam” +fus8”) —m (S 78 +fs8)+ & (S +/fs8)— & (fun’ + fuld").

We substitute forf w +f 35 CIH) f sxs"h” +f " fss"h” +f:<|s s f w5l +f 55 C-all from
the second (the full) form of the characteristic equations in § 139; we

associate, with the result, the remaining terms in g—g ; and we find, after

reduction, 40
Friall

identically. Hence Q is a constant, which may be zero.

If the constant is not zero but equal to m, then m is not a new arbitrary
constant ; it is specific, depending upon the selection of #, and &, 7, and &,.
In this event, we take a new combination #, and §,, ; and {;, where the set
7, and &, is linearly independent both of the set 7, and §, and of the set
n, and &. For this new combination also, @ is a constant which may be zero.
If the new constant is zero, the desired combination is to hand. If the new
constant is not zero but has a specific value n, then we consider a combina-
tion 7, and &, with ny, — mn; and nf, — mé;. Since the quantity @ is linear in 7,
and its derivatives, and also in & and its derivatives, as well as in 5, and &,
the quantity @ for the new combination is equal to

n,m-—m.n,

* The independence means that x7; and k¢ constitute a small variation of y and z, distinet
from a small variation kn and ¢z, in this sense : the three points (z, y, 2), (z, y +«m1, 2+x81),
(z, y +xmg, 2+K82), do not lie in a straight line. Otherwise 7 and «{, would give a small
variation, which is merely a magnification (and nothing but a magnification, without change
of direction) of the variation given by x»; and «{;. Obviously the analytical condition is that
m §2 — n2é1 does not vanish.

+ The selection, moreover, is not unique; but uniqueness is not of importance in the

immediate application.
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that is, it is zero. Thus the required combination can be obtained, from any
two linearly independent combinations having a common integral-set but not
satisfying the requirement.

Manifestly other suitable selections can be constructed out of linear com-
binations of the four sets %, and &, 9, and &, 7, and &, 7, and ¢,

142. A more symmetrical form can be given to the result. Let 20,
denote the value of 20 when =1, and {= ¢, and 2Q, its value when 5 =1,
and C G- Then

"ha /+ L’na—é:—m (St fosCat fusne +fs8d) + & (fosma +fisla+ fosme +f582),
"72301 + é‘zag/ =n(fum+fubi+fam' +ful)+ & (fam +fis& + fusm' + flr)

The two expressions on the right-hand side are equal because Q=0; and
therefore the relation can be expressed in the form

"7137924‘;1%?2 "ka é‘zag
We can enunciate the result thus:

If n, and &, ms and &, be a couple of independent integral-sets of the sub-
sidiary characteristic equations, they can always be selected so as to satisfy the
equation

0, 00 o,
"llm"'&a{ "728 v CZaCI': )
where O, and Q, denote the values of ), when n=19, and {=¢,, and when
n =1, and {=§,, respectively.

143. Owing to the importance of the result, another proof* is given in
establishment of the latter form. As , is homogeneous of the second order
in n,, 77, &, &', and €, is homogeneous of the second order in 7,, 3y, &, &/,
we have

00, 39, 092,

,08) 0%,
Ui% e a CI ac 171 a a7

5 5 5

identically. From the characteristic equations in £, and ,, we have
a_ﬂ,_i(aﬂ) 0o M_d (392)_0

20,
cl a; —,'728 +g23§+ 2

o7, dz\on, 3t  dx\dg )~
0, d /00, aQ, d /00,

0
o dz (am) 0L d= (3é'x)

The foregoing identity, by the use of these characteristic equations, becomes
the equation

d (00, , 802

"hd;(aT?i)""haK gldaf:(aé}) Cz

d (00, o0, N
="72%(5;}7)+"]2 a"h Cﬂdw({) +& 55»

* 1t is due to Clebsch, Crelle, t. 1v (1858), p. 260; he establishes it for n dependent variables.
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that is,
d 09, d BQ
da:( oy c‘ac) dw( f“a:)
Therefore
00, 0Q o0, )
”la_’;";i + Cl ag ("2 a 7 §2 ag] ) = consba.nt,

and the constant may be zero.

If the constant be not zero, we proceed as before. We choose another
integral-set 7, and §,, independent of 1, and {,. For the new combination of
n, and &, with », and &, the constant may be zero ; if it is not zero, we take a
combination of %, and & and mn,+ ny, with m&,+ng,; and we can choose
m:n so that the new constant is zero. Thus there are integral-sets of the
characteristic equations such that

080, 00, 00,
nla l+§!a§ 7’28 7 gﬁagl'

The < second’ vartation.

144. As the first variation of the original integral has been made to
vanish, partly by means of the characteristic equations which determine the
characteristic curve, and partly through the terminal conditions which have
fixed the limits of the integral should these not be assigned by initial data,
the expression for J—1I is governed by the terms in K, which are of the
second degree in x. We have

=:}-x"J®dw+Ks,

where K is the aggregate of terms involving the third and higher powers of
x, and where
0O = fi v + 2f '’ + fow”
+ 2 (four¥ + frwv' + frvw + frww)
+ fot® + 2fuvw + fuu?,

so that @ is the same function of », w and their derivatives, as (§ 139) 2Q is
of 5, ¢ and their derivatives.

The expression for ®, in which the coefficients fu, are known functions of
z because variations from the characteristic curve are under consideration,
and y and z are known functions of « along that curve, can be modified into

a more useful form exhibiting the significance of «* f @dz, often called the

second variation. The character of this modified form is suggested by the
character of the corresponding forms in the case of the former integrals, which
have involved only one dependent variable. A different analytical method
will be adopted, principally to shew that we are not bound or restricted to a

single process.
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Equations for transformation of the variation.

145. Accordingly, we take two variable quantities 5 and {—they will be
identified later with the quantities » and ¢ already used, but the identification
is not assumed initially. Concurrently, we define four quantities a, A, p, 8,
subject initially solely to the relations

7 +an+A=0, ¢ +pun+pBL=0.

Jau' + ol + fan + ful
=1 (fa — &fs — fe) + £ (fou — Ma — Bfw)
=— Ay — B,
if quantities 4 and B are introduced by the definitions

Sat A =afw+#fs5}‘
fu+B=7\fss+stu

Then

Then
Forl +Ful +fan +fauk = (fur’ + full + fan + ful)

=”(f22“afm“#f5+A’—Ad—Bﬂ)
+ &(fu—Nu—Bfes+ B — AN + BB)
=0,

provided we have
Jat+ A'=fo + 2apfu + pife

Jut B’ = a\fs+ (aB + M) fis + pBfis) '

Similarly,
” fss"f"‘fwg’ +f%"7+f45§=“B"7—0§
1
fzs+B=afss +F'fw} .
f45+ 0=7\f35+ Bfw
and then

'+ fol +fum +Ful = (furi + ful +Fum + Fab) =0,
provided we have
Sut+ B =arfu+ (aB +2p) fis + I"sts} )
Sut O =Nfo + 2MBfs + Bfy

But the equations which have been obtained are, in fact,
o2 d (an) —0

on de 577
20 d /30 '
o~ (o) =
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They hold, provided the equations
f23+A=af83+l"f35
_ﬁu +B =7‘fss+ﬁf35
fzﬁ +B=afss +.uf55 ’
fw + C =)‘f35+lsf55
Jo+ A’ = fs+ 2oufo+ Wi fs
Sut B =M+ (aB + ) fos + pBfis)
Fut O =2fy + 20Bfu + Bfss
are satisfied. Taking these equations as equations of definition, we at ouce
infer that the quantities 5 and ¢ which have been introduced, are in fact the
original quantities # and ¢ which arose in connection with the small variation
of the characteristic curve. Moreover, we have
S =—dn-BL fp=—Bn-0t
which are derived from the foregoing equations.
Thus there are, in all, nine defining equations, viz.
(i) the two initial equations ' +an+A§=0, {' +un+BE=0; and
(ii) the seven later equations, involving 4, B, C, 4’, B, C";
and there are, in all, nine initially unknown quantities, viz. 5, &, a, A, p, B,

A, B, C. Consequently the equations are potentially sufficient for the deter-
mination of the unknown quantities.

146. It has been proved that the quantities n and { satisfy the subsidiary
characteristic equations; and, so far as the analysis has been concerned, they
can be any integral-set of those equations. But we can now prove that all the
quantities «, A, u, 8, 4, B, C can be expressed simply in terms of two
integral-sets #, and &, 7, and &, which satisfy the relation (§ 142)

00, 00, 00, 00,
’7151?+§1 5t -"72’5617'*'?2'3?1,-

With two integral-sets 7, and &, 7, and {,, if the equations can subsist for

both sets, we have

7)1'+a771+7\'§1=0} gl,"‘l“h"'ﬂtx:o}

7y +an,+ A8 =0 & +pn+ BL=0
and therefore, if

H

P= "71§2 - é‘lﬂz:
so that p is neither zero nor a non-zero constant, we have

pa= time — N
PN = N1’ — M 72
PH = CICZ' 154

pB=1s & —m&
giving the values of a, A, p, B.

>
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S 20
o, _ _ e Bp —C
aTl,_-Am B¢, T By, - Cg :
00, _ aQ, C
E]‘Z—‘A"h Bé'a 3{ B"h {2

and therefore
0,

o0
—pd = Cz ;= Cl an

aQ 00,
—PB M=a—7 a 7~ M an >
80, [’

-pB = {2 a: -& @

80, 00,
—pC—-m? = 5

the two values of B being equal, because of the relation which connects the

two integral-sets u, and ¢, 7, and &,. These values have to satisfy the seven
relations which involve 4, B, C, 4’ B, C.

We have
o0, 0Q,
me—é‘zm + & W—P(ﬁs*“‘l)

= p%fu+ pufss
=fsa (CI"?Z, - ;2’71') +fsa (tl & - §2Cl,)7

which, on substituting the two integral-sets in
o0 , ,
o =fu' +ful + fun + ful,

is satisfied identically. Again, the relation

Ju+ B=afy+ ufs,
similarly treated with the use of

00,
=8 s aé, Ez 5 é‘l
is satisfied identically; and so for the other two relations, involving B and C.
Next, we have
_ 00, 00, .
PA= b ~ by
and therefore

L 00, 20, |00,
pd'+pa =g 1L () cgdw(aﬂ)ma, b5
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Now
%%l =fw"71’ +fas§1, +fzz"h +f2¢§1
=(f22 — afs — /"fm) Mt (fou— Mo — ﬁfss) &
=(4a+ Bu—A")Ym+(Ar+ BR-B)&;
and
P~ (da+ Bu— A) m+ (40 + BB~ B
Therefore )
20, oQ, ’
& . §2ﬁ=—(Aa+B/J,—A )p-
Also
65 (3B - gl (At BE)+ & (4ni+ BE)
=—A4 (Cll”lz - gzl"?l) -B (Cllgs - gx Czl)
=—p (48 — Bu);

and thus the right-hand side is equal to
p {4’ — A @+ B)
But

P =nl + &' -l —Lind
= —n (pm + BE) — & (am + M) + 72 (um + BL) + & (am. + AG)
=—(a+8)p;

and so the equation, which involves 4, is satisfied identically. Similarly for
the other two equations, which involve B’ and C” respectively.

Thus all the equations are satisfied by the values of a, A, g, B, 4, B, C,
when these respectively acquire the values expressed in terms of the two
independent integral-sets o, and &, 7, and §,.

Normal form of the second variation.

147. With these values, we have

e+ ?d%v (4v* + 2Bvw + Cw®) = A,
where
A = fuv + 2f v w + frsw™
+2(futA)w+2(futB)w' +2 (fu+ B)vw +2(fs+ O)ww'
+(fat+ ANV +2(fu+B)rw+ (fut O w?
= fu (v + av + 2w)? + 25 (v + av + Aw) (W' + pv + Bw) + fis (W' + pv + Bw)*;
and the values of a, A, g, 8 are known. The limits of the original integral

have been fixed by the terminal conditions connected with the vanishing of
the first variation; and therefore v and w must be zero at each limit, that is,

Av® + 2Bvw + Cw?
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vanishes at each limit. Hence

fAM:[{@ +%(Avﬁ+2va+C’w’)}dw
=f®dw+[Av2+2Bm+ Cu]

- j ® do.
Consequently, the second variation of the original integral is equal to
e f Ads,
where A has the foregoing value. The coefficients a, A, g, 8 in the arguments
of A are such that
7'+ am+)~§1=0} §1’+/"’71+BC1=0}
7 tam+AG=0]" & +un+BL=0

where 7, and §;, », and {,, are two independent integral-sets of the subsidiary
characteristic equations such that

00, 29, |, |00, 20,
3171' ’ 3172' atll ’ agzl
M 7 L, &

=0.

In order to assure a maximum or a minimum for the original integral, J Adz

must have a steady sign (always negative or always positive) for all possible
variations, and must not vanish.

Discussion of second vardation : Legendre test.

148. If A could be sometimes of one sign and sometimes of another in the
range for different variations, we could make f Adz acquire the former sign
by choosing zero variations for that part of the range where A could have the
other sign; and we could make f Adz acquire the other sign by choosing zero

variations for that part of the range where A could have the first sign, With
those possibilities, the second variation could be made negative or positive
by choice of small variations: a result to be excluded. Hence A must always
have the same sign through the range.

That the quantity A may be of uniform sign, whatever values the
arguments may acquire, the quantities f;; and fi; must be of the same sign,
and fy fss — fo? (the quantity which has been denoted by ) must always be
positive ; for :

Sl ={fau (V' +av+Mw) + fos (W + pv + Bw)} + (frsfss —fo) (W' + pv + Bw)’,
SosB = (frsfss—fosd) (V4 av + Aw0)* + { fus (v + av 4+ Aw) + fis (W' + pv + Bw)?}.
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The sign of A is then the same as the required common sign of f; and fis
throughout the range. If f;f;—fi* were negative, a variation, making
either of the quantities

Ju (V' +av+Aw) + fos (W' + pv + Bw), fu (v + av + Aw) + fi (' + pv + Bw),
equal to zero, would make fzA or f;;A negative; while a variation, such as
W' + pv + Bw = 0 or such as v+ av + Aw =0, would make f;;A or f,;A positive.
These opposing contingencies are to be excluded.

If fufis —fu? =0, a possibility that still requires f;, and f;; to be of the
same sign, then there are the two types of small variation which make A
vanish ; and for such variations, the second variation of the integral vanishes.
It would then become necessary to consider variations of the third order and
of the fourth order of the integral for those particular small variations. If the
original integral is to have a maximum or a minimum, the ‘third’ variation
for those small variations must vanish and the ‘fourth’ variation must then
be definitely positive or definitely negative. As the possibility belongs to a
special condition and the general analysis is elaborate—too elaborate to be
set out, for the truncated generality of condition that remains—it will be
excluded from current consideration, and can be discussed in any particular
problem where it occurs. We shall therefore assume that f;; f;; — fi? does not
vanish along the range of the integral; and therefore, for the present purpose,
JaJs — fos? must be positive.

Thus the (Legendre) test has the form: the quantities f;; and fy must
have the same sign throughout the range, and fifu —fu? must be positive
throughout the range*: if the common sign of f, and fi is positive, a
minimum for the integral is admissible through the characteristic curve: if
that common sign is negative, a maximum is admissible.

The Jacobi test: conjugates.

149. It remains to consider the arguments of A, distinct from the
limitations upon the coefficients fis, fis, fis: because these arguments admit of
wide diversity, owing to the arbitrary character of the regular functions
vand w. We now take the limits of the integral to be fixed, as having been
determined in the discussion of the first variation; so that » and w vanish at
the lower limit and vanish at the upper limit also. These arguments are

v+ av+ 2w, W'+ pv+ Bw,

with values of &, A, », B that have been obtained: or, when these values are
inserted, they are
P and 9 -
"71?2""72{1 'ﬂlé'z— 2§1
* If fasfes > Sfas% then f33 and fy; must have the same sign. The statement is made as in the
text, in order to leave the actual sign of fa3 and fz; in more direct evidence.
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where
po| v, v, Wl gm| W v, W),
I ’71’: T, ;‘l tl/, M, tl
"72,) M2 :2 ;2’; M2 ;‘2

and where the quantity #,{; — 7., does not vanish in the range.

So long as p and ¢ do not vanish together—and, of course, simultaneous
zero values of » and w through the range are excluded for the present aim-—
the quantity A remains of uniform sign. But A would vanish if p and ¢
could vanish simultaneously—a contingency to be excluded: and this could
happen when

V= pm + 0N, W=P§x+0'§2,
where p and o may be functions of x, if
mp' +m0'=0, &p'+ &0 =0,

that is, if p’ and o’ both vanish so that p and o are constants. Now » and w
are to vanish at the lower limit, while x5 and & represent the variation to a
consecutive characteristic curve. For the present purpose, we take any such
consecutive curve to begin at the same point as the original curve now under
examination; hence, at that lower limit, we can take p7, +on,=0 and
pli+al,=0.

If, after passing that lower limit, pn, + o, and p§, + o, can again vanish
simultaneously within the range or (what is another mode of stating the same
possibility) if the range of integration should extend as far as (or further
than) the first succeeding value of x where p7, + o7, and p§, + of, vanish,
then we have a possible variation v=pn, + on, and w=p{, + o§,, such that
(i) v and w vanish at the lower limit and at the upper limit, (ii) v and w are
variations that are not zero, and (iii) p and ¢ vanish along the whole range.
Then we should have A=0 throughout the range for a certain non-zero
variation ; and we could not assert the existence of a maximum or 2 minimum
for the integral. Accordingly, the contingency, which admits this result,
must be prevented: that is, it must not be possible to have a variation
& (pm+on,) and «k(pf, + of;), vanishing at the beginning of the range and
also at the end of the range (or earlier than the end of the range). Such a
variation represents change to a consecutive curve: and the vanishing of
such a variation can take place only at an intersection of the original curve
and the consecutive curve; hence the range, beginning at any point of a
characteristic curve, must not extend so far as the first point of intersection
with a consecutive characteristic curve drawn so as to meet the original
curve. Such a point of intersection (if any such point exists for one con-
secutive curve among all the consecutive curves that can be drawn) is called
the conjugate of the original point which marks the lower limit of the
integral ; and consequently we have the third (Jacob:) test for the existence
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of a maximum or a minimum:—the range of integration, beginning at any
point on a characteristic curve, must not extend as far as the conjugate of that
initial point.

‘We proceed to construct the analytical expression of this limitation upon
the range of integration.

Property of a fundamental group of integral-sets: covariantive function.
160. We write

58%[) %, aa_:‘i:, %)=¢1 (x)’ ¢2($), ¢3($)i ¢4(.’D)1

A N @ @) %@, V(o)

so that ¢, (z) and . (z) (for r=1, 2, 3, 4) constitute an integral-set of the
two equations

fssﬂ”+fsn§” = (fez —fml) n-— fssl "II + (fu —ful) §+ (fzs "fu —fasl) C’}
Jun"+ [l =(fu=F) 0+ (fu—Ta—F) 0+ (fu—Ffi) E— fut )
Let

W=|d(2), (@), (@, ¢u(2) |;
Yi(@), VYe(2), Ys(z), Yu(x)
&' (2), ¢/ (@), &' (), &/ (2)
W' (@), Y (@), Y (@), ¥/ (2)
then
dW &1 (@), $e(2) , bs() , pu(2) ¢1 (@) , $(2) , $5(7) , bu(®)
L 4@, %@, @ @) || 9@)  Fe@) s Y@ @)
¢ (@), " (), (@), (@) | |/ (@), ¢ (@), ¢/ (2) , . (2)
V' (@), ¥ (@), ¥’ (@), ¥ (2) ¥ (@), ¥ (@), ¥ (@), ¥ (=)
The two characteristic equations, on being resolved for ¢,” () and ¥»,” (z) as
values of #” and §”, give

04’?‘" ("”) = (_fss’fss +f35f35, _f:ufss +f25fss) ¢r, (-Z')
+ linear terms in ¢, (z), ¥ (2), ¥ (%),

H‘P‘T” (x)= (_fssfss/ +fssf35, 'fzsfss +f34,ﬁm) "’r' (37)
+ linear terms in ¢, (z), ¥, (2), ¢, (),
where 6=/fy fi—f'. When these expressions for ¢,”(z) and " (z), for
r=1, 2, 3, 4, are substituted in the two determinants in the foregoing value

and

for ﬂ, we have |
dz |

6%0 == £ fu+ fufs = FufutTuf) W
+ ("faafu’ +fsafsn' "fzaf:s +f&4fsa) w;
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and therefore

0V __ow,
dz
that is,
OW=A,

where A is a constant. The Legendre test is to be satisfied; thus @ is
positive through the range of the independent variable., Again, the quantities
¢, (z), for r=1, 2, 3, 4, are linearly independent, so that there is no identical
linear relation along them; and likewise there is no identical linear relation
among the quantities Y. (z), for r=1, 2, 3, 4. Now constants k can always
be chosen so that, if

n =k (@) +ks (@)+ksbs () +Eids (2),

§ =k (2) + ks (2) + ks ¥rs (2) + bas (2),

0 =k b (2) + by b, () + ks b5’ (2) + ks S (),
7, &, v vanish for any assigned value of . But

k' (@) + ke Wy (@) + ks i (@) + ki (),

being &', cannot vanish for that assigned value; because then the differential
equations would require #” =0 and {” =0 and, by successive differentiations,
would make every derivative of 5 and every derivative of { vanish for the
assigned value. The quantities  and ¢, given as expansions in the vicinity
of the assigned value, would then vanish everywhere in that vicinity—
contrary to the property that the set of quantities ¢, (x) and the set of
quantities . () are, each of them, linearly independent among themselves.
Hence W cannot vanish within the range; and therefore the constant A is
not zero.

151. Further, this property does not depend upon any particular choice
of integrals ¢, and Y, (for r =1, 2, 3, 4) of the subsidiary characteristic
equations. If any other complete set n, and {, (for r=1, 2, 8, 4) be chosen
so that

N = G 1 (2) + Cra 3 (%) + Crs b5 () + Cru s (ﬁ)}
& =Y (&) + SV (%) + CraYrs (@) + e (x) ’

where the determinant D (cy,, s, Css, Cu) must be different from zero, we have

w (n &)= W (¢, "I")D (Cu» Cos Cs35 Caa)s

OW (n, H)=4',
where the constant A’ is not zero.
The determinant W is, in fact, a covariant for a fundamental system of
integrals of the subsidiary equations.

and therefore

Note. We have the corollaries:

(i) The functions ¢, (2), bs (%), s (), b4 () cannot simultaneously vanish,
nor can the functions ¥r, (), ¥r: (%), Vs (%), ¥y (4) simultaneously
vanish ; and
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(ii) The derivatives ¢, (2), ¢s (), s’ (%), ) () cannot simultaneously
vanish, nor can the derivatives ¥/ (z), ¥ (z), ¥ (@), ¥/ (@)
simultaneously vanish.

Critical function for the Jacobr test.

152. We take one set of integrals of the characteristic equations

Th= b, ¢1 (w) +b, 4’2 (x) + bs ¢3 (w) +b, ¢4 ("B) = zbr ¢r (-77)%
& = b1y (2) + by, () + by s (1) + by () = Zbp Y, (2) '
and determine the constants b,, b,, b;, b, by the conditions that
’71 = O) ;1 = OJ 7’1’ = X Wo; CII = Ox

at &=, where A is an arbitrary constant, and W,,= W (a,), is the value
at @, of the function W (of § 150) which nowhere vanishes. Then

Shedr (@) =0, b (2z)=0, b, (@)=AW,, Sby,(2)=0;

consequently
b =2 { ke’ (20) + ks’ (20) + ks (=)},

— by =X {ks i’ (20) + kars’ (@) + ks ¥ (w0)},
by=n {kﬂ‘l'll (o) + ka s (20) + k) (20)},
—by=x {kss ‘I"ll (o) + kg ‘l"z’ (.1:0) + ke '\P‘s’ (:1;0) },

where
b1 (@), o (@), Ps (%), bu (@) || =K, ks, Koray Foas, Ko, Ko
H V(@) V(@) Ya(@m) V(@)

We take another set of integrals of the characteristic equations J

N2 =C1¢hy (%) + Caths (2) + b5 (2) + C, by (@)

2= Y (2) + e () + Vs (2) + i (x)} ’

and determine the constants ¢,, ¢,, cs, ¢, by the conditions that

m=0, &=0, »'=0, &'=—uW,

at # =, where p is an arbitrary constant. The set of integrals 7, and ¢, is
manifestly independent of the set of integrals #, and ¢,. Then

26"¢1‘ (‘TO) = 0: 2cr‘l"r (‘”0) = O: 201' ¢rr (mo) = 0, Zcr'\l"fr, (.'L’o) =—p W0 5

consequently

a=p{ Fsatpy (20) + kuaths’ () + knp (20)},
—C=p {k:u ¢1I (-Z’o) + k‘“¢3’ (a;o) + ]c]3¢" <xo)},
e = p {hasy’ () + ke b’ (25) + ks (o)}

— o= p (s ) (20) + s (20) + Fero s () J.
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We write

A (x, 2)=]| ¢, (@), @2 (@), s ("‘%)» b (@)
V(@) Ya(z), Vs(@), V()
(), d.(2), ¢s(2), ¢4 (2)
@), ¥u.(@), V¥s(2), Yi(2)
= kirg (20) Koot () + Foag (20) Bva () + o (20) oas (2)

+ Forg (0) Foos (2) + Kooy (26) Foy () + Koy () Koo () ;
also we write

Wo= W (w0) = koralyy + oglyy + by by + Ferelos + Fogylyy + loguls,

&’ (wo)’ ¢2’ (o), 4’3, (x0), ¢'4’ (@)
v (m), ¥ (), Vs (20), Y (w0)
Then we have

m&—&n.= {Eb, b (m)} {zcr"pr (x)} - {Ebr"!"r (@)} {20r¢7' (‘”)}'

On the right-hand side, the terms, involving by, ¢, s, ¢,, ¢, (2), Y1 (), s (@),
V¥, (x) alone, are

where

= lu, 113’ lu: lzs, lm, lu-

(5102 = by1) {1 (=) Ve (@) — Y (@) ¢s (2)}.
$1(2) Yo (2) — Y1 (%) ba (7) = Ka ()

Now
and
- 73—# (bata—bscy)
= {ksa e (@) + ks’ (o) + k¥ (o)} {isay” (o) + ke b’ (20) + Fous b ()}

— {kosy &by (@) + b by (@) + Foas &/ (‘”n)}{ku‘l"l' (@) + kq ‘P’s’ (@) + k:s‘h' (o)}
= kﬁl (kadllﬂ + k'ul'u + kldl% + le3l + k%lll) + (kﬁxlcﬂ - knkm) l34’

kegelers 4 FogyFooy + Kooshery =0 ;

But

and therefore
1
~ (5165~ bs0y) = kg, () W

The other terms can be arranged in similar groups, five in number; and the
final form of 79, &, — 7.8, 1s ‘

=18 = — A Wo{ley, () Bsy (20) + ... + by () Koo (o)}
=—AuW,A (2, z).
The function A (=, ) vanishes when z=2,; let x, be the first value of
greater than z, for which it vanishes, so that
A (zy, ,)=0.
Then the quantity u,{ — #,&, which vanishes at the initial value «, of # and 3
is not identically zero, afterwards first vanishes for a value , of .
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153. Now consider a variation » and w, such that

v=pn+ 0N, W =P§1 + 0,
where p and o are non-zero constants. At z =, we have
v=0, w=0, v=p\, W =—op,
where pA and ou are non-zero constants; thus v and w constitute a non-zero
variation of the characteristic curve. If it is possible to have a consecutive
characteristic through the initial point x,, meeting the original again in
the subsequent point , (or, if there be other points of intersection, in the
first subsequent point which will be denoted by «;), then at that point
we have
v=0, w=0.
Because p and o are not zero, we have, for z = a,,

m&—n4=0,

A (@, 2,)=0.
But the range of the characteristic curve, when it begins at x,, must not
extend so far as the conjugate of that initial point, that is, not so far as the
limiting position of its intersection with a consecutive characteristic through
%,. Hence the range of integration must not ewtend so far as the value =,
where z, 1s the first root of the equation A (zy, )= 0 which is greater than x,.

We thus have the analytical expression of the geometrical limit, which
restricts the range along the characteristic curve to lie within the conjugate
of the initial point.

Note. One assumption has been made tacitly—that, if 4, be the con-
jugate of an initial point A,, no point can be chosen in 4,4, so that its
conjugate shall also lie in 4,4,. The justification of the assumption will be
deferred until the discussion of the variations which allow variation of z as
well as of y and 2.

and therefore

Sumanary of tests.
1564. The results thus far obtained for special variations may be sum-

marised as follows, when an integral f Sz, y, ¥, 2, Z)dx is to possess a

maximum or a minimum:

I. (a) The variables y and 2, as functions of z, must satisfy the two
characteristic equations

L-4@)-0 L-2@H-

oy dx\dy 0z d=z
and quantities 7 and ¢ must be determined as the primitive of the subsidiary
equations
@_i(a_ﬂ)=0 @9_1(32)=0
on dxz\oy’ > 9¢ dz\oY’ ’
where () is a homogeneous quadratic function of %, %', &, &'
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(b) The primitive of the characteristic equations is of the form
Y=o (@ 4, 4,, 45, A)), 2=+ (2, 4,, 4,, 4,, 4,);
and the primitive of the subsidiary equations is
7= 01 (2) + ag bz (2) + a3 (2) + 2y b, (),
§=ayn (@) + a2 (&) + a9y () + 2,y (),

where ¢, (w)=a§:4L and (a;)=;—A‘I’—, forr=1, 2, 3, 4.

II. The quantity

Of O _ ( af )2
0y'®0z*  \9y'o7

2
must be positive through the range of integration, the common sign of aa—{

2
and gz—!: (persistent through the range) being positive for a minimum and
negative for a maximum,
III. The range of integration, beginning at a value x,, must not extend

along the characteristic curve as far as the coniu ate of x,, this conjugate
g jug: juga

being determined by the least value of x;, greater than x,, which is a root of
the equation

A (@, m) = ‘ (@), $2(20), bs(z), bu(m) |=0.
V1 (20), V. (mo): Vs (), Vs ()
(7)), ¢e(@), ¢u(m), b4 (21)
(@), Yao(@), ¥ (@), V(@)



CHAPTER V.

INTEGRALS INVOLVING TWO DEPENDENT VARIABLES AND THEIR FIRST
DERIVATIVES: GENERAL WEAK VARIATIONS.

THE METHOD OF WEIERSTRASS.

155. We now proceed to consider the effect of general weak variations,
under which z, ¥, z are subjected simultaneously to small arbitrary variations,
so that they become @+ «u, y + v, z + «w respectively. The quantities z, y,
are now made functions of a new independent variable ¢, which is supposed to
increase throughout the range of integration; w, v, w are arbitrary regular
functions of ¢, so that they (as well as their derivatives) remain finite and con-
tinuous over the range. Denoting derivatives of &, y, z by @, @s, ..., %1, %2, -+,
2y, 2y, ..., We have

Let the integral f f(= 9, ¥, 2 2') de, when transformed, become

I= fg (%, 4, 2, 21, Y1, 2) A,
where
9(-”; .7/, Z, xla yl) Zl) =w1f(‘”} 3/; ."/', Z) Z’).
156. Now this function g satisfies a single permanent identity, whatever
be the form of the function f (and therefore of g), because g involves six
arguments, while f involves only five. We have

W_, 0 _nd

0z %0y @ 0z
og _of 9 _o

é_‘yl = a_yl ) é_z_l - av—zl )
and therefore
9 0, ,0
xlaxl + ‘%33/1 +2 3%, =xf=y,

the identity in question.

It can be obtained also as follows, the method leading to other relations.
As there is nothing to specify any requirement concerning an independent
variable, we may substitute any other variable 7' for ¢; and then, if

- dt = pdT,

where u may be variable or constant, so that

d dy dz
(ﬁv':”"xl) W=F‘yh d—T=/"zlx
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we have
dz dy d
g (m) :‘/’ z, d'_;n d_gn d_;'> dT:g ('”1 y; Z2, &y, 3/1, zl) dt)
that is,
L t g (‘Ic) :% 2, F'wl) F’yly HZ]) = /J'g (x) :% Z’ wl, yl) zl)'
e
0
a_wlg(w: Y, 2, %y, %, zl) =0 ($, Y, % &, Y, zl);
0
a_ylg (J/', Y, 2, &y, %, zl) =92 (‘7’" Y, 2, &, Y, zl))
0
a_zlg(wr Y, 2, T, Y, zl) =s (w’ Y, 2, &, Yy, zl);
then

9:(2, Y, 2, pmy, wy, p2n) = 91 (2, 9y, 2, @1, Y1, 2,),

9: (2, Y, 2, paey, pyy, k) =gs (2, y, 2, 2, Y, 2),

9: (@, Y, 2, pry, pys, p2) = gs (2, ¥, 2, @, Y15 21)-
Various corollaries may be derived.

(1) The first derivatives of 9, Viz. g1, gs, gs, are unaltered when «;, %, &
are multiplied by any quantity u, variable or constant (but not zero). In

ds =1; then

particular, let u F7

dw ’ d , dz
Ml=d—-s=x, F’?/l=£=y’ ;LZl:d-—s:Z_

“Hence the first derivatives of g are unaltered when we make the arc-length
s to be the independent variable, so that
91 (w: ?/, Z, wl: yl’ zl) = 91 ($, 3/, Z, ‘7",) y’: Z’);
and similarly for g, and g,.

(ii) In the equations for 9 G, 925 9, let w=—1; then if the simultaneous
change of sign of #;, y,, 2, does not affect any radicals, we have

9 @Yo —w.—p,—2)=—g (2,9, 2 @, 4. 2),
gr(a"; Y, % =&, — W, — zl) = gr(w; Y, 2, 2, %, Zl)’
forr=1, 2, 3.
(i) Let u=1+¢, where ¢ may be constant or variable ; and take the
expansions, in powers of ¢, in the relation
y(ﬁx :'/; 2, %1y ﬂyn l“zl) =,“9 (x! .% 2, &y, ,?/11 Zl)-
When the coefficients of e are equated, we have

% ., 9% . 9 _
xla—‘z‘l+2/18—%+zlazl—9,

the identity satisfied by the function g.
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Relations among second dertvatives of the subject of integration.

157. This identity (as in the earlier instances in § 51 and § 105) gives rise
to certain relations among the second derivatives of g with regard to its
arguments, one set of them being necessary for use almost immediately.
When we differentiate the identity partially with respect to #,, ¥;, 2, in turn,

we have
Tgnt+ Y19t 2ags= 0,

TG+ hntagds=0,
x Gis + %gss'i'zxgw:(),
where differentiations with respect to @, 2, ¥, %1, 2, %, are denoted by sub-
seripts 0, 1, 2, 8, 4, 5, so that
o’y _ 2y o9
gu= ox?’ Jis = awlayl y Jis= 371321 ,
and so on.

These three equations shew that all the six derivatives can be expressed
in terms of three of their number, or in terms of three independent quantities.
Thus, if we write

In = Ay12212 y G = Bz2x? G5 = Cw;”yx” }
Jss = lezylzl» In = G-zlyx2211 iz = 1{'14'1,%312 ’

we have
A+H+G=0,
H+B+F=0,
G+F+0=0.
Selecting appropriate trios, we have
A=B+C+2F B=C+A4+2G C=A+B+2H
-H=B + F;, —-F=C + G}, —G=4 + H
-G= C+ F -H= A+ GJ —-F= B+ H

Also we have

—2F=B+C-4
—-2@=C+A-B ;,
~2H=A+B-C ]

together with relations
BC—-F:=CA—-G@=AB—-H*
=3 (2BC+2CA +24B — A*— B — (?).
One case (§ 156) arises by taking
z=t ®m=1 n=y, a=7.
The critical conditions in the Legendre test (§ 148) were that g and g, should
have the same sign while gy gss — gs* should be positive: that is, the quantity
BC - F*
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must be positive. In the circumstances, it is clear that A, B, C must have the
same sign; but this condition is not sufficient to secure all the foregoing
tests, and there is the additional condition

2BC + 204 +24B > A*+ B: 4 (.
We shall return, later (§ 162), to the relations among the second derivatives,

First variation of the integral : characteristic equations : terminal conditions

168. Let J denote the value of the integral, when a small variation is
effected upon z, ¥, z, so that

J=/g(w+ «U, Y + &0, 2+ kw, & + cuy, Yy + Koy, & + rw,) dt
=I+«l,+ 30l + K,

where «I, and 3«1, are the respective aggregates of terms containing the
first power alone of x and the second power alone of «, and where K is the
aggregate of all the terms involving the third and higher powers of «. The
“first” variation in J — 7, viz. «1, governs the value of J — I, unless 7, actually
vanishes. If 7, does not vanish, J—I can be made to change its sign by
changing the sign of «; and the integral I could not then possess a maximum
or a minimum value. It is therefore necessary that, if I is to have either
kind of value, the quantity 7, shall vanish, and that it shall vanish for all
arbitrary small variations, We have

((,%9,,%., . % 3 3 og
I, = (ua;+va1—/+w$+u, +v,aTy:+w,7l)dt

oz, 0
_|,99 9 , o9

o[l fE-a G -G G+ -2 )]

where the terms in the first line are to be taken at the limits,

Consider, first, variations which vanish at the upper limit and the lower
limit alike: for them, I, consists solely of the integral in the second line in
the last expression. Then, the functions u, v, w are arbitrary, and they are
independent of one another ; and for all such functions, the integral (being the
value of I, for these variations) must vanish., Hence we must have

E _og d (Bg)_o

*T 0z dt\om/)
_@_E(a_g =0
Yooy dt\ow/
=% _4a g\ _
27 0z %(371)—0
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For, if they did not vanish, we could choose u to have the same sign as E, or
the opposite sign, » to have the same sign as E, or the opposite sign, w to
have the same sign as E, or the opposite sign; and the freedom of choice in
each selection is unaffected by the choice in the other selections. Such choices
could make I, positive or negative at will, a result that is excluded; hence
the choices must not be open, though u, v, w remain arbitrary: that is,
E,, E,, E, must vanish separately.

Next, for I, consider a small variation, which is zero at the lower limit
but not necessarily zero at the upper limit. The integral in I, now vanishes,
owing to the equations E,=0, £,=0, E,=0. Hence, in order that I, may
vanish, we must have

. ,% . .,%_
at the upper limit. If the upper limit be fixed by assigned data, the require-
ment is automatically satisfied because u, v, w then vanish. If the upper

limit be not thus fixed, then the relation

ag_'_v?g_'_wa;q

“ow " oy o0m

provides a condition or conditions at that mobile upper limit.

Similarly, by considering another variation which does not vanish at the
lower limit, we must have
%9 4,9, ,%_
LP R kel i
at the lower limit. The requirement is automatically satisfied if the lower
limit be fixed by assigned data, because u, v, w then vanish. If the lower

limit be not thus fixed, then the relation

o9, ,% % _
u8x1+vay1+w8zl_o

provides a condition or conditions at that mobile lower limit.

We thus have two kinds of requirements, necessary and sufficient to
secure that I, shall vanish for all weak variations. Firstly, the equations

E,=0, E,=0, E,=0

must be satisfied everywhere in the range of integration. Secondly, the
relation
%9 499 , 99 _
“amf”éEJ“wazl‘O
must be satisfied at the upper limit and at the lower limit, separately, for all
admissible variations. The second set of requirements will, directly or in-
directly, determine the limits of the range of integration when they are not

actually fixed by the assigned data.
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Accordingly, we shall now consider the limits as known; they will no
longer be subject to variation, when further Investigations (in particular,
concerning the transformations of I,) are being pursued.

The three current equations are called the characteristic equations. They
determine , y, z as functions of the independent parametric variable ¢; and
we shall assume that these functions are analytic. The elimination of ¢, if
desired, gives two relations between z, y, 2, free from the unessential variable z.
By either form of primitive, a curve, usually a skew curve, is determined :
1t is called the characteristic curve.

Continuity of certain derivatives through free discontinuities on the curve.

159. One property of the function 9, the extension of the property
(8§ 47, 102) possessed in the case when there is only a single dependent
variable originally, can be established. It is as follows :

In passing through a free* point, where a discontinuity in the direction of
the characteristic curve occurs, the quantities

9 9 g
O’ dy,” 0z,
are continuous in value.

With the same notation and the same figure as before (l.c.) to consider
the integral near such a discontinuity at a value 7T in the range between
t and ¢,, we take a variation of the characteristic curve, such that u =0,
v=0, w=0 along #t, and also along ¢. The arc of the curve (though not
the direction of the arc) is continuous in the range &, %, so that we may
assume

U=@E=0@E-t)P), v=>—-)FE-t)V(EF), w=(t—0) (E—t) X (1),
where @ (¢), ¥ (£), X (t) are regular functions of t, which do not vanish at 7

and otherwise are arbitrary. In the range 1% and indefinitely near 7, we
denote the values of the derivatives of g by

@), G G2,

in the limit as ¢, approaches 7T’; and, similarly, in the range #,7 and in-
definitely near 7', we denote their values.by

( 1) ( ) ( ])
a$ - ’ ay; — az —_ ’
in the limit as t2 a.pproa,ches T.

The integral I, is to vanish for all small variations, and therefore for the
foregoing variation. Between % and &, the contribution to I, is zero, because

* That is, a point which is not fixed by assigned data.



232 THREE CHARACTERISTIC EQUATIONS [cH. v

u, », w are kept zero in that part of the range. Between #, and #,, the con-
tribution likewise is zero, for the same reason. Thus

e[l [ S G B G - G

o9 () 29917 o9 og 9915

+ [“a—ml”a—y%*'wé?l]tf [u5é}+”8—32+wa_i]r'

Now I, must vanish. The integrals vanish, because the characteristic
equations are satisfied everywhere along the curve. The part, outside the
integral and taken at the limits ¢ and 7' of the portion ¢,T of the range,
vanishes at ¢, but not at 7'; and the part, outside the integral and taken at
the limits 7 and ¢, of the portion Tt of the range, vanishes at £, but not at 7.
Hence we have

) )+ orl) o (), D). oon () -0

Now wup, vp, wp are arbitrary functions; they are independent of one another;
and, because the place 7' is free, ur, vy, wr are not required (by assigned
data) to vanish. Hence the equation can only be satisfied for all such
arbitrary functions, if

().~ @), G-~ G).-G.

being properties which constitute the continuity of the three derivatives in
value, on the passage through the free point of discontinuity in the direction
of the characteristic curve.

The three characteristic equations are equivalent to two.

160. We note at once that, in virtue of the identity satisfied by the
function g, the three characteristic equations in § 158 are really equivalent
to only two independent equations.

When the complete derivative of the identity

09 4 29, %9
xla_éb':+ ylay, +Zlaz]—g
with respect to ¢ is formed, we have

d (% d (o9 d (og a9 3 dg
“’”*m(a)*y*zt(a‘y)*Zld‘t(a)+%ax1+%ay1+”=az

-%
T dt
_, % . % % %, 9%, 9.
—-’171%"'3/1@*‘51824'%3%+yzayl+zzazl:
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and therefore

B+, Ey+2,E,=0,
a result which establishes the statement.

But, owing to their convenience in the subsequent analysis, the three
equations B, =0, E,=0, E,= 0 will be retained for use.

Further, when the three characteristic equations are combined with the
identity satisfied by g, the fact that they are equivalent to two equations
can also be indicated as follows. We have

B3t - (52)
=&1gu+ Y19 + 2106 — (Brgo + N1 + 2101 + Bagn + Yagis + 22915)
= %1 (Gos — J12) — 21 (s~ Jos) — o1 — Yo s — ZaGis;
and therefore
@ By = 2,3, (9os — 912) — @121 (Gs— Jos) + 23 (Y1915 + 21016) — 1Yo G1s — T2 220015
= (@91 (g = g) — (@ %~ 2:5) 915} — {#:2: (Jue— Gos) — (210 — 23,) G}
Similarly

nEy= {12 (95— 9is) — (Y122 — ¥22)) Fas} — {€1%1 (Gos — r2) — (@92 — 22,) G}
and

2B, = {25, (g ~ gus) — (212 — 2.m) g5} — {321 (92 — 9s) — (122 — 4221) Gss}-
Thus, again, we have, on addition,
2B, +yE)+2,E,=0.
Also, because E,=0, E, =0, E,=0, there is a quantity I" such that
912 (9 — 9u) — (1% — Y221) g =T
2,2, (G — Gos) — (218 — 2,2, ) g =T} ¢
Y1 (Joo — gm) — (#1192 = T2 9) G =T
relations which can be written in the form
281 {ga — gos — B (2,92 — 1122) + Q (212 — @1 2,)}
=21 {9 — g + P (2.9 — 1h25) — R (2,2, — @, 2)}
=421 (g — Ju)-
Ez. Shew that the two characteristic equations of § 134 are

1

o {2121 (941~ gos) = ¥121 (925 — 9a3) —~ (21 22— 2341) g1+ (122 — Y221) a5} =0,

1
7 {2191 (903 — g1) — 9121 (92— Ju3) — (%192 — Z91) G134 (91 22— Y221) Fas}=0.
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Primitive of the three characteristic equations : subsidiary equations.

161. The three equations E,=0, E, =0, £, =0 are equivalent to two
independent equations when combined with the identity satisfied by the
function g. Their primitive is of the form

$=x (t+ ay al; a2’ as; aA)

y=¢ (t+ a, o, a3, Os, ad) ’

=Y (t+a, ay, 05, 03, Q)
where a, a;, a,, 5, a, are arbitrary constants, one of them obviously occurring
as additive to ¢ because ¢ does not occur explicitly in the characteristic

equations. The constants ay, a,, o5, @, in the primitive are essential ; but a is
merely incidental.

These equations are satisfied identically (for all values of the arbitrary
constants) when =, y, z are substituted ; and they remain satisfied when the
arbitrary constants are changed. Let these be subjected to small variations,
50 as to become a + ko, a, + xa, (for r=1, 2, 3, 4), where o, a,, a,, a;, a, are
themselves arbitrary; and let the consequent small variations in z, y, 2
change these variables to  + «£, y + x7, 2 + k¢ respectively. Writing

ox 0¢ ©
X @ $ O ¥, or X, 32,

O 60, o0, for X, 22 T em1 0,8, 0);
we have
4
E=ay' (t) + El a,xr (t)
n=ad'® + % 0, ()
E=ay )+ 2 ot (t)‘
Further, we take
0, O =x ()b (©) — ' () X+ (t)}
% O=x OV O—¥ Ox- @)
forr=1,2, 8, 4 We now form combinations of % and £, { and &, such that
Y=a9—y,E=a,6, (t)+ a.0,(t) +as0; (t) + a,0,(t)
Z =28 ~ 2,E = ;N () + 25 (8) + @35 () + 0, (t)} ’

the arbitrary constant a’ no longer occurring in the magnitudes thus
selected.

With these changes effected upon the variables z, g, z in the equations
E.=0, E;=0, E,= 0, the actual characteristic equations remain the same.
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Thus the changed form of X, is still equal to &, and the same holds for
E,and for E,. We write

20 = g8+ gun*+ Ju b + 290 En + 290, EC + 29um¢

+ 290 EE" + 290 En" + 290 EC

+ 29unE + 29n 1’ + 29n8’

+2908E + 29580 + 29,588

+ €%+ gun® + 9587 + 201 E 7 + 29 E' + 2950'Y’;
and we note that ¢ does not occur explicitly in g, so that the change of a into
a + xa’ does not affect g in the small variation except in so far as it enters
into the expressions for £ 5, { Then the changes in the first derivatives of
g with respect to z, @, ¥, %1, 2, 2, make them become
Bg BQ 9g 0

BE —' + IC@ s
ag o) og 0Q
@4_”81]’ ay1+ 87)”
og 0Q 99 o0

+x ac +Ica§,,

respectively. The three cha.ractemstlc equations are unaltered by these
changes: hence

e )0
"=aag gt (g?) =0
Be= 38(; gt (Z?> 0

These three equations, which clearly are linear in &, », £ and their deriva-
tives and are of the second order, are called the subsidiary characteristic
equations. Their variables £, 5, { are such as to keep = + «§, y+«n, 2+« as
integrals of the original characteristic equations. Moreover, we have

B+ By + 2 E,=0;
and therefore

(@ + k&) (By + cEp) + (92 + km) (By + kE,) + (21 + £8,) (B, + xEg) =0,
where only terms of the first order in « are to be retained. Thus

e Be+y. B, +2,E; =0,
so that the three subsidiary equations are equivalent to only two independent
equations. Accordingly, this relation must be satisfied unconditionally, what-
ever forms be given to the coefficients gyy.

In place of the three equations, we shall substitute two independent
equations having Y and Z as their dependent variables; but, in order to
secure guidance as to their form, we shall effect an initial modification in the
expression of the ‘second’ variation in our integral I.
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The ‘ second’ variation : first modified form.

162. Since the ‘first’ variation I, has been made to vanish, thereby pro-
viding the characteristic equations as well as terminal conditions which settle
the limits of I, the governing magnitude of J — I is the ‘second’ variation

3«® f ®dz, where
BO= g,u”+ gyut?+ gu + 20UV’ + 2gy0'w’ + 2950w’

+ 2gnut + 29Ut + 295 uw’

+ 250U + 29500 + 2900

+ 29, wu’ + 29wy’ + 29 ww’

+ GooU? + g ¥ + G + 290uv + 2gpuw + 2g,,vw.

It will be noticed that ® is the same function of u, w’, v, ¥/, w, w as 2Q is
(§161) of £, £, 7,9, ¢, ¢'. In both of them, it is assumed that the values of

, y, 2z, which are determined by the characteristic equations, are substituted
in the coefficients gim.

It has been pointed out (§ 157) that the six coefficients gu, gss, ssr G1s» 15> Jas
can be expressed in terms of three quantities initially defined by means of
some selected trio among them. No preferential dependence is accorded in
the foregoing analysis to a selection of two of three variables z, y, z over the
remaining variable. But as convenience can emerge from a choice of y and z,
because we then recur to the earlier analysis of §§ 130-—154 on making z =t,
we shall select gy, gs, gs a8 the three quantities of reference for the six
coefficients. We take*

Iun=22P, gu=a’R, gux=x°Q;

and then the other three coefficients are expressible by the relations

Ju=—onP— 2R

Ju= - nyp R—z2Q}.

gu= y:P+2y.zR+272Q

In order to obtain the first modified expression for the second variation I,
we take a quantity
T = Au®+ Bv* + Cw* + 2Fvw + 2Gwu + 2Huy,

where 4, B, C, F, G, H are functions of ¢ at our disposal. As the limits of
the integral I now are fixed, the quantity T vanishes at each limit, because
u, v, w vanish separately at each limit.

* It is easy to verify that
*f o%f o*f
a'—y,g=31’ y i—iy'—az'=xlsR’ ¥ it )
8o that, when z=t, the quantities P, R, Q are the critical quantities which arise (§ 148) in
the discussion of the special weak variations.
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With these values, the terms in ® of the second degree in o/, v/, w' are,
together, equal to
P (2,9 — o'V + 2R (2,0 — ') (50 — y,0) + Q (20’ — fu' )
Accordingly, let 7 and W denote the quantities
V=zjv—yu W=zw-—zu,
8o that
V=2 — v + 20— you
W =z, — 2,4 + 2w — z,u } ’
We proceed to choose the coefficients A, B, C, F, G, H in the quantity T, so
that, if possible, we may have

0+ Q=PV”+2RV’W’ +QW"

& +2KVV' +2LWV + 2MVW' +-2NWW'+ DV2 4+ 28VW + EW.
163. In order that this relation may hold, the coefficients of the various
combinations of u, ¥/, v, v/, w, w’ must be the same on the two sides,
(1) The coefficients of terms of the second degree in «, v, w’ are the same,
because of the expressions for gy, gs, gss, i3> Gas» Jase
(1) In order that the terms in (u, v, wlw, v/, w’) may be the same on
the two sides, we must have
9+ C = Qz,z, + 22N
9+ B = Pxyz, + 22K
9+ F = Rayx, + 2L
9us+ F = Rz, + o2M
ga+ G =— Qz,2, — Ry — oy, L — 2,2, N
o+ G =—Qu, 2, — Ry, — 2y, M — 2,2, N
gn+ H=— Py,zy— Royz, — 2,5, K — 2,2, M
9us+ H=—Pxy, — Ra,2, — o K — oz L
Intd= Pyy.+ R(p2+9.2) + @22,
+y K+ 2 (L+ M) +2°N |

(ii) In order that the terms of the second degree in w, v, w may be the
same on the two sides, we must have

Iu+C =Qx? +2z,2, N + 2E
9u+ B =Pz + 2,2, K + 22D
gu+F' = Ra? + gz, (L + M)+ 228
Ju+ G =— Qu,2,— Ry, — 2y, L — WM~ (22,4 2,2) N — oy, S— a5, B I
9w+ H' = — Pryy, — Rayz, — (2,9, +2) K — 210, L — 2y 2, M — 20,90 D — 2,2, 8
o+ A" = Py?+ 2Ry,z, + Q22 + 2y, y, K + 22,9, L + 2,2, M + 22,2, N
+4:2D + 2y, 2,8 + 22K J
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Here, there are fifteen equations in all; and they contain thirteen
unknown quantities 4, B, C, ¥, G, H; K, L, M, N, D, 8, E. One of the two
equations, involving F in the set of nine, can be removed if we retain

925—943=$12(M_L):
one of the two, which involve G in that set, can be removed if we retain
Gos— Ja = Q (2.2, — #:2) + B (4122 — 2, ) — 2 %h (M — L) ;
and one of the two, which involve H in that set, can be removed if we retain
Jos—gIn= P (3/193'2 - -’171%) + R (2,205 — ,2) + 42 (M- L)
But any two of these retained equations are satisfied in virtue of the third,
because of the two fundamental and independent characteristic equations as
given in §160. Hence the total of fifteen equations must, in number, be
reduced by two units in counting the tale of independent equations. Thus

there are thirteen independent equations, potentially sufficient for the deter-
mination of the thirteen unknown quantities which occur linearly.

164. For convenience, all the fifteen will be used in the reductions, account
being taken of those which ultimately are independent, viz. six out of the first
set of nine, together with the one retained equation, and the six in the second
set. In another aspect of the aggregate of equations, we may regard the set
of nine as defining quantities 4, B, C, F, ¢, H and leaving one relation, free
from these quantities so defined : the other set of six, together with this one
relation, can (after substitution for 4, B, C, F, G, H) be regarded as deter-
mining the quantities K, L, M, N, D, 8, E.

It is, however, unnecessary to resolve the equations, and obtain the explicit
expressions for all these quantities A, B, ...: provided the one aim of the
investigation is the construction, explicit and complete, of the final normal
form for I,. This form is obtained, in terms of the quantities P, R, @, and
in terms of the integrals of the subsidiary characteristic equation. Moreover,
the primitive of this subsidiary equation is derived from that of the character-
istic equation. Thus the actual knowledge of these quantities 4, B, ... is not
required for the construction of the normal form; it is ancillary to the con-
struction of an intermediate form, which itself is of transient importance.

The process adopted in the present case is, in fact, a fusion of the two
processes in § 52 whereby, first, a form
dr

Puw?+ Guw*+ r

was constructed for ®; and, next, a form
z \* d ,
P (wl—;w) + 5 (T+ Hur)

was deduced.
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If these separate processes were desired in the present case, the first stage
is attainable by keeping the expression for 7' (on p. 236) as simple as possible;
for example, we could take

K=0, N=0, M+L=0,
initially.

The actual method adopted is more direct than the amplification of the
earlier double process. Moreover, it has the added advantage that it can be
extended, without further change, to the case of any number of dependent
variables.

The three subsidiary equations reducible to two, with modified variables.

165. Next, we modify the form of the three subsidiary characteristic
equations, of which the full initial expressions are

Bi=gnt+gun+gul+gnE +gun +gul

— 3 (GaE+ gan + Gal 4 gul + gur +gut) =0,
Ey=9gnk +gun + gl + gul’ + gun’' + gusl’

- O%(goa€+ymn+gﬁt+ymf’ +9u7 + 98) =0,
B¢ =guk + gun + gul + 9u &' + gon' + gust’

- dit (o€ +gun+ 9l + g€ + gun’ + gst') = 0.

In the first place, these three equations are equivalent to only two inde-
pendent equations (§ 161) in virtue of the relation
lef + ?/1E.. + ZIE( = 0:
which now will be verified.

Partial differentiations of the identity satisfied by g give relations

og

e Z1Go + Y1905 + 219055
0

‘% =&ga + hgn + 419,

9%
3z =90+ Y195+ 2195-
When the first of these identities is differentiated with regard to ¢, we have

100 + Y192 + 21901 + ZoGor + Y2 Gos + Z2G0s

=Ty Qo1 + Y2Gos + Z2Gos + TG’ + ylgos"*" 21905
and therefore

1 (Joo— go') + %1 (goe— Gos') + 21 (gos — 905 ) = 0.
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Similarly from the other two identities, we have
@1 (goo— ') + 31 (g = 9%) + 21 (9s — 9) =0,
%y (Jos = Gos) + %1 (9s — 925) + 21 (Ju— 94') = 0.
In virtue of these three relations, the coefficients of £, of 9, and of ¢, in
@ B¢+, B, + 2, E; vanish separately.
Again, we have obtained the relations

Tign + Y1+ 2191=0,

g+ Yign+ 29s=0,

g+ s+ 2195 =0.
In virtue of these, the coefficients of £”, of ", and of &, in &, B¢+ y, B, + 2, E;
vanish separately.

Next, differentiating with regard to ¢ the first of the three relations just
quoted, we have

-’1"1,911' + ylgxs' + Zlgls, + Zogn+ YoGis + 2:9:=0;
and therefore
wl!]n’ + 0 (gls' + Gos — !]21) + 2z (915, + Gos — 941)
=Y (gos - .921) + 2z (gos - 941) — ZeGu — Y2913 — 2215
=11 (Gos — Gu) + 21 (gos — ga1) — (¥ 2P + 2,5, R+ 2°Q)
+ Y. (wlylP + -TIZIR) +2; (ﬁlle + wlle)
=0,
because of one of the fundamental characteristic equations as they are stated
in §160. Similarly, from the second and the third of the foregoing relations, -
we have
2, (g1 + 9= —9u) + 3/1933' +2,(9s + s —9s)=0,
& (gw, +9a— 905) + (9351 +9s "gzs) + ngssl= 0.
In virtue of these three relations, the coefficients of &, of 7/, and of ¢, in
2 B¢ + y, E, + 2, E¢ vanish separately.
Consequently, we have
xlEf + ylEv) + ZJ.E( = O.
166. We therefore need retain only two (out of the three) subsidiary
characteristic equations. We select the second and the third, and proceed to

change their expressions, using the variables ¥ and Z (already introduced)
instead of &, 9, {, with the definitions

Y=“"1")—yxf, Z=wl§_zlf)

Y=z -y +an—y.E
Z'=x,8 — 5 +m§— 2E ’

so that
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where it will be noted that, if u=§, v=7, w=¢ then V=¥, W=2, the
quantities that occur in the modified expression for ® + c_(li%’ in § 162.

Substituting the expressions given for the various coefficients 9m 1n B,
we have
98"+ gun’ + 9ul’ = — (2.3, P + 2.2, R) €' + 2Py’ + R’
=& {P(an ~9.8) + R(@{ - )

=z {PY'+ RZ’' - P (29— 9:£) — R (2t — 2,)},
and

€+ gun+gul=—(HE+ By + FE)— E(Payy, + Rz,2, 4+ 2,3, K + @2, L)

+ 9 (Paiz, + 2,2K) + { (Ray @, + 2,2L)
therefore

g€+ gum +gul+ g€’ + g + gl

=—(HE+ By + Ft) 4+, (PY’ +RZ'+ KY + LZ).
Again,

gmf'+gm"7'+gu§'=-(HE""B’I'+F§/)—f'(P.%wz+R21w2+w13/1K+w121M)
+ 7' (Pry@y + @ K) + ¢’ (Ray @, + 23 M)
=—(HE + By’ + FY')

q +(Pxn+w1K)(¢1"l/— l'/lgl)"'(Rmz+-771M)('”1g,—zxf,))
an

9n + 9un + gul=—(H'E+ B'n+ C'¢)
—E(Payy, + Raszo+ oy K + 2o K + 2,0, L + 22, M
+@h D+ 22, 8)
+ 9 (P + 22,2, K + 22D) + ¢ (Rao? + a, a0, L +z,4, M + 2,°8)
=—(H'E+B'n+0¢)
+ Pz, + 2, K) (mn ~ 4, £) + (Ray+ @, M) (z,¢ — 2§)

' +($2K+$1D)(wzﬂ‘%§)+('”2L+‘”IS)($1§—31£)5
therefore

€+ gun + 9ul+ 9nE + gun’ + gut’
=_dﬁt(gg+31,+og)+x,(PY'+RZ'+ KY +LZ)
+2(KY' + MZ' + DY + 8Z).

Substituting these values in the subsidiary equation £,=0, and removing
a non-vanishing * factor z,, we have

Ey=%(PY’+RZ’+KY+ LZ)—(KY'+MZ' + DY + 8Z) =0,

* As z varies uniformly through the range and ¢ increages throughout the range, z, can only
vanish for isolated places at the utmost.
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Proceeding in the same way with the subsidiary equation E¢=0 and
again removing the non-vanishing factor z,, we have

Ez=%(RY'+QZ' +MY+NZ)—(LY'+NZ'+SY+ EZ)=0.
We therefore take
Ey=0, E,=0,
being two independent equations, as the modified form of the subsidiary
equations. Manifestly linear and of the second order, they can be regarded

as determining ¥ and Z as functions of ¢; because the seven quantities K,
L, M, N, D, S, E, do not involve £, , ¢, that is, do not involve ¥ and Z.

One selected integral of the two subsidiary equations.

167. One important property, in the form of an integral of these two

simultaneous equations, will prove useful in the further reduction of ® + (Z'

to its final form. We write
23 =PY"?+2RY'Z' +QZ"
+2KYY' +2LZY'+2MYZ' +2NZZ + DY? +28YZ + EZ?,

aT
dt
is of V and W; and then the two subsidiary equations Ey =0 and E,=0 can
be written in the form

og_d (3_13):0 o0_d (9_5_)_0

oY dt\oY’ * 9Z dt\oZ')
As each of these two equations is linear and of the second order, their complete
primitive giving the expression of ¥ and Z—to its expression we shall return
later (§ 170)—is compounded of linear combinations of four linearly inde-
pendent sets of integrals Y; and Z,, Y,and Z,, Y, and Z;, Y, and Z,. The
property in question is that there exist two sets of integrals Y, and Z,, Y, and
Z, (where Y, and Z, are either one of the other three sets, or are linear com-
binations of them in the form

Y=Y, +eaYs+eY, Z.=cZ,+cZ;+ ¢ Zy,
the coefficients ¢ being constants) such that, if (I, and [, denote the values
of [ when Y, and Z,, and Y, and Z,, are substituted for Y and Z, the relation
o0, , 00y _y 00, , o0k
Yoy, t4oaz = Yor Yoz
is satisfied ; and the choice s not unique.

where it will be noticed that 2[7] is the same function of ¥ and Z as © + ——

The quantities [J, and [J, are homogeneous and quadratic in their
respective arguments, and they have the same coefficients ; hence the relation

aDﬂ taD2 aD? /aD"'_ aDl 'aDI aDl /a[]l
YIAY Y‘aY’+Z‘ +Z1 o7, YzaY +Ygay,+z_aZ +Z) - o7,
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holds, the two sides being equal to the same expression lineo-linear in each
set of arguments. But

ggz =d£t(g%> dag' =dt %?)

w-alr) 7-a62)

and so the relation can be written

(5904 95 219,

Hence

o, o, oh ol
YlaTzz+Z1—aZ7_ <Y2 ay:"f‘lsaz ) k:

where k is a constant. As Y, and Z,, Y, and Z,, are individual and not general

integrals of their equations, £ is a specific (and not an arbitrary) constant.

If k is zero, for a primarily selected pair of sets ¥, and Z,, ¥, and Z,, the
property is established for that pair.

If k is not zero, take another pair of sets ¥, and Z,, ¥, and Z,, where Y,
and Z; are not a linear combination of ¥, and Z,, ¥, and Z,. Then, in the
same way, we find

00, 0 Ds olh al:h)
Yov, t 45z (YsaY;*Z"aZ =4
where [ is a specific constant.

If [ is zero, the property is established for the pair of sets ¥, and Z,,
¥; and Z,.

If I is not zero, take a set of integrals

Y, =lY,-kY,, Z,=12,-kZ,
so that ¥, and Z, are not merely ¥, and Z,, nor merely ¥, and Z,, nor merely
Y, and Z;. Then

ayy oYy ~ a9y’ "oz oz oz’

owing to the linearity of the first derivatives of [Jy, [Js, [J, in their argu-
ments. Then we have

o0 o0, _ al:h oCh

Yoy, * %5z, = Yoy, t %oz

establishing the property for the pair of sets ¥, and Z,, ¥, and Z,.

Manifestly the property is not unique; because we can make ¥, and Z,
take the place of ¥, and Z, as a set of integrals, and we still have the sets ¥,
and Z;, ¥, and Z,, to associate with Y, and Z,, with the new ¥, and Z,, and
with one another.

For our immediate purpose, it is sufficient to possess the relation for two
distinet sets of integrals of the equations.
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Final normal form of second variation.

168. We now can proceed to the final form of the quantity @ +%1. In

connection with any set ¥ and Z of integrals of the subsidiary equations, we
introduce quantities a, 8, v, 8 which satisfy the two relations

Y +a¥Y+9Z=0, Z'+BY+8Z=0,
these relations, as they stand, being insufficient to define the four quantities.
Then
PY'+RZ + KY+LZ =(K - Pa-RB)Y +(L — Py— RS) Z,
KY' + MZ'+ DY + 8Z=(D - Ka—MB) Y +(8 — Ky— M8) Z;
RY' + QZ' + MY + NZ= (M—-Ra—QB) Y+(IN — Ry—Qd) Z,
LY +NZ' +8Y +EZ=(S —La—NB) Y +(E — Ly~ N8§) Z;

and the subsidiary characteristic equations £y =0 and E; =0 are satisfied if

K= Pa+ RB
M= Ra+QB
L=Py+RS
N=Ry+Q8
D =Ka+ MB=Pa?+2Raf + QB ’
S=Kvy+Ms
= La + NB = Pay+ R(ad+ By)+QB6

E=Ly+Ns=Py+2Ry5+Q®

where it will be noted that the apparently different values of S, viz. Ky + M8
and La + N, agree.

Thus far, the relations hold for any set ¥ and Z of integrals of the sub-
sidiary equations. But a single set is not sufficient to define the quantities
a, B, 7, 8. Accordingly, we take two independent sets ¥, and Z,, ¥, and Z,,
and associate both sets with these four quantities, the association not affecting
the values of K, L, M, N, D, S, E. Then we have

Y/ +aY,+9Z,=0 Z'+BY,+8Z,=0
Y, +aYg+p,zg=o}’ z,'+BY2+3zg=o}’
so that
a _ oy _ B _ ) _ 1
z.Y, - Z,Y, Y, Y/=Y.Y, ZZ' -Z,%Z' Y, Z -Y,Z] Y.Z,-Y.Z’
where Y,Z,— Y,Z, is not zero, because the two sets of integrals ¥, and Z,,

Y, and Z,, are independent, in the sense that Y, and Z, are not merely the
same constant multiples of ¥, and Z,.
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The original characteristic equations are known to be satisfied in con-
nection with the quantities K, L, M, N, without this assignment of values.
The subsidiary equations are satisfied in connection with the additional
quantities D, S, E, as well as K, L, M, N, without this assignment of values.
All that has been done is to assign values to K, L, M, N, D, 8, E, associated
with two independent sets of integrals ¥; and Z,, T, and Z,. Now we have
seen that any two independent sets of integrals ¥; and Z,, ¥, and Z,, are
such that
0[], 900, o0, oCh
Y, a—ﬁ/'i' Z, 'az, - (Yam, + Zz—a—z-l'/) =k,
where k is a specific constant, and that an appropriate choice of two sets can
be made so as to secure that the specific constant is zero. Now

=Y\ (PY, '+ RZ/ + KY,+ LZ) + Z,(RY, + QZ/ + MY, + NZ,)
- Y. (PYY+RZ'+KY,+ LZ)~Z,(RY, + QZ/' + MY, + NZ,)
= (Y2, - Y,Z)(L - Py— R%)— (Y. Z,~ V,Z,) (M~ Ra— QB).
Thus the values assigned to the various quantities, in particular to L and M,
require a zero value for the specific constant value of the left-hand side; and

consequently the two sets of integrals ¥, and Z,, ¥, and Z,, of the subsidiary
characteristic equations must be chosen (as they always can be chosen) so that

v, 20

o), _ v, o[ o[
oy, t oz = Vw4
With these values now made definite for K, L, M, N, D, S, E, we have

0+ _ prai RV W 4+ QW

dt
+2KVV' +2LWV' +2MVW’' +2NWW’'+ DV*+ 28VW + EW:*
=P(V+aV+qWyr+Q(W +8V+8W)y
+2R(V' +aV+yW) (W' + BV + W)

=(yz._lﬁja{1? VvV, V, W[P+Q| W, V, W
e Y, Y, Z zZ, Y. z
YSI! YD’ Z2 Zﬂ’ ) Y'Ey Z2

+2R| V', V, W|| W, V, W=,
Kl) Yl; Z:l Zl’ » Yl ’ Z) i
Y;’ K’ ZZ Za’ > Y2 s Zs !

which (with the foregoing limitation on the selection of the sets ¥, and Z,,

Y, and Z,) is the final reduced form for ® + %’
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The expression for T is
T=Au*+ Bv*+ Cu? + 2Fvw + 2Gwu + 2Huv
=~ {gn? + gu¥® + g + (g5 + Jua) YW + (G + Gos) Wit + (Gos + gmn) uv}

P V+RW . RV +QW
m zv—ypu, V, W +YZ3 Y.Z, I w—2zeu, V, W
LA A /SN A A
},721 ’ YZ; ZZ I Z2’ ’ Yz» Zs
But Zf dt =[T], taken at the limits. The limits have been settled by the

conditions deduced from the first variation of the original integral I, so that
u, v, w (and therefore ¥ and W) vanish at each limit; and thus % dt=0,

between the limits. Thus the second variation of the integral has become
equal to

e fU dt.

Primitive of the subsidiary equations.

169. This reduction of the second variation of J manifestly depends upon
a knowledge of the quantities ¥ and Z; and the significance of the normal
form depends upon properties of two independent sets of integrals. The dis-
cussion thus requires a knowledge of the primitive of the subsidiary character-
istic equations.

Now these subsidiary equations arose from the original characteristic
equations by the consideration of varied values z + «£, y+ 7, 2+« of 2, y, 2,
these values still satisfying the characteristic equations; and the values of
€ n, ¢ were derived (§ 161) from those of «, y, z in the primitive of the
characteristic equations. By means of these quantities, two other quantities
¥ and Z were constructed, such that

Y=a9—9,E=0,0,(t)+ .0, (t) + a;0; (t) +a,0, (t)}
Z=at - nE=aN0)+a% @)+ 6% 0+ e’
where a,, a,, 4s, 0, are independent arbitrary constants. Also, ¥ and Z satisfy
the linear equations |
o0 _d 8|:]) -0 O d (8[])
oY " dt (BY’ T 9Z T dt\oZ’
the primitive of which is constituted by a set of values ¥ and Z, involving
four arbitrary independent constants linearly. Clearly 6, (f) and 9, (£), where
r=1,2,3, 4in turn, are a set of integrals; if, then, these four sets are linearly
independent of one another, the foregoing expressions for ¥ and Z constitute
the primitive of the subsidiary equations. We proceed to establish this linear
independence.
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170. The primitive of the characteristic equations is

z=x({t+a, a,,a,a)

y=¢ (t+a a, o, a, m)}’

z=Y(t+a a, a, a, a,)
where the essential constants are a;, a,, a;, a,. The constants are determinable,
by the assignment of initial values to , y, z and of initial values to «/, ¥/, #';
but as the variable ¢ is not specific and any function of ¢ may be taken in its
place, the initial conditions become precise by the a.ssignment of an initial

value { to 3—5 (= %) and an initial value m to — (— = }, as well as of values

b and ¢ to y and 2, when z=a, and t=4¢, In thls form, the primitive of the
characteristic equations becomes

y=vy(z b, 1, c, m)

z=z(xb,1, ¢, m)}.
The set of essential arbitrary independent constants a,, &, a, a, is expressible

in terms of the arbitrary independent constants b, /, ¢, m, by means of four

independent equations
a=0w.(b I, ¢, m)

a=wy(b, !, ¢, m)

ay=aw,y (b, I, 0, m)|

a,=w,(b, I, c, m)
As the four constants in each set are independent, these functional forms are
such that neither of the Jacobians

J(aU a,, O3, a4) J( b, lx C, m )
br l; ¢, m ’ Q;, Az, A3, Ay ’

Now the quantities le—z and Z—i, derived from the second form of the

vanishes.

characteristic integral, must have the same values as those derived from the

first form; hence

dy _¢' () _vQ®

dz ' (t)’ da: X @
Again, from the equivalence of the two forms, we have

oy _dyodx 0Oy ob oy dl Oy dc , oy Im

oa, - dz da, ' 0b oa, ' 0l oa, ' Oc day | Om day’
for r=1, 2, 8, 4; and therefore

8, (t) = x(t)ﬂ ¢<t>

oy ob ay az oy dc | oy am}
X ® {ab oa, *ta oa, * 3¢ oa, tom oa,



248 PRIMITIVE OF THE SUBSIDIARY EQUATIONS [cH. Vv
Similarly, proceeding from the equation in z, we have
N 1 ) O
%=X O g0 ¥ O 5,

, 0z0b 0z ol 0Ozoc oz aml
=X O s 51 5+ e o

Now if there were a linear relation among the four quantities 6, (¢) with

constant coefficients, and a linear relation among the four quantities %, (t)

with the same constant coefficients, of a type

4 4
2 My er (t) = 0: p NO'S'r (t) = 0;
r=1 r=1

such relations would have the forms
ob ol om _

W, 0 s O dys 9 Oy

26 2Hr 50+ 50 50 T 5 2”'8ar+87n2#"9;,—0’
0z ob oz ol oz 0 0z om
%Eﬂra—&r-l-a—l2#187;+872#g'%+%zﬂ¢a=0.

But these have the form of linear relations, with constant coefficients, between
the set

dy oy oy oy
b’ o’ o’ om
together, and the set
0z 0z 0z Oz
b’ 9l’ B¢’ om
together; and it has been proved (§ 140) that no such linear relations exist.
The foregoing apparent relations must be evanescent, so that the constant

coefficients must vanish ; hence

ob ob 0b ob
1 5ar +,u23;2+ 350 +I‘4a—a4~— 0,

ol ol ol ol
#18—%+Msa+ﬂsa+#4a—%*0,

oc oc oc oc
Fagy +F'2372 +/"s’3;s +/-‘4a—a;—0,
om om om om

”123_m+”25072+#3873+#48_a4=0' |

The determinant of the coefficients of the constants u,, g., ps, py 18
J ( bli,ec,m >’
0y, Ay, O3, Oy

which does not vanish; and so these equations can only be satisfied if

/»"1:0’ /"2=0; /-‘3=01 ,‘"4=0-
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Consequently, there is no linear relation between the integrals 6, (¢), 6,(t),
8; (t), 0, () with constant coefficients, and there is no linear relation between
the integrals %, (2), 9, (), 9 (), 3, (£) with constant coefficients.

Hence the primitive* of the subsidiary characteristic equations is

Y=a,0, (t) + 2.6, (t) + 1,6, (£) + a6, (t)}
Z=a; (1) + a;,9, () + a5, (8) + a,, (£)
where a,, a,, a,, a, are independent arbitrary constants.

Clearly 6, (¢) and %, (); 6,(t) and Y, (2); 65 (2) and O (2); 6,(£) and ¥, (£);
are four sets of integrals, each linearly independent of the others.

Note. In connection with the deviation from the characteristic curve for
integrals involving only derivatives of the first order, it was pointed out
(HNote, § 52) that an apparently arbitrary representation of the variation was
taken by including only a quantity

w=2,9— YU
(which measures the normal deviation), and ignoring or omitting a quantity
U+ Y v '
(which, measuring the tangential slip, does not alter the shape of the curve).
And it was seen that, in the reduction of the second variation, this omitted
quantity cannot enter when w is retained—that, in effect, w gives the whole
of the small variation which need be retained.

The same considerations occur in the case of skew curves. There is an
apparently arbitrary representation of the full expression of the variation, by
retaining only the quantities

Y=z79- nE Z=at-2§
and by ignoring any tangential slip along the skew curve. The justification
of the result emerges in the same way as the justification for the simpler
instance. Solely for the passing purpose, we take the arc of the characteristic
skew curve for the independent variable; and we resolve an arbitrary small
variation «§, kn, «{ into three reciprocally perpendicular components, giving

a displacement «7 along the tangent, a displacement :c;l—) v along the principal

normal, and a displacement x%B along the binormal. Then we have (with

the customary notation for the direction-cosines of the principal lines of the
curve at the point)

kE=a'kr + pa'x % v+p (Y2 —2y") icfl—’ B,

* The primitive of the subsidiary characteristic equations has been deduced from the primi-
tive (supposed known) of the original characteristic equations. If, however, only a special set of
integrals of the latter were known, the subsidiary equations would have to be integrated, leading
to the same primitive.
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that is,

E=ar+av+ (Y7 - 2Y') B;
and, similarly,

w=yry (& = £,

t=2r+2"v + (@Y —ya")B.
Hence

Y=dn-yt=(y —ya)v—p7,
Z=4¢-7E=(2ad — z’.z'”) v+ By".
The second variation has been proved to be expressible in terms of ¥ and Z
alone—that is, of » and B alone (were these selected, to the ignoration of 7)—
by means of expressions, into which 7 could not then enter. The apparent
ignoration of the displacement, due to a tangential slip, is justified alike in
analysis and significance.

Property of fundamental sets of integrals of the subsidiary
characteristic equations.
171. The subsidiary characteristic equations are
PY"+RZ' = -PY+M—-L-RYZ +(D-K)Y+(8-L"Z,
RY"+QZ"=(L—- M-R)Y — QZ +(S-M)Y+(E-N)Z,
and they are satisfied by the four linearly independent sets of integrals
9,(t) and N, (¢), for r=1, 2, 3, 4. We have
PRQ-B)Y'=—{QP+R(L-M—-R), Y +{Q(M~L - RY+RQ}Z
+ terms in ¥ and Z,
(PQ-RBRY2'= {(P(L-M—-R)+RP}Y' - {R(M-L-R)+PQ}Z
+ terms in Y and Z.
01 (t) » 02 (t) H 08 (t) H 0‘ (t) i
Sl(t) > B‘A(t) y N (t); SA(t) |
0/ (@), 6/, 6@, 6/
(@) @) N, W@ |

Denoting

by J, we have

To100. 60, 66, 60O |+ 60O, 6O, 6O, L0

M@, %@, %E), %@ M@, %@, %@, %)

6."(t), 6:"(®), 6,"(t), 6./ () 6@, 6:(t), 6;(), 0/(t)

@, %@ W@, YO WO %O N V@)
When we substitute for 8,”(¢) (that is, for Y”) its above value in the first

determinant on the right-hand side, and for %,” (¢) (that is, for Z”) its above
value in the second determinant there, we have

(PQ-B) Y - QP+ R(L—M—-R)J—(R(M—-L—R)+PQ}J
- —(QP' + PQ —2RR) J.
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Hence

(PQ-RYJ =4,
where 4’ is a constant.

The sets of integrals, 0, (f) and 9, (¢), for r =1, 2, 8, 4, are linearly inde-
pendent, so that no relations of the form
Zp.0, (t) =0, Eﬂ‘rsr (t) =0,

where p,, p,, py, p, are constants, can exist; hence J is not zero. Next, it
will appear that, if a maximum or a minimum is to exist for our integral,
the quantity PQ — R* must always be positive and may never vanish within
the range. Hence A’ the product of two non-vanishing factors, cannot be
zero. Thus

(PQ-R)J=4",
where A4’ is a non-vanishing constant.

Clearly A" will be a specific constant, depending upon the specific
selection of the four linearly independent sets of integrals. Any four linearly
independent sets of integrals are linearly expressible in terms of any other
four linearly independent sets; thus

4 4
Yo=2cn0:(t), Zpn= 32 cur D, ®,
r=1 r=1

for m=1, 2, 8, 4, where the determinant V of the coefficients c¢,,, is not zero.
The determinant J of the quantities ¥, and Z, is equal to the foregoing
determinant J multiplied by the non-vanishing constant factor V : that is,
J=JV. Thus the determinant J is covariantive among the four linearly
independent sets of integrals.

Corollary. Moreover, as the quantity J is not zero, the following inferences
hold :

The four quantities 8, (¢), 8, (£), 65 (¢), 8,(t) do not have a common root in
the range of the variable ¢, nor do their four derivatives; and, similarly, the
four quantities N, (£), Y. (£), 5 (¢), ¥, (¥) do not have a common root in that
range, nor do their four derivatives.

Discussion of the second variation : the Legendre test.

172. The second variation of the integral I has been expressed in the

form }«? {Udt, taken between fixed limits; and, here,

U=P(V'+aV+BWrR+Q(W +yV+3W)
+2R(V' +aV+BW)Y(W +4V +3W),
with the values of a, B, ¢, 8 which have been determined. As the limits

are fixed, %, v, w (and therefore V and W) vanish at each limit: subject to
this property, the quantities V' and W are arbitrary regular functions of .
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If the original integral I is to provide a maximum, then in general we must
have jU dt negative, for all variations; and, owing to the arbitrary character

of ¥ and W, this requirement can be met only if U is negative for all varia-
tions. If that integral is to provide a minimum, a similar argument leads to
the conclusion that U must be positive for all variations. If it could happen

that J'Udt is zero, without V and W being everywhere zero, the second

variation of I would vanish for such variations; and then the change of I
would be governed by the third variation.

We shall set aside this possibility of a conditionally vanishing second
variation, as being more restricted than is desirable in the quite general
discussion ; if and when instances occur, they can be discussed specially, the
course of discussion having been illustrated in an earlier example (p. 33).
Accordingly, for our purpose, we now require that U shall be steadily
positive (for a minimum) or steadily negative (for a maximum), so that it
shall never vanish except for zero variations w, v, w, and therefore for zero
variations V and W.

Now so long as V' +aV+B8W and W'+ ¥V +3W do not vanish simul-
taneously, the conditions, which are necessary and sufficient to secure that U
shall always have one sign, are:

(i) the quantities P and @ must each have one, and only one, sign

throughout the range;

(i) the persistent sign of P and the persistent sign of @ must be the

same;

(iii) the quantity PQ— R* must be positive throughout the range.

The third condition implies the second, but the second condition does not
carry the third. If PQ— R? could be negative, or P alone could change sign,
or Q alone could change sign, U would not have always the same sign for
all variations. If PQ— R*® could be zero, while the first two conditions were
satisfied, variations represented by

PV 4+aV+BW)+Q(W +4V+8W)=0
would make U zero, a possibility to be excluded.

Manifestly, if the persistent sign of P and of @ be positive, a minimum
is admissible; if it be negative, a maximum is admissible. Other conditions
may arise from other causes: these conditions must be maintained, as neces-
sary conditions.

These conditions are called the Legendre test, in extension of the fact that
the corresponding condition for the simplest problem was first stated by
Legendre.
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Conjugates on a characteristic curve : the Jacobs test.

173. Next, wemust consider the possibility that the quantities V'+aV+8W
and W+ oV 4 8W, viz.

v, v, W, w, V., W/,
K') Yl: Zl‘ le, :Yb Zl
Yzl; Y2) Zﬂ o Zz/ ’ YZ’ Z2

may vanish simultaneously for a pair of sets of integrals of the subsidiary
characteristic, such that ¥,Z, — ¥,Z, is not zero, and such that
o0, o, o oCh
Yla—Y-:/+Zla_Z;7= ‘z’aT‘-l/ +Z23_ZI—:‘~
The only way in which this can happen is that, for any pair of sets of
integrals Y, and Z,, Y, and Z,, which satisfy the conditions as stated, it may
be possible to have variations
V =AY, +put,
W=z + w2, } ’
where A and u are non-zero constants, All variations ¥ and W must vanish
at each limit. All the requisite possibilities, that make failure admissible,
will be attained, if we can have sets of integrals MY, + uY,, NZ, + uZ,, zero
together at the lower limit and zero together at the upper limit, while
AY; +uY, and AZ, + uZ, are not otherwise zero together (a fortiors, if they
are zero at only isolated places) in the range of integration. In order to
secure that U shall not become zero, through non-zero variations of such a
type, we must secure the exclusion of the type. It therefore must be im-
possible to have a non-zero combination of any two conditioned pairs of sets
of integrals, NY; + 1Y, and AZ, + uZ, being the combination, which vanishes
at the lower limit, and also at the upper limit, of the range of integration.
We may state the condition in a different form, by requiring that the range,
beginning at a place where any combination MY, + ¥, and AZ, 4 uZ, is made
to vanish, shall not extend so far as the nearest place where some such com-
bination again vanishes.

Such nearest place will, as before, be called the conjugate of the initial
place. The required condition is called the Jacob: test, in extension of the
fact that the corresponding condition for the simplest problem was first stated
by Jacobi.

Critical equation determining conjugates.

174. The analytical expression of this test requires the fuller consideration
of the characteristic curve. As the argument follows almost exactly the
earlier argument in the case of the special variation (§ 152), it can be ex-
plained rather briefly.
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We take, adjacent to the characteristic curve, another consecutive curve
represented by a set of integrals ¥, and Z, of the subsidiary equations, the
deviation being represented by its projections «Y, and «Z, upon the axes of
y and of z respectively. The conditions, assigned for the unique determination
of this consecutive curve, are that, at t =1,

Y,=0, Z,=0, Y/'=pJ(t,), Z =0,
where p is a non-zero constant. Then constants b, b;, b;, b, such that
4
S 0,0,(t)=0, b5 (t)=0, 25,0, (t)=pJ (), b (t)=0,
r=1

give

Yi=b:6,(t)+ 0.6, (8) + b, 60:(t)+b,6, ) =p| 6:.(t) , 0,(¢) , 6,(0) ,
0, (t), 0:(t), 65(t),
M), W), Fs(h),

| 99 (), %9 (f), ' (h),
@), %), %),
6: (%), 6:(t), 6s(t),
M), ¥(h), ),
N (), ¥ (B), ¥ (%),

Zi=b,3, () + by D5 (£) + by 33 (£) + b,V (£)=p

64(t)
0. (t)
3¢ ()
3 (4)
()
6, (t:)
S'4 (tl))
3 (t) |

We take a second consecutive curve represented by a set of integrals Y, and
Z, of the subsidiary equations, with Y, and «Z, as the projections, upon the
axes of y and of z, of the corresponding deviation. The conditions, assigned
for the unique determination of this curve, are that, at ¢=1#,,

Y, =0, Zz,=01 Y,/ =0, Z2/=_°'J(to)’

where o is a non-zero constant. Then constants ¢,, ¢, ¢, ¢,, such that

Sy (b)) =— o (),

4
2¢O, (to) =0, 29, (to) =0, Ze¢. 0,/ (to) =0,
1

give ”

Ye=10¢,0, () + ¢ 6, (1) +c;0; () +c.0,(t)=0 | 6,(2),
6, (t) »
1 (b)),
08 (&),
(),
6 (%),
sl (to) ’
6y (),

6:(8)
6. (%),
32 (%),
62 (to),
e (2) 5
62 (ta) ,
AR
8, (,).

05(t)
0 (%),
s (f),
0y (to),
¥ (t)
03 (to) >
s (h),
65’ (to),

Z,= 6,9, () + 6D (£) +0, ¥ () + 0, ¥, (B)=0c

In order that these two sets of integrals Y, and Z,, ¥, and Z;, may be

suited for our purpose, they must satisfy two requirements.

0.(t)

04 (to)
A
6. (t.)
¥ (8)

0, (t)
(&)
6. (1)
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In the first place, they must make the quantity
s, 9L oCh | 5 90k
Yiors + 4z~ (Yoor + %57)

zero. As Y, and Z,, Y,and Z,, are two sets of integrals, this quantity is bound
to be constant; and its constant value can be taken as its value anywhere.
When t=t, we have Y, Z,, ¥,, Z, each equal to zero: so the constant is
zero. The first requirement is satisfied.

In the second place, the two sets of integrals are to be independent, in the

sense that the magnitude
}71 Ze - Y, 221

must not be zero in general. It vanishes when ¢ =1{,; but V and W vanish
then also, so that (as in § 64) no infinity occurs in the expression for U at
t=1t, But after the initial value of ¢, the quantities V and W must not
vanish simultaneously until the conjugate of ¢ in the range is attained.
Moreover, the quantity (¥,Z, — ¥,Z,)~* occurs in the expression for U, so that
¥,Z,— Y,Z, ought not to vanish in the range after the initial point. Now

Y\2,- Y.Z, = (26,6, ()} {2 ()} — {(Sc,0,(8)} {26,9, (2)]

=3 (byca— bsy) {6: () 0 (£) — N1 () 6: (2)).

Writing
t 6:(2), 6:(t), 6:(t), 6.(t) 1';]"12 @), k@), Kiu(2), ks (@), ki (), K (2),
F(0), %@, Y@, N()
' 6, (1), 6y (t), 65(t), 6/ (t) '= ba (@), Ly (8), L (t), las (), Lot (), Luu(2),
(@), 9@, W (@), ¥/ (@)
01 (t) 2 02 (t) » 03 (t) 3 64 (t) = A(t(b t)’
S‘1 (t) » S’? (t) ) SS (t)’ S4 (t)
el (to); an(to); 93 (to)) 94 (to)
N (), Fa(to), N3 (fo), Va(to)

we have

b = P {km (o) N5 (t) + ko () 5 (b)) + Fos (8) D/ (to)},
— b= P {k:u (to) S‘1’ (to) +ky (to) Y (tO) + ki (to) 3/ (to)};
€1 =0 {legs (b) 05 (o) + ka (80) 65" (8) + Koos (%) 64 (&)}
— =0 ko (1) 0, (1) + i () 05 (o) + ks () B (%)} ;
and similarly for the other constants b and c. Then, as before (§ 152),

- 51; (bua = buts) = (i (t0) oy (o) — g (ta) s (1)} U (85)

+ kM (to) {kM (tl)) llE (tl)) + Ic:n (to) lﬁ! (to) + kll (to) l% (to) + kM (tl)) l3l (tﬂ) + k28 (to) l14 (to)}
= kau (to) J (&) ;
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and similarly for the other combinations of the coefficients b;c,, — byc;. Thus
_VNZ4-T4
pad (t)
= kg (t0) Frg () + Koog (86) Fera(8) + Koo (86) B (8) + Fora () Fesa (£) 4 ors (o) Koa (2) + Fora (80) Ko (£)
=A (b, t);
and therefore
Y2, — Y, Z,=— paJ (t,) A (t, t).
Here p and o are non-zero constants; J (f,) does not vanish ; and A (4, t) does
not vanish identically. Hence Y,Z,— Y,Z,, though it vanishes when ¢t =1%,,
does not vanish identically along the range; and thus the second requirement
for the two sets of integrals is satisfied.
Now consider a variation ¥ and W, given by
V=AY, +uY,, W=AZ +pZ,
where A and u are non-zero constants. At f={,, we have V=0 and W=0,
so that the variation vanishes (as it is bound to vanish) at the lower limit,
The conjugate of #, is the first place after the lower limit at which two
integrals MY, + uY, and AZ, + uZ,, vanishing at the lower limit, again vanish.
Denoting this conjugate by ¢,, we have
AVi@)+uY,()=0, M, (t)+uZ,(t)=0;
as A and p are not zero, we must have

¥ (tl) Z, (tl) -2 (tl) Y, (tl) =0,

At t)=0.
Thus the conjugate of any point t, on the characteristic curve is given by the
Jirst root t,, greater than t,, of the equation

A(ty, t)=0;

and the range of the integral, in order to satisfy the Jacobr test, must not extend
as far as the conjugate of the lower limit.

that is,

175. We take, in illustration, the question of a particular curve in
space, viz.,
Let it be required to find a mazimym or mini Jor the integral

V= pds,

where p i3 any continuous function in space, and the integral is taken from one surface—that
18, from any unspecified point on that surface—io another mon-intersecting surface—that s,
to any unspecified point on that other surface.

(The problem relates to the Principle of the minimum ‘reduced path’ of a ray in a
heterogeneous medium, where p is the index of refraction at any point in the medium :
aceording to this Principle, the actual path of a ray between any two points of its course
provides the minimum length of reduced path between them. Newton enunciated a
theorem, according to which the path of the ray is that of a particle moving with a velocity
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p under a system of forces with a potential; the problem associates this theorem, so
interpreted, with the Principle of least action, Further, for such a system of rays, the
quantity V, when regarded as a function of position in space represented by the upper
limit of the integral, is Hamilton’s Characteristic Function*.)

(A) The integral is
/ w (@2 g +ad di,

80 that the function g is p (224 y,2+z13)’3, while p is any function of z, y, . When substi-
tution is made in the characteristic equations, they become

op 3 d BTy
T (1'12+y 2+212) —_d ™A =0,
oz 1 at \(p2 4 yiez2d
with two others. When we take the length of arc as the independent variable in order
to simplify the equations already formed, the characteristic equations become
op d( dx)=0’ op d dy)_o, o0 df di —0;

% \P ds w a\Pa)=% % kg

or, in full,

In the first place, the three equations are at once seen to be equivalent to two only,

when coupled with the relation
dx\? | (dy\? rda\?
@)+ @)+ (2) -1

for, on multiplying them by %—f , % , Z—: respectively, and adding, we have the identity

Gude Gudy, Guds_d
0r ds " Oy ds ' Gz ds ds

Next, eliminating :% and p determinantally, we have

b Ao dw|_
oxr’ ds’ dst |
o dy dy
9y’ ds’ ds?
op dz d2z

162’ ds’ ds?
that is, the three lines whose direction-cosines are proportional to
G U U do dy do da By o
0x’ 0y’ 0z’ ds’ ds’'ds’ ds?’ ds?’ dst’
lie in one plane. Hence the osculating plane of the curve at any point contains the
normal to the level surface u=-constant at that point: or the direction of the path just

outside that surface and its direction just inside are in one plane with the normal to the
surface.

* For the discussion of these matters, reference may be made to R. A. Herman’s Treatise on
Geometrical Optics, ch. x, ch, xi.
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_ aF 2 a"' 2 a#)s_ d" 2 Fs

w= () +(3) +(G) = (&) +5

where p is the radius of circular curvature of the curve at the point. If ¥ be the angle
between the direction of the curve and that of the outward-drawn normal to the surface,

10pdr 1 0udy 10ude

V= oads TNy ds TN o
_Lldp,

T Nds’

or, taking account of the value of &,

Again, we have

B os p= + % i
pcos “’—idssm""

We have L 9& as the direction-cosines of the outward-drawn normal—in the

o2’ oy’ oz
direction, that is, of increasing z, ¥, z; if, then, RPN=4 and N’
P'PN'’'=v+dy, the angle of contingence de at P is —dy.. But P!
3.
P=de’ b
in the figure p is positive, and dp is positive: thus d
L
B cos g P i .
p cos Y 2 Sin ¥, / i
R N

that is,
pcosyr. dfp=—dusiny,
and therefore
p 8in Y =constant,
a first integral of the characteristic equations.
These two results are the expression of the customary laws of refraction, originally due
to Snell.

(B) Specific knowledge of the form of u, expressing its value in terms of its position
in space, is required before a second integral of the characteristic equations can be
obtained. Moreover, in the absence of this specific knowledge, the construction of the
subsidiary characteristic equations remains merely formal analysis; and the detailed form
of Jacobi’s range-test cannot be obtained precisely.

As regards the Legendre test, we have

02 2 +2z 2
B, st
I (@2 +yl+ )t
0% Y1z 2
J - _ ' =x,%R,
0y,02y F(z12+y12+212)% !
Fgo_ o, wtet | _ag

29 = B
0z;% (xlz +y12+zlﬂ)%

Hence P is always positive, @ is always positive, and P@— R* is always positive. Con-
sequently, the obtained path provides a minimum value for the integral V, within a range
that must satisfy the Jacobi test.
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(C) To take a specific example, suppose that
P=p’— (PP +y2+20),

where uo is a constant. (It is easy to see that no generality is provided by taking
pof — A% (2% +y2 + %), where A is a constant, for the value of %) The characteristic equations

are
dz dr

—z+ T r &
(on multiplying throughout by u, and writing 72 for 22+y2+2%), with two others. Multi-

d*z
(”’02 -7%) 752=0,

plying this equation by 2 %:‘ and integrating, we have

dz\?
2y 2 (PP 2o gt -
( m)(ds) z?-a?;
and, similarly,
NCAY
(r*—ﬁo)(rl) =32 -0,

2
o) (5 ) =2
from the other two equations, with the relation
a4+ b2+ ct=py?

among the constants, when account is taken of the persistent relation

(@) + (@)« (@)

These three equations manifestly are satisfied by
Z=asint=x (t), y=bsin((+8)=¢ (), z=csin(t+y)=V(¢):

no advantage arises from taking z=a sin (¢ +7y), because the explicit absence of ¢ from the
equations shews than an unessential constant (such as y) can occur as additive to z.

The quantities arising as integrals of the subsidiary equations are
6 (@O)=x"(2) p1 ()= (t) x1 (¢)= —bsint cos (¢4+8)
6(O)=x (1) $2()~¢' (1) x2 ()= acossin(¢+8)
8s(t)=X (1) b3 (8) = ")) xs ()= abeostcos(t+8)(
64 (2)=x"(2) s (D)=’ (t) x4 (£)=0

dx Oy Oy © I

where x1 (¢), x2 () x3 (&), x4 (¢£) denote 27();‘ y 8_;)‘ , % , 6%5’ and likewise for ¢ and v : and
3
HO=x DO @O-¥V Oxi(t)=a g—; cos ¢8in (¢+y) —¢ sint cos (£+7)

2
= -(z— cos ¢sin {+y)— ¢ sin £ cos (¢ +)

BO=xOY2)—¥ @) x2 (t) =0 g—z cos ¢ gin (1+7y) v

= —a?bcost sin (¢4-7y)

I3 (@) =x" (O¥s(0) ~ ¥ (2) xa(8)=0
34 (O)=x' (1) ¥a(8) = ¥'(2) x4 (t)=ac cos t cos (t+7) J




260 HAMILTON’S CHARACTERISTIC FUNCTION AND [cH. v

It is clear that there are no simultaneous relations
Ay 0, ()4 A20:(2)+ 4363 (£)+ A464(2) =0}
b
4,9 () +429: () + 4393 (1) + 4,9, (£)=0
with constant coefficients 4,, 43, 45, 44; and that therefore the combinations 6; and 3;,
8, and 9y, 6; and 93, 6, and 94, constitute four linearly independent integral-sets of the
subsidiary characteristic equations.

The element of arc is given by
2
(g—;) =a? cos? ¢t + b cos? (¢+ B) + ¢2 cos? (¢ +7),

30 that s is expressible by an elliptic integral ; the explicit value of s is irrelevant to the
solution.
The actual path of the ray, as given by the equations
r=asint, y=bsin(t+B), z=csin (t+y),
is also given by the equations

2

4 2 .
;2—2%00513-5—%2:31#/3,

2

2 2.
— cosy +'c‘2=51“2 Y

22

5‘1_2000
z . Y . Z .o o
asm(ﬂ 7)+l—;81n7 csmB—O,

and therefore it is an ellipse, the section of either of the elliptic cylinders by the plane.
The function, which determines ¢; (the conjugate of the initial place 7)), is
—A{ty, ti)=| 61(t), 6:(tr), 63(t), O
61 (to)y 62(fo)y O3(%), O
(), Sa(t) 0, 3u(t)
9ite)y S2() O 5 94(t0)
= {03 (ty) 63 (to) — 62 (%0) 83 (1)} {1 (t1) 34 (o) = 91 (f0) 92 (21)}
= {61 (1) 85 (o) — 61 (%) 63 (t1)} {92 (t1) 94 (f0) — 92 (20} 34 (2}
Now
8, (21) 03 (%) — 62 (%) 05 (t1))=  a®b cos t, cos tosin (2, — ty),
8; (t1) 65 (to) — 61 (t0) 85 (t1) = — ab? cos (2, + B) cos (fo+B8) sin (¢ — o),
941 (81) 94 (20) — 91 (o) 94 (t1)= — & {a? cos £ cos 7,4 ¢ cos (¢, +) cos (¢ +)} sin (¢ — ),
32 (1) 94 (t0) — 92 (%) 34 (81) = ~ aPb cos £ cos to sin (8 — to) ;

and therefore
A (o, t1)=a?bA cos ¢; cos ¢, sin? (¢; — 7,),
where
A=a?cos t; cos ty+ b2 cos (¢; +8) cos (¢,+B) +¢% cos (¢ +y) cos ({o+7).

We are to have

A (t()y tl) =0.
The merely algebraical possibilities fo=%4m and #,=4= are illusory, because ¢ is subject to
an additive unessential constant : moreover, the conjugate ¢, (if there is a limit) must be
related to ¢,. Hence we must have

A=0;

and therefore, at conjugate points, the tangents to the elliptic path are perpendicular to
one another.
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(D) As regards the original integral
p=[?2v* pds,
%oy Yos 2o
we still have to consider the terms at the limits.
By our general result (§ 158), where the path is to end at a terminal surface, we have
9 x4y 89y, %9 5
3z, X+a.% Y+az1 Z=0
as a condition to be satisfied at each extremity, that is,
dz
ks

consequently, the curve is to cut each terminal surface orthogonally.

d; d
X+,,dz Y+,‘d_§Z=o:

The foregoing integral ¥V, when it is expressible solely and definitely in terms of the
final position z, y, 2 (and of the initial position z, Yo, 2) Without reference to the mode of
passage from that initial position, is called the Characteristic Function®. We then have, for
variations at the upper limit,

dV=pds,
that is,
ov oV ov .,  rdz dy dz
= dx+@dy+ % de=p (% dz+ a0 dy + = dz) ,

for all variations dz, dy, dz at that upper limit, because V is a function only of the
variables of that limit (and of the lower limit, which does not affect the upper analytically).
Hence

oV_dz oV _ dy 8V _ dz,

Eralar R el SR ral AL
which, expressed in the vocabulary of geometrical optics, shews that the ray is normal to
the surfaces given by the level of the characteristic function. The persistence of these
level surfaces, normal to a system of rays, was first stated by Malus.

oV\2 oV\2? oV\2 2
&)+ (&) + (&)=

from the foregoing equations. Hence, when p is given as a function of position, the fore-
going is a partial differential equation of the first order satisfied by the characteristic
function V. Its general integral, obtainable by Jacobi’s method for the integration of such
equations in more than two independent variables, is of the form

V=Ff(=, ¥, 2, a, b)+ec,
where g, b, ¢ are arbitrary constants.

(E) Again, we have

The equation is satisfied for all values of the arbitrary constants, and is therefore satisfied
when they are subjected to a small variation so as to become a+xd, b+ xB, c+«C, where
4, B,  themselves are arbitrary and independent of one another. When we substitute in
the differential equation, and (as usual) make « so small that all powers above the first are
negligible in comparison with the first power, we have

el e @b Sl 5@ o3 @+ L @)+ )

* The title is due to Hamilton: the word ¢ Characteristic’ has no reference to that word, as
used in relation to the critical equations and the critical curve for maxima or minims in general,
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or, as 4 and B are independent of one another, and are arbitrary,
of o <6f) of +a_f2<f)
oz 0z ay % 8 0z 0z \0a
Y0 (), D)
ox o Oy 9y \ob/ ' 0z 2z \db :
But, along the path in question,
of dxz Oof  dy of _
b Pz T Mds % ds
and therefore, along that path, the equations

dz 9 dy&(f) dz&( )
dsi)x( ) ds 0z \0a,
dv 3 (_iz,a dza(éj)_o
aﬁ&z+dsay +ds 52 \o6) =

are satisfied. The first of these equations shews that the path is perpendicular to the
normal to a new surface

of

Ba= %

where o’ is a parametric constant, that is, the path touches the new surface; and the
second shews that it touches a new surface

of
="

where &' is a parametric constant. Hence the path from any point is the intersection of
those surfaces of the two families
o Uy
=% &=t
which pass through the point.
This theorem was given first by Liouville; the method, manifestly, is based upon
Jacobi’s method of variation of parameters.

Ezx. 1. Verify (by using Liouville’s theorem) the result obtained in (B) for the case

when
W= = (& + ).
Lzx. 2. Find the skew curve such that the integral
[on? -2yt
(%o, %o » 20}

is a minimum, when taken from an unspecified point on one surface to an unspecified point
on another surface.

Ezclusive complete ranges.

176. There are two propositions, connected with these characteristic
skew curves, analogous to the two propositions proved earlier (in §§ 67, 70)
for the characteristic plane curves.

According to the first of them, the range along the skew curve, limited by
conjugate points t, and t,, does not include within dtself a range similarly
bounded by conjugate points : that is, the conjugate of any place, within such
a range between ¢, and ¢,, lies without that range.
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Consider the function A (%, ¢) of § 174, where
A, y=Y,()Z,(t)— Y. () Z, (t).

It vanishes when ¢=4, For increasing values of ¢ from ¢, onwards, it does
not again vanish until ¢ reaches ¢, the conjugate of £,. Hence, at a place
ty+ €T} just within the range from ¢, to #,, where ¢ is small and positive and
T, is positive, the sign of A (£, t) is the same as at a pla.ce t,— T, just within
the same range, where 7 is small and positive and 7, is positive. Now
A (to: to+ GTO) = e To2 01’ (to)y ea, (to), 03, (to): 0¢I (to) + ...

N (&), W), W), N(t)

6, (&), 6 (t), 6 (), 6, (t)

M), () V() W (t)

=TT () + ..,
the unexpressed terms being the aggregate of those which involve the third
and higher powers of e. Hence, between the range from ¢, to ¢,, the sign of
A (%, t) is the same as that of J(%): or, as J (¢) has an unvarying s1gn § 171)
along the characteristic curve, the sign of A (%, t) has one unvarying sign
whatever initial point be chosen, and A (%,, t) does not vanish between ¢, and ¢,.
Again,
0A (t,, t
At =T =Ah, tl>-nrlg+‘) v
BA 0A (4, & t,)
ot,

where the unexpressed terms are the aggregate of those which involve second

and higher powers of 5. Thus
aA (tOr tl)
ot

does not vanish, and it has an unvarying sign whatever initial point £, be
chosen.

Next, consider the equation
At t,)=0,

where ¢, is the first value of ¢ (greater than #,) at which A (f,, £) vanishes. Let
ti+t,=20, t,—t,=2p;

A(f—p, 0+p)=0;
and now 2p is the smallest value of ¢, — ¢, satisfying the equation. But
A(l@—p, 6+p)=A(0+p, 0—p),

whatever @ and p may be; hence, coupled with a root p of the equation, there
is a root — p, because A (6 —p, 6+ p) is an even function of p. Also

A6, 6)=0,

the equation becomes
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whatever @ may be; hence, for any value of ¢,
AO-LO0+0)=0(0+50-0)
= ¢2J (6) + even powers of {
=0®, )
where ® (6, 0)=J (6), a quantity of invariable sign. Thus
@ (6, p)=0;
as {=p is the smallest positive root of the equation A (8—p, 84 p)=0, so
¢=—p is the numerically smallest negative root of ® (6, p?) =0, that is, of
A@+p, 0—p)=0,

Ay, t)=0,
regarded as an equation in ¢, when ¢, is given. Thus there is no value ¢, + €T}
(where ¢ and T, are positive), such that

A (to + €T, t)
(to; tl)

vanishes, that is, we cannot have = " equal to zero.
0

Now take a range on the characteristic curve from ¢, + €7, to ¢, + €0,
where e and T, are positive; and let it be a complete range, so that #, + ¢®
is the conjugate of t, + €T,. We thus have

Aty + €Ty, t,+€8) =0,

or

that is,

oA (to, £) 3A (t 1)

o
the unspecified terms involving the second and higher powers of E. Hence,
effectively, when e is small,

A(to, t1)+ To +€® --=0,

0A (ty, &) oA (1, tl)
R
Now the coefficient of 7, does not vanish, and the coefficient of ® does not
vanish; hence €T, and €® are of the same order of magnitude.

T,

If T, and ® are of opposite signs, in consequence of the signs of the
derivatives of A (f, t,), that is, if ® is negative, then the complete range
beginning at t; (=1, + €7T,) is included within the old range and ends at
&' (<t), the arc #,t, being of the same order of magnitude as #f,. At ¢,/
conditions generally—in particular, the sign of J (#,)—are the same as at ¢.
If then a place ¢’ + €7, with both ¢ and T\ positive, be taken within £,/
the foregoing analysis (with merely a change of symbols) would lead to the
conjugate of t, + €7y, and would place it within ¢¢/, at a distance from t/
within that range 